
Advanced Monte Carlo Methods:
American Options

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

American options – p. 1

Early Exercise

Perhaps the biggest challenge for Monte Carlo methods is
the accurate and efficient pricing of options with optional
early exercise:

Bermudan options: can exercise at a finite number of
times tj
American options: can exercise at any time

The challenge is to find/approximate the optimal strategy
(i.e. when to exercise) and hence determine the price and
Greeks.

American options – p. 2

Early Exercise

Approximating the optimal exercise boundary introduces
new approximation errors:

An approximate exercise boundary is inevitably
sub-optimal
=⇒ under-estimate of “true” value, but accurate value
for the sub-optimal strategy

For the option buyer, sub-optimal price reflects value
achievable with sub-optimal strategy

For the option seller, “true” price is best a purchaser
might achieve

Can also derive an upper bound approximation

American options – p. 3

Early Exercise

Why is early exercise so difficult for Monte Carlo methods?

leads naturally to a dynamic programming formulation
working backwards in time

fairly minor extension for finite difference methods
which already march backwards in time

doesn’t fit well with Monte Carlo methods which go
forwards in time

American options – p. 4

Problem Formulation

Following description in Glasserman’s book, the Bermudan
problem has the dynamic programming formulation:

Ṽm(x) = h̃m(x)

Ṽi−1(x) = max
(
h̃i−1(x),E[Di−1,i Ṽi(Xi) | Xi−1 = x]

)

where

Xi is the underlying at exercise time ti

Ṽi(x) is option value at time ti assuming not previously
exercised

h̃i(x) is exercise value at time ti
Di−1,i is the discount factor for interval [ti−1, ti]

American options – p. 5

Problem Formulation

By defining

hi(x) = D0,i h̃i(x)

Vi(x) = D0,i Ṽi(x)

where
D0,i = D0,1 D1,2 . . . Di−1,i

can simplify the formulation to

Vm(x) = hm(x)

Vi−1(x) = max (hi−1(x),E[Vi(Xi) | Xi−1 = x])

American options – p. 6

Problem Formulation

An alternative point of view considers stopping rules τ ,
the time at which the option is exercised.

For a particular stopping rule, the initial option value is

V0(X0) = E[hτ (Xτ)],

the expected value of the option at the time of exercise.

The best that can be achieved is then

V0(X0) = sup
τ

E[hτ (Xτ)]

giving an optimisation problem.

American options – p. 7

Problem Formulation

The continuation value is

Ci(x) = E[Vi+1(Xi+1) | Xi = x]

and so the optimal stopping rule is

τ = min {i : hi(Xi) > Ci(Xi)}

Approximating the continuation value leads to an
approximate stopping rule.

American options – p. 8

Longstaff-Schwartz Method

The Longstaff-Schwartz method (2001) is the one most
used in practice.

Start with N path simulations, each going from initial time
t=0 to maturity t=T = tm.

Problem is to assign a value to each path, working out
whether and when to exercise the option.

This is done by working backwards in time, approximating
the continuation value.

American options – p. 9

Longstaff-Schwartz Method

At maturity, the value of an option is

Vm(Xm) = hm(Xm)

At the previous exercise date, the continuation value is

Cm−1(x) = E[Vm(Xm) | Xm−1 = x]

This is approximated using a set of R basis functions as

Ĉm−1(x) =

R∑

r=1

βr ψr(x)

American options – p. 10

Longstaff-Schwartz Method

The coefficients βr are obtained by a least-squares
minimisation, minimising

E
{(

E[Vm(Xm) | Xm−1]− Ĉm−1(Xm−1)
)2}

Setting the derivative w.r.t. βr to zero gives

E
{(

E[Vm(Xm) | Xm−1]− Ĉm−1(Xm−1)
)
ψr(Xm−1)

}
= 0

and hence

E[Vm(Xm) ψr(Xm−1)] = E[Ĉm−1(Xm−1) ψr(Xm−1)]

=
∑

s

E[ψr(Xm−1) ψs(Xm−1)] βs

American options – p. 11

Longstaff-Schwartz Method

This set of equations can be written collectively as

Bψψ β = BV ψ

where
(BV ψ)r = E[Vm(Xm)ψr(Xm−1)]

(Bψψ)rs = E[ψr(Xm−1)ψs(Xm−1)]

Therefore,
β = B−1

ψψ BV ψ

American options – p. 12

Longstaff-Schwartz Method

In the numerical approximation, each of the expectations is
replaced by an average over the values from the N paths.

