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SDE Path Simulation

Lectures 1-8 dealt with the case of European options for
which the underlying SDE could be integrated exactly.

Lectures 9-16 address the more general case in which the
solution to the SDE needs to be approximated because

the option is path-dependent, and/or

the SDE is not integrable
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Euler-Maruyama method

The simplest approximation for the scalar SDE

dS = a(S, t) dt+ b(S, t) dW

is the forward Euler scheme, which is known as the
Euler-Maruyama approximation when applied to SDEs:

Ŝn+1 = Ŝn + a(Ŝn, tn)h+ b(Ŝn, tn)∆Wn

Here h is the timestep, Ŝn is the approximation to S(nh) and
the ∆Wn are i.i.d. N(0, h) Brownian increments.
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Euler-Maruyama method

For ODEs, the forward Euler method has O(h) accuracy,
and other more accurate methods would usually be
preferred.

However, SDEs are very much harder to approximate so
the Euler-Maruyama method is used widely in practice.

Numerical analysis is also very difficult and even the
definition of “accuracy” is tricky.
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Weak convergence

In finance applications, mostly concerned with weak
errors, the error in the expected payoff. For a European
payoff f(S(T )) this is

E[f(S(T ))]− E[f(ŜT/h)]

and it is of order α if

E[f(S(T ))]− E[f(ŜT/h)] = O(hα)

For a path-dependent option, the weak error is

E[f(S)]− E[f̂(Ŝ)]

where f(S) is a function of the entire path S(t), and f̂(Ŝ) is
a corresponding approximation. MC Lecture 9 – p. 5



Weak convergence

Key theoretical result (Bally and Talay, 1995):

If p(S) is the p.d.f. for S(T ) and p̂(S) is the p.d.f. for ŜT/h

computed using the Euler-Maruyama approximation,
then if a(S, t) and b(S, t) are Lipschitz w.r.t. S, t

‖p(S)− p̂(S)‖1 = O(h)

and hence for bounded payoffs

E[f(S(T ))]− E[f(ŜT/h)] = O(h)

(This holds even for digital options with discontinuous
payoffs f(S). Earlier theory covered only European options
such as put and call options with Lipschitz payoffs.)
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Weak convergence

Numerical demonstration: Geometric Brownian Motion

dS = r S dt+ σ S dW

r = 0.05, σ = 0.5, T = 1

European call: S0 = 100,K = 110.

Plot shows weak error versus analytic expectation when

using 108 paths, and also Monte Carlo error (3 standard
deviations)
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Weak convergence
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Weak convergence

Previous plot showed difference between exact expectation
and numerical approximation.

What if the exact solution is unknown? Compare
approximations with timesteps h and 2h.

If

E[f(S(T ))]− E[f(Ŝh
T/h)] ≈ a h

then

E[f(S(T ))]− E[f(Ŝ2h
T/2h)] ≈ 2 a h

and so

E[f(Ŝh
T/h)]− E[f(Ŝ2h

T/2h)] ≈ a h
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Weak convergence

To minimise the number of paths that need to be simulated,
best to use same driving Brownian path when doing 2h
and h approximations – i.e. take Brownian increments for h
simulation and sum in pairs to get Brownian increments for
2h simulation.

This is like using the same driving Brownian paths for finite
difference Greeks. The variance is lower because the h and
2h paths are close to each other (strong convergence).

In a later lecture, this forms the basis for the Multilevel
Monte Carlo method (Giles, 2006)
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Weak convergence

10
-2

10
-1

10
-3

10
-2

10
-1

Weak convergence -- difference from 2h approximation

h

E
rr

or

 

 
 Weak error
 MC error

MC Lecture 9 – p. 11



Strong convergence

Strong convergence looks instead at the average error in
each individual path:

(
E

[(
S(T )− ŜT/h

)2])1/2

or

(
E

[
sup
[0,T ]

(
S(t)− Ŝt/h

)2
])1/2

It is of order β if it is O(hβ) as h → 0.

The main theoretical result (Kloeden & Platen 1992) is that
for the Euler-Maruyama method if a(S, t) and b(S, t) are

again Lipschitz then these are both O(
√
h).
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Strong convergence

Thus, each approximate path deviates by O(
√
h) from its

true path.

How can the weak error be O(h)? Because the error

S(T )− ŜT/h

has mean O(h) even though the r.m.s. is O(
√
h).

(In fact to leading order it is normally distributed with zero
mean and variance O(h).)
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Strong convergence

Numerical demonstration based on same Geometric
Brownian Motion.

Plot shows two curves, one showing the difference from the
true solution

S(T ) = S0 exp
(
(r− 1

2σ
2)T + σW (T )

)

and the other showing the difference from the 2h
approximation
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Strong convergence
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Mean Square Error

Finally, how to decide whether it is better to increase the
number of timesteps (reducing the weak error) or the
number of paths (reducing the Monte Carlo sampling
error)?

If the true option value is V = E[f ]

and the discrete approximation is V̂ = E[f̂ ]

and the Monte Carlo estimate is Ŷ =
1

N

N∑

n=1

f̂ (n)

then . . .
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Mean Square Error

. . . the Mean Square Error is

E

[(
Ŷ − V

)2]
= E

[(
Ŷ −E[f̂ ] + E[f̂ ]−E[f ]

)2]

= E

[
(Ŷ −E[f̂ ])2

]
+ (E[f̂ ]−E[f ])2

= N−1
V[f̂ ] +

(
E[f̂ ]−E[f ]

)2

first term is due to the variance of estimator

second term is square of bias due to weak error
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Mean Square Error

If there are M timesteps, the computational cost is
proportional to C = NM and the MSE is approximately

aN−1 + bM−2 = aN−1 + bC−2N2.

For a fixed computational cost, this is a minimum when

N =

(
aC2

2 b

)1/3

, M =

(
2 bC

a

)1/3

,

and hence

aN−1 =

(
2 a2b

C2

)1/3

, bM−2 =

(
a2b

4C2

)1/3

,

so the MC term is twice as big as the bias term.
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Final Words

simple Euler-Maruyama method is basis for most Monte
Carlo simulation in industry – O(h) weak convergence

and O(
√
h) strong convergence

weak convergence is very important when estimating
expectations

strong convergence is usually not important – but is key
for multilevel Monte Carlo method to be discussed later

Mean-Square-Error is minimised by balancing bias due
to weak error and Monte Carlo sampling error
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