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“Smoking Adjoints” for fast Greeks

joint work with Paul Glasserman – appeared in Risk
magazine in 2006 and now being used by quite a few
banks

a particularly efficient way of implementing the pathwise
sensitivity approach

builds on lots of well-established ideas in design
optimisation and optimal control theory

ideal when wanting the sensitivity of one output to
changes in many different inputs

guaranteed to give all first order derivatives for a total
cost which is less than factor 4 greater than original
calculation
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Generic Problem

Suppose we have a multi-dimensional SDE with numerical
approximation

Ŝn+1 = gn(Ŝn)

and we want to compute sensitivity of a European option

E

[
f(ŜM )

]

to changes in S0 and other input parameters.
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Standard pathwise sensitivity

For the Deltas we can define ŝn =
∂Ŝn

∂S0

with ŝ0 = I, and

differentiate each timestep evolution to get

ŝn+1 = Dn ŝn, Dn ≡
∂g(Ŝn)

∂Ŝn

We then have (under the usual conditions)

∂

∂S0

E

[
f(ŜM )

]
= E

[
∂f

∂ŜM

ŝM

]

with
∂f

∂ŜM

ŝM =
∂f

∂ŜM

DM−1DM−2 . . . D1D0
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Crucial observation

Evaluating
∂f

∂ŜM

DM−1DM−2 . . . D1D0

from right to left involves a sequence of matrix-matrix
products, each with O(d3) cost where d is the dimension of
the SDE.

Alternatively, evaluating the same expression from left to
right involves a sequence of vector-matrix products, each
with O(d2) cost – big savings if d is large.

Important: get the same result either way, so still have usual
differentiability requirements of pathwise sensitivity calc

MC Lecture 16 – p. 5



Adjoint formulation

Starting with

vM =

(
∂f

∂ŜM

)T

the adjoint iteration is given by

vn = DT
n vn+1

and we finish with

∂

∂S0

E

[
f(ŜM )

]
= E

[
vT0
]
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Adjoint formulation

Note: we have to first do the path calculation, store
everything needed for the Dn, then do the adjoint
calculation of the sensitivity.

The storage requirements for a single path are minimal
– the storage is then reused for the next path.

However, in PDE applications these storage issues can
become significant.
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Standard pathwise sensitivity

For the Vegas we can define

ŝn =
∂Ŝn

∂σ

with ŝ0 = 0, and differentiate each timestep evolution to get

ŝn+1 = Dn ŝn + bn, bn ≡
∂gn
∂σ

We then have

∂f

∂ŜM

ŝM =

M−1∑

n=0

∂f

∂ŜM

DM−1DM−2 . . . Dn+2Dn+1 bn
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Adjoint formulation

This can be re-expressed as

∂f

∂ŜM

ŝM =

M−1∑

n=0

vTn+1bn

where the adjoint variables vn are as defined before.

Hence we finish with

∂

∂σ
E

[
f(ŜM )

]
= E

[
M−1∑

n=0

vTn+1bn

]
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Automatic Differentiation

The explanation above gives the essential ideas, but
doesn’t explain the guarantee that all first-order derivatives
of a single output can be computed at a cost no more than
4 times greater than the original computation

In addition, in real implementations you would not really
store and use the matrices Dn

This brings us to an area of computer science research
called automatic differentiation (or sometimes
algorithmic differentiation)
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Automatic Differentiation

A computer instruction creates an additional new value:

un+1 = fn(un) ≡

(
un

fn(un)

)
,

A computer program is the composition of N such steps:

uN = fN−1 ◦ fN−2 ◦ . . . ◦ f1 ◦ f0(u0).
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Automatic Differentiation

In forward mode, differentiation w.r.t. one element of the
input vector gives

u̇n+1 = Dn u̇n, Dn ≡

(
In

∂fn/∂un

)
,

and hence

u̇N = DN−1DN−2 . . . D1D0 u̇0
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Automatic Differentiation

In reverse mode, we consider the sensitivity of an output
scalar v to get

(un)
T

≡
∂v

∂un
=

∂v

∂un+1

∂un+1

∂un
=
(
un+1

)T
Dn,

=⇒ un =
(
Dn

)T
un+1.

and hence

u0 = (D0)
T (D1)

T . . . (DN−2)
T (DN−1)

T
uN .

Note: need to go forward through original calculation to
compute/store the Dn, then go in reverse to compute un
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Automatic Differentiation

At the level of a single instruction

c = f(a, b)

the forward mode is



ȧ

ḃ

ċ




n+1

=




1 0

0 1
∂f
∂a

∂f
∂b



(

ȧ

ḃ

)

n

and so the reverse mode is

(
a

b

)

n

=

(
1 0 ∂f

∂a

0 1 ∂f
∂b

)


a

b

c




n+1
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Automatic Differentiation

This gives a prescriptive algorithm for reverse mode
differentiation.

Again the reverse mode is much more efficient if we want
the sensitivity of a single output to multiple inputs.

Key result is that the cost of the reverse mode is at worst a
factor 4 greater than the cost of the original calculation,
regardless of how many sensitivities are being computed!

The storage of the Dn is minor for SDEs – much more of a
concern for PDEs. There are also extra complexities when
solving implicit equations through a fixed point iteration.
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Automatic Differentiation

Manual implementation of the forward/reverse mode
algorithms is possible but tedious.

Fortunately, automated tools have been developed,
following one of two approaches:

operator overloading (ADOL-C, FADBAD++, ado)

source code transformation (Tapenade, TAC++)
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LIBOR Application

testcase from “Smoking Adjoints” paper

good real-world example involving stochastic evolution
of future interest rates

test problem performs N timesteps with a vector of
N+40 forward rates, and computes the N+40 deltas
and vegas for a portfolio of swaptions

hand-coded adjoint for maximum efficiency – only about
50 lines of code so not too painful to do by hand
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LIBOR Application

Finite differences versus forward pathwise sensitivities:
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LIBOR Application

Hand-coded forward versus adjoint pathwise sensitivities:
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Closing words

the need for efficient Greeks means this research was
picked up quite quickly by some banks

adjoint approach gives one level of differentiation for
very little cost

for second order Greeks I would combine with
“bumping”

NAG’s ado operator-overloading tool developed by
Prof. Uwe Naumann at RTWH Aachen University
is the leading approach used in the industry

for more info on adjoints see my webpage:
people.maths.ox.ac.uk/gilesm/codes/libor AD/
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