For example,
E[ψr(Xm−1)ψs(Xm−1)]

is approximated as

N−1
N∑

n=1

ψr(X
(n)
m−1) ψs(X

(n)
m−1)

Assuming that the number of paths is much greater than
the number of basis functions, the main cost is in
approximating Bψψ with a cost which is O(N R2).

American options – p. 13

Longstaff-Schwartz Method

Once we have the approximation for the continuation value,
what do we do?

if Ĉ(Xm−1) < hm−1(Xm−1), exercise the option and set

Vm−1 = hm−1(Xm−1)

if not, then either set

Vm−1 = Ĉ(Xm−1)

(Tsitsiklis & van Roy, 1999), or

Vm−1 = Vm

(Longstaff & Schwartz, 2001)

American options – p. 14

Longstaff-Schwartz Method

The Longstaff-Schwarz treatment only uses the
continuation estimate to decide on the exercise boundary
– no loss of accuracy for paths which are not exercised.

The Tsitsiklis-van Roy treatment introduces more error,
especially for American options where it gets applied each
timestep.

Also, Longstaff-Schwarz can do least squares fit only for
paths which are in-the-money (i.e. h(X) > 0) – leads to
improved accuracy.

Because of the optimality condition, the option value is
insensitive to small perturbations in the exercise boundary,
so can assume that exercise of paths is not affected when
computing first order Greeks.

American options – p. 15

Longstaff-Schwartz Method

Provided the basis functions are chosen suitably, the
approximation

Ĉm−1(x) =

R∑

r=1

βr ψr(x)

gets increasingly accurate as R → ∞. Longstaff &
Schwartz used 5-20 basis functions in their paper
– I don’t know what is standard now in practice.

Having completed the calculation for tm−1, repeat the
procedure for tm−2 then tm−3 and so on. Could use different
basis functions for each exercise time – the coefficients β
will certainly be different.

American options – p. 16

Longstaff-Schwartz Method

The estimate will tend to be biased low because of the
sub-optimal exercise boundary, however might be biased
high due to using the same paths for decision-making and
valuation.

To be sure of being biased low, should use two sets of
paths, one to estimate the continuation value and exercise
boundary, and the other for the valuation.

However, in practice the difference is quite small.

This leaves the problem of computing an upper bound.

American options – p. 17

Upper Bounds

In Glasserman’s Bermudan version of Roger’s continuous
time result (2002), he lets Mm be a martingale with M0=0.

For any stopping rule τ , we have

E[hτ (Xτ)] = E[hτ (Xτ)−Mτ] ≤ E[max
k

(hk(Xk)−Mk)]

This is true for all martingales M and all stopping rules τ
and hence

V0(X0) = sup
τ

E[hτ (Xτ)] ≤ inf
M

E[max
k

(hk(Xk)−Mk)]

American options – p. 18

Upper Bounds

The key duality result is that in fact there is equality

sup
τ

E[hτ (Xτ)] = inf
M

E[max
k

(hk(Xk)−Mk)]

so that

an arbitrary τ gives a lower bound

an arbitrary M gives an upper bound

making both of them “better” shrinks the gap between
them to zero

American options – p. 19

Upper Bounds

Glasserman proves by induction that the optimal martingale
M is equal to

Mk =

k∑

1

(
Vi(Xi)− E[Vi(Xi) | Xi−1]

)

To get a good upper bound we approximate this martingale.

