
Numerical Methods II

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

MC Lecture 6 – p. 1

Two computing issues

In preparation for lectures 7 and 8, this lecture looks at two
computing issues:

finite precision arithmetic

numerical differentiation

MC Lecture 6 – p. 2

Finite precision arithmetic

On the computer, integer arithmetic is exact
(but leads to overflow if the numbers are too big)
but floating point arithmetic is not exact.

A floating point number is represented by

f = x× 2n

where n is the integer exponent which is given by some
number of bits, and 1 > |x| ≥ 1/2 is also represented by
some number of bits:

e.g. 2/3 ≡ 0.10101010101010

MC Lecture 6 – p. 3

Finite precision arithmetic

In MATLAB, and also C/C++, we have a choice between
double precision (default in MATLAB) and single precision.

type total bits exponent significand

double 64 11 53

single 32 8 24

The number of exponent bits affects the range – what is the
biggest/smallest number which can be represented.

The number of significand bits S affects the accuracy – in
general, when multiplying two numbers y, z the error is

roughly of size 2−S |y z|.

MC Lecture 6 – p. 4

Finite precision arithmetic

How does computer arithmetic work?

Conceptually, first do exact computation:

z = x+ y

z = x× y

then round the result z to the nearest floating point number
which can be represented.

Relative error in rounding:

2−S ≈
{

10−16 double precision

10−7 single precision

In MATLAB these are eps and eps(’single’).

MC Lecture 6 – p. 5

Finite precision arithmetic

What happens with the following MATLAB code?

sum = single(0);

for n = 1:10ˆ9

sum = sum + 1;

end

sum

. . . and why?

MC Lecture 6 – p. 6

Finite precision arithmetic

In Monte Carlo simulation we need to average over N
samples.

If the sum is s, error in each increment is of size en ≈ 2−Ss,
but the errors are equally likely to be positive or negative, so

E[en] = 0, V[en] ∼ 2−2Ss2

and hence

E

[

∑

n

en

]

= 0, V

[

∑

n

en

]

∼ N 2−2Ss2

so final fractional error is roughly of size 2−S
√
N .

MC Lecture 6 – p. 7

Finite precision arithmetic

In single precision, this might be about O(10−4) which is not
a huge error compared to other errors:

Monte Carlo sampling errors

model errors

errors in uncertain parameters

bias due to timestep discretisation

but maybe still better to use double precision for averaging.

The only other concern in computational finance
applications is with next topic – numerical differentiation
and “bumping” for Greeks.

But why not just do everything in double precision?

MC Lecture 6 – p. 8

Single or double precision?

Modern CPUs have vector units:

256 bits wide ≡ 4 doubles or 8 floats

future CPUs will handle 8 doubles or 16 floats, so
single precision twice as fast as double precision

not using the vector unit “throws away” most of the
CPU’s compute capability

GPUs (graphics chips which can now be used for compute)
are also at least twice as fast in single precision compared
to double precision.

My view: do things in single precision, except for averaging
and “bumping”.

MC Lecture 6 – p. 9

Numerical differentiation

Suppose we have MATLAB code to compute f(x) (with x
and f(x) both scalar) and we want to compute the
derivative f ′(x).

What can we do? Performing a Taylor series expansion,

f(x+∆x) ≈ f(x) + ∆x f ′(x) + 1

2
∆x2 f ′′(x) + 1

6
∆x3 f ′′′(x)

=⇒ f(x+∆x)− f(x)

∆x
≈ f ′(x) + 1

2
∆x f ′′(x),

f(x+∆x)− f(x−∆x)

2∆x
≈ f ′(x) + 1

6
∆x2 f ′′′(x),

f(x+∆x)− 2f(x) + f(x−∆x)

∆x2
≈ f ′′(x) + 1

24
∆x2 f ′′′′(x).

MC Lecture 6 – p. 10

Numerical differentiation

These are finite difference approximations, and they are the
basis for the finite difference method for approximating
PDEs.

In Monte Carlo methods, we use similar ideas (often
referred to as “bumping”) for computing sensitivities (the
“Greeks”)

Numerical example: trying to estimate f ′(1) for f(x) = sin x

MC Lecture 6 – p. 11

Numerical differentiation

The problem with taking ∆x ≪ 1 is inaccuracy due to finite
precision arithmetic.

Error in computing f(x+∆x)− f(x) is roughly of size

2−Sf(x), so error in computing one-sided difference
estimate for f ′(x) is of order

2−Sf(x)

2∆x

while the finite difference error is O(∆x).

MC Lecture 6 – p. 12

Numerical differentiation

To balance errors, want

2−S

∆x
∼ ∆x =⇒ ∆x ∼ 2−S/2.

In single precision, this means taking ∆x ∼ 10−3, and

getting an error which is roughly of size 10−3.

This is not great, and making ∆x smaller or bigger will
make things worse.

This is why many banks use double precision when doing
“bumping” for sensitivity analysis.

MC Lecture 6 – p. 13

Complex Variable Trick

This is a very useful “trick”, which I learned about from this
very short article:

“Using Complex Variables to Estimate Derivatives
of Real Functions”, William Squire and George
Trapp, SIAM Review, 40(1):110-112, 1998.

which now has 331 citations according to Google Scholar.

MC Lecture 6 – p. 14

Complex Variable Trick

Suppose f(z) is a complex analytic function, and f(x) is
real when x is real.

Then

f(x+i∆x) ≈ f(x) + i∆x f ′(x)− 1

2
∆x2 f ′′(x)− i 1

6
∆x3 f ′′′(x)

and hence

Imf(x+ i∆x)

∆x
≈ f ′(x)− 1

6
∆x2 f ′′′(x)

Now, we can take ∆x ≪ 1, and there is no problem due to
finite precision arithmetic.

I typically use ∆x = 10−10 ! MC Lecture 6 – p. 15

Complex Variable Trick

There are just a few catches, because f(z) must be
analytic:

need analytic extensions for min(x, y), max(x, y) and |x|
need analytic extensions to certain MATLAB functions,
e.g. normcdf

in MATLAB, must be aware that A′ is the Hermitian of A
(complex conjugate transpose), so use A.′ for the
simple transpose.

Using this, can very simply “differentiate” almost any
MATLAB code for a real function f(x).

MC Lecture 6 – p. 16

	Two computing issues
	Finite precision arithmetic
	Finite precision arithmetic
	Finite precision arithmetic
	Finite precision arithmetic
	Finite precision arithmetic
	Finite precision arithmetic
	Single or double precision?
	Numerical differentiation
	Numerical differentiation
	Numerical differentiation
	Numerical differentiation
	Complex Variable Trick
	Complex Variable Trick
	Complex Variable Trick