American options – p. 20

Upper Bounds

The approximate martingale for a particular path is defined
as

M̂k =

k∑

1

(
Vi(Xi)− P−1

∑

p

Vi(X
(p)
i)

)

where the X(p)
i are values for Xi from P different mini-paths

starting at Xi−1, and

Vi(Xi) = max(hi(Xi), Ĉi(Xi))

with Ĉi(Xi) being the approximate continuation value given
by the Longstaff-Schwartz algorithm.

Glasserman suggests up to 100 mini-paths may be needed.
American options – p. 21

Final Words

Bermudan and American options are important
applications

Longstaff-Schwartz method is popular, but still plenty
of scope for improvement?

suspect that finite difference method is used for
Greeks?

is independent second set of paths used in practice?

are upper bounds used in practice?

American options – p. 22

Advanced Monte Carlo Methods:
Quasi-Monte Carlo

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

QMC – p. 1

Quasi Monte Carlo

low discrepancy sequences

Koksma-Hlawka inequality

rank-1 lattice rules and Sobol sequences

randomised QMC

identification of dominant dimension

QMC – p. 2

Quasi Monte Carlo

Standard Monte Carlo approximates high-dimensional
hypercube integral ∫

[0,1]d
f(x) dx

by

1

N

N∑

i=1

f(x(i))

with points chosen randomly, giving

r.m.s. error proportional to N−1/2

confidence interval

QMC – p. 3

Quasi Monte Carlo

Standard quasi Monte Carlo uses the same equal-weight
estimator

1

N

N∑

i=1

f(x(i))

but chooses the points systematically so that

error roughly proportional to N−1

no confidence interval

(We’ll get the confidence interval back later by adding in
some randomisation!)

QMC – p. 4

Low Discrepancy Sequences

The key is to use points which are fairly uniformly spread
within the hypercube, not clustered anywhere.

The star discrepancy D∗
N (x(1), . . . x(N)) of a set of N points

is defined as

D∗
N = sup

B∈J

∣∣∣∣
A(B)

N
− λ(B)

∣∣∣∣

where J is the set of all hyper-rectangles of the form
∏

[u−i , u
+
i], u±i ∈ [0, 1],

A(B) is the number of points in B, and λ(B) is the volume
(or measure) of B.

QMC – p. 5

Low Discrepancy Sequences

There are sequences for which

D∗
N ≤ C

(logN)d

N

where d is the dimension of the problem.

This is important because of the Koksma-Hlawka inequality.

QMC – p. 6

Koksma-Hlawka Inequality
∣∣∣∣∣
1

N

N∑

i=1

f(x(i))−
∫

[0,1]d
f(x) dx

∣∣∣∣∣ ≤ V (f) D∗
N (x(1), . . . x(N))

where V (f) is the Hardy-Krause variation of f defined (for
sufficiently differentiable f) as a sum of terms of the form

∫

[0,1]k

∣∣∣∣
∂kf

∂xi1 . . . ∂xik

∣∣∣∣
xj=1,j 6=i1,...,ik

dx

with i1<i2<. . .<ik for k ≤ d.

Problem: not a useful error bound

in finance applications f often isn’t even bounded

even when it is, it’s not sufficiently differentiable and
estimating V (f) is computationally demanding QMC – p. 7

Koksma-Hlawka Inequality

However, still useful because of what it tells us about the
asymptotic behaviour:

Error < C
(logN)d

N

for small dimension d, (d<10?) this is much better than
N−1/2 r.m.s. error for standard MC

for large dimension d, (logN)d could be enormous,
so not clear there is any benefit

QMC – p. 8

Rank-1 Lattice Rule

A rank-1 lattice rule has the simple construction

x(i) =
i

N
z mod 1

where z is a d-dimensional “generating vector”,
and r mod 1 means dropping the integer part of r

In each dimension k, the values x
(i)
k are a permutation of

the equally spaced points 0, 1/N, 2/N . . . (N−1)/N which is
great for integrands f which vary only in one dimension.

Also very good if f(x) =
∑

k

fk(xk).

QMC – p. 9

Rank-1 Lattice Rule

Two dimensions: 256 points

0 0.5 1

x
1

0

0.2

0.4

0.6

0.8

1

x
2

rank-1 lattice

0 0.5 1

x
1

0

0.2

0.4

0.6

0.8

1

x
2

random points

QMC – p. 10

Sobol Sequences

The most popular QMC approach uses Sobol sequences
x(i) which have the property that for small dimensions
d < 40 the subsequence

2m ≤ i < 2m+1

of length 2m has precisely 2m−d points in each of the little
cubes of volume 2−d formed by bisecting the unit hypercube
in each dimension, and similar properties hold with other
pieces.

QMC – p. 11

Sobol Sequences

For example:

cutting it into halves in any dimension, each has 2m−1

points

cutting it into quarters in any dimension, each has 2m−2

points

cutting it into halves in one direction, then halves in
another direction, each quarter has 2m−2 points

etc.

The generation of these sequences is a bit complicated,
but it is fast and plenty of software is available to do it.

QMC – p. 12

Sobol sequences

Two dimensions: 256 points

0 0.5 1

x
1

0

0.2

0.4

0.6

0.8

1

x
2

Sobol points

0 0.5 1

x
1

0

0.2

0.4

0.6

0.8

1

x
2

random points

QMC – p. 13

Randomised QMC

In the best cases, QMC error is O(N−1) instead of O(N−1/2)
but without a confidence interval.

To get a confidence interval using a rank-1 lattice rule,
we use several sets of QMC points, with the N points
in set m defined by

x(i,m) =

(
i

N
z + x(m)

)
mod 1

where x(m) is a random offset vector.

QMC – p. 14

Randomised QMC

For each m, let

fm =
1

N

N∑

i=1

f(x(i,m))

This is a random variable, and since E[f(x(i,m))] = E[f]
it follows that E[fm] = E[f]

By using multiple sets, we can estimate V[f] in the usual
way and so get a confidence interval

More sets =⇒ better variance estimate, but poorer error.
Some people use as few as 10 sets, but I prefer 32.

QMC – p. 15

Randomised QMC

For Sobol sequences, randomisation is achieved through
digital scrambling:

x(i,m) = x(i)∨ X(m)

where the exclusive-or operation ∨ is applied bitwise so that

0.1010011

∨ 0.0110110

= 0.1100101

The benefit of the digital scrambling is that it maintains the
special properties of the Sobol sequence.

QMC – p. 16

Dominant Dimensions

QMC points have the property that the points are more
uniformly distributed through the lowest dimensions.

Consequently, it is important to think about how the
dimensions are allocated to the problem.

Ideally, we’d like to use a change of variables, so the
function we’re integrating depends only on the first
coordinate.

QMC – p. 17

Dominant Dimensions

Suppose we have an European option, based on d multiple
underlying assets with

log Si(T) = log Si(0) +
(
r − 1

2σ
2
i

)
T + σiWi(T)

and the log Si(T) have covariance matrix Σ.

If U is a d-dimensional QMC point, can produce
uncorrelated quasi-random Normals using

Xi = Φ−1Ui

but how do we generate correlated quasi-Normals?

QMC – p. 18

Dominant Dimensions

Previously, have generated correlated Normals through

Y = LX

with X i.i.d. N(0, 1) Normals, and L is any matrix such that
LLT = Σ.

However, for QMC different L’s are equivalent to a change
of coordinates and it can make a big difference. Usually
best to use a PCA construction

L = U Λ1/2

with eigenvalues in diagonal matrix Λ (and associated
eigenvectors U) arranged in descending order, from largest
(=⇒ most important?) to smallest.

QMC – p. 19

Path-dependent options

Same ingredients as simple European options:

Sobol or lattice rule quasi-uniform generators

PCA to best use QMC inputs for multi-dimensional
applications

randomised QMC to regain confidence interval

New ingredient:

how best to use QMC inputs to generate Brownian
increments

QMC – p. 20

Quasi-Monte Carlo

When using standard Normal random inputs for MC
simulation, can express expectation as a multi-dimensional
integral with respect to inputs

V = E[f̂(Ŝ)] =
∫

f̂(Ŝ) φ(Z) dZ

where φ(Z) is multi-dimensional standard Normal p.d.f.

Putting Zn = Φ−1Un turns this into an integral over a
M -dimensional hypercube

V = E[f̂(Ŝ)] =
∫

f̂(Ŝ) dU

QMC – p. 21

Quasi-Monte Carlo

This is then approximated as

N−1
∑

n

f̂(Ŝ(n))

and each path calculation involves the computations

U → Z → ∆W → Ŝ → f̂

The key step here is the second, how best to convert the
vector Z into the vector ∆W . With standard Monte Carlo, as
long as ∆W has the correct distribution, how it is generated
is irrelevant, but with QMC it does matter.

QMC – p. 22

Quasi-Monte Carlo

For a scalar Brownian motion W (t) with W (0)=0, defining
Wn=W (nh), each Wn is Normally distributed and for j ≥ k

E[Wj Wk] = E[W 2
k] + E[(Wj−Wk)Wk] = tk

since Wj−Wk is independent of Wk.

Hence, the covariance matrix for W is Ω with elements

Ωj,k = min(tj , tk)

QMC – p. 23

Quasi-Monte Carlo

The task now is to find a matrix L such that

L LT = Ω = h




1 1 . . . 1 1

1 2 . . . 2 2

.

1 2 . . . M−1 M−1

1 2 . . . M−1 M




We will consider 3 possibilities:

Cholesky factorisation

PCA

Brownian Bridge treatment
QMC – p. 24

Cholesky factorisation

The Cholesky factorisation gives

L =
√
h




1 0 . . . 0 0

1 1 . . . 0 0

.

1 1 . . . 1 0

1 1 . . . 1 1




and hence

Wn =

n∑

m=1

√
h Zm =⇒ ∆Wn = Wn −Wn−1 =

√
h Zn

i.e. standard MC approach

QMC – p. 25

PCA construction

The PCA construction uses

L = U Λ1/2 =
(

U1 U2 . . .
)



λ
1/2
1

λ
1/2
2

. . .




with the eigenvalues λn and eigenvectors Un arranged in
descending order, from largest to smallest.

Numerical computation of the eigenvalues and eigenvectors
is costly for large numbers of timesteps, so instead use
theory due to Åkesson and Lehoczky (1998)

QMC – p. 26

PCA construction

It is easily verified that

Ω−1 = h−1




2 −1

−1 2 −1

−1 2 −1

.

−1 2 −1

−1 2 −1

−1 1




.

This looks like the finite difference operator approximating a
second derivative, and so the eigenvectors are Fourier
modes.

QMC – p. 27

PCA construction

The eigenvectors of both Ω−1 and Ω are

(Um)n =
2√

2M + 1
sin

(
(2m−1)nπ

2M+1

)

and the eigenvalues of Ω are the reciprocal of those of Ω−1,

λm =
h

4

(
sin

(
(2m−1) π

2 (2M+1)

))−2

Because the eigenvectors are Fourier modes, an efficient
FFT transform can be used (Scheicher, 2006) to compute

L Z = U
(
Λ1/2 Z

)
=

∑

m

(
√

λm Zm)Um

QMC – p. 28

Brownian Bridge construction

The Brownian Bridge construction uses the theory from a
previous lecture.

The final Brownian value is constructed using Z1:

WM =
√
T Z1

Conditional on this, the midpoint value WM/2 is Normally
distributed with mean 1

2WM and variance T/4, and so can
be constructed as

WM/2 =
1
2WM +

√
T/4 Z2

QMC – p. 29

Brownian Bridge construction

The quarter and three-quarters points can then be
constructed as

WM/4 = 1
2WM/2 +

√
T/8 Z3

W3M/4 = 1
2(WM/2 +WM) +

√
T/8 Z4

and the procedure continued recursively until all Brownian
values are defined.

(This assumes M is a power of 2 – if not, the
implementation is slightly more complex)

I have a slight preference for this method because it is
particularly effective for European option for which S(T) is
very strongly dependent on W (T).

QMC – p. 30

Multi-dimensional Brownian motion

The preceding discussion concerns the construction of a
single, scalar Brownian motion.

Suppose now that we have to generate a P -dimensional
Brownian motion with correlation matrix Σ between the
different components.

What do we do?

QMC – p. 31

Multi-dimensional Brownian motion

First, using either PCA or BB to construct P uncorrelated
Brownian paths using

Z1, Z1+P , Z1+2P , Z1+3P , . . . for first path

Z2, Z2+P , Z2+2P , Z2+3P , . . . for second path

Z3, Z3+P , Z3+2P , Z3+3P , . . . for third path

etc.

This uses the “best” dimensions of Z for the overall
behaviour of all of the paths.

QMC – p. 32

Multi-dimensional Brownian motion

Second, define

W corr
n = LΣ W uncorr

n =⇒ ∆W corr
n = LΣ ∆W uncorr

n

where W uncorr
n is the uncorrelated sequence,

W corr
n is the correlated sequence, and

LΣ LT
Σ = Σ

QMC – p. 33

Numerical results

Usual European call test case based on geometric
Brownian motion:

128 timesteps so weak error is negligible

comparison between
QMC using Brownian Bridge
QMC without Brownian Bridge
standard MC

QMC calculations use Sobol generator

all calculations use 64 “sets” of points – for QMC calcs,
each has a different random offset

plots show error and 3 s.d. error bound

QMC – p. 34

QMC with Brownian Bridge

10
0

10
1

10
2

10
3

N

10
-2

10
-1

10
0

10
1

E
rr

o
r

comparison to exact solution

 Error

 MC error bound

QMC – p. 35

QMC without Brownian Bridge

10
0

10
1

10
2

10
3

N

10
-2

10
-1

10
0

10
1

E
rr

o
r

comparison to exact solution

 Error

 MC error bound

QMC – p. 36

Standard Monte Carlo

10
0

10
1

10
2

10
3

N

10
-2

10
-1

10
0

10
1

E
rr

o
r

comparison to exact solution

 Error

 MC error bound

QMC – p. 37

Final words

QMC offers large computational savings over the
standard Monte Carlo approach

best to use randomised QMC to regain confidence
intervals, at the cost of slightly poorer accuracy

very important to use PCA or Brownian Bridge
construction to create discrete Brownian increments
– much better than “standard” approach which is
equivalent to Cholesky factorisation of covariance
matrix

QMC – p. 38

Advanced Monte Carlo Methods:
Computing Greeks

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Computing Greeks – p. 1

Outline

Computing Greeks

finite differences

likelihood ratio method

pathwise sensitivities

“Smoking adjoints” implementation

Computing Greeks – p. 2

SDE path simulation

For the generic stochastic differential equation

dS(t) = a(S) dt+ b(S) dW (t)

an Euler approximation with timestep h is

Ŝn+1 = Ŝn + a(Ŝn)h+ b(Ŝn)Zn

√
h,

where Z is a N(0, 1) random variable. To estimate the value
of a European option

V = E[f(S(T))],
we take the average of N paths with M timesteps:

V̂ = N−1
∑

i

f(Ŝ
(i)
M).

Computing Greeks – p. 3

Greeks

As in Module 2, in addition to estimating the expected value

V = E[f(S(T)],

we also want to know a whole range of “Greeks”
corresponding to first and second derivatives of V with
respect to various parameters:

∆ =
∂V

∂S0
, Γ =

∂2V

∂S2
0

,

ρ =
∂V

∂r
, Vega =

∂V

∂σ
.

These are needed for hedging and for risk analysis.

Computing Greeks – p. 4

Finite difference sensitivities

If V (θ) = E[f(S(T))] for a particular value of an input

parameter θ, then the sensitivity
∂V

∂θ
can be approximated

by one-sided finite difference

∂V

∂θ
=

V (θ+∆θ)− V (θ)

∆θ
+ O(∆θ)

or by central finite difference

∂V

∂θ
=

V (θ+∆θ)− V (θ−∆θ)

2∆θ
+ O((∆θ)2)

Nothing changes here from Module 2 because of the path
simulation.

Computing Greeks – p. 5

Finite difference sensitivities

As before, the clear advantage of this approach is that it is
very simple to implement (hence the most popular in
practice?)

However, the disadvantages are:

expensive (2 extra sets of calculations for central
differences)

significant bias error if ∆θ too large

large variance if f(S(T)) discontinuous and ∆θ small

Also, very important to use the same random numbers for
the “bumped” path simulations to minimise the variance.

Computing Greeks – p. 6

Likelihood ratio method

As a recap from Module 2, if we define p(S) to the
probability density function for the final state S(T), then

V = E[f(S(T))] =
∫

f(S) p(S) dS,

=⇒ ∂V

∂θ
=

∫
f
∂p

∂θ
dS =

∫
f
∂(log p)

∂θ
p dS = E

[
f
∂(log p)

∂θ

]

The quantity
∂(log p)

∂θ
is sometimes called the “score

function”.

Computing Greeks – p. 7

Likelihood ratio method

Extending LRM to a SDE path simulation with M timesteps,
with the payoff a function purely of the discrete states Ŝn,
we have the M -dimensional integral

V = E[f(Ŝ)] =
∫

f(Ŝ) p(Ŝ) dŜ,

where dŜ ≡ dŜ1 dŜ2 dŜ3 . . . dŜM

and p(Ŝ) is the product of the p.d.f.s for each timestep

p(Ŝ) =
∏

n

pn(Ŝn+1|Ŝn)

log p(Ŝ) =
∑

n

log pn(Ŝn+1|Ŝn)

Computing Greeks – p. 8

Likelihood ratio method

For the Euler approximation of GBM,

log pn = − log Ŝn− log σ− 1
2 log(2πh)− 1

2

(
Ŝn+1 − Ŝn(1+r h)

)2

σ2 Ŝ2
n h

=⇒ ∂(log pn)

∂σ
= − 1

σ
+

(
Ŝn+1 − Ŝn(1+r h)

)2

σ3 Ŝ2
n h

=
Z2
n − 1

σ

where Zn is the unit Normal defined by

Ŝn+1 − Ŝn(1+r h) = σ Ŝn

√
hZn

Computing Greeks – p. 9

Likelihood ratio method

Hence, the approximation of Vega is

∂

∂σ
E[f(ŜM)] = E

[(∑

n

Z2
n−1

σ

)
f(ŜM)

]

Note that again this gives zero for f(S) ≡ 1.

Note also that V[Z2
n − 1] = 2 and therefore

V

[(∑

n

Z2
n−1

σ

)
f(ŜM)

]
= O(M) = O(T/h)

This O(h−1) blow-up is the great drawback of the LRM.
Computing Greeks – p. 10

Pathwise sensitivities

Under certain conditions (e.g.f(S), a(S, t), b(S, t) all
continuous and piecewise differentiable)

∂

∂θ
E[f(S(T))] = E

[
∂f(S(T))

∂θ

]
= E

[
∂f

∂S

∂S(T)

∂θ

]
.

with
∂S(T)

∂θ
computed by differentiating the path evolution.

Pros:

less expensive (1 cheap calculation for each sensitivity)

no bias

Cons:

can’t handle discontinuous payoffs
Computing Greeks – p. 11

Pathwise sensitivities

In Module 2, when we could directly sample S(T) this led
to the estimator

1

N

N∑

i=1

∂f

∂S
(S(i))

∂S(i)

∂θ

which is the derivative of the usual price estimator

1

N

N∑

i=1

f(S(i))

Gives incorrect estimates when f(S) is discontinuous.

e.g. for digital put
∂f

∂S
= 0 so estimated value of Greek is

zero – clearly wrong.
Computing Greeks – p. 12

Pathwise sensitivities

Returning to the generic stochastic differential equation

dS = a(S) dt+ b(S) dW

an Euler approximation with timestep h gives

Ŝn+1 = Fn(Ŝn) ≡ Ŝn + a(Ŝn)h+ b(Ŝn)Zn

√
h.

Defining ∆n =
∂Ŝn

∂S0
, then ∆n+1 = Dn∆n, where

Dn ≡ ∂Fn

∂Ŝn

= I +
∂a

∂S
h+

∂b

∂S
Zn

√
h.

Computing Greeks – p. 13

Pathwise sensitivities

The payoff sensitivity to the initial state (Deltas) is then

∂f(ŜN)

∂S0
=

∂f(ŜN)

∂ŜN

∆N

If S(0) is a vector of dimension m, then each timestep

∆n+1 = Dn∆n,

involves a m×m matrix multiplication, with O(m3) CPU cost
– costly, but still cheaper than finite differences which are
also O(m3) but with a larger coefficient.

Cost may be less in practice because Dn may have a lot of
zero entries.

Computing Greeks – p. 14

Pathwise sensitivities

To calculate the sensitivity to other parameters (such as
volatility =⇒ vegas) consider a generic parameter θ.

Defining Θn = ∂Ŝn/∂θ, then

Θn+1 =
∂Fn

∂Ŝn

Θn +
∂Fn

∂θ
≡ DnΘn +Bn,

and hence
∂f

∂θ
=

∂f(ŜN)

∂ŜN

ΘN

Computing Greeks – p. 15

Vega example

Suppose we have a down-and-out barrier option based on
a single GBM asset, and we want to compute vega.

Euler approximation with timestep h:

Ŝn+1 = Fn(Ŝn) ≡ Ŝn + r Ŝn h+ σ Ŝn Zn

√
h

Differentiating this gives:

∂Ŝn+1

∂σ
=

∂Ŝn

∂σ

(
1 + r + σZn

√
h
)
+ Ŝn Zn

√
h

with initial condition
∂Ŝ0

∂σ
= 0.

Computing Greeks – p. 16

Vega example

Using the treatment discussed in Module 4, where
pn = pn(Ŝn, Ŝn+1, σ) is conditional probability of being across
the barrier in nth timestep, the discounted payoff is

exp(−rT) (ŜN−K)+ PN

where

Pn =

n−1∏

m=0

(1− pm),

is probability of not crossing the barrier in first n timesteps,
and P0 = 0.

Computing Greeks – p. 17

Vega example

Since
Pn+1 = Pn (1− pn)

then

∂Pn+1

∂σ
=

∂Pn

∂σ
(1−pn)−Pn

(
∂pn

∂Ŝn

∂Ŝn

∂σ
+

∂pn

∂Ŝn+1

∂Ŝn+1

∂σ
+

∂pn
∂σ

)

with initial condition
∂P0

∂σ
= 0.

The payoff sensitivity is then

exp(−rT)

(
1
ŜN>K

∂ŜN

∂σ
PN + (ŜN−K)+

∂PN

∂σ

)

Computing Greeks – p. 18

Automatic Differentiation

Generating the pathwise sensitivity code is tedious, but
straightforward, and can be automated:

source-source code generation: takes an old code for
payoff evaluation and produces a new code which also
computes sensitivities

operator overloading: defines new object (value +
sensitivity), and re-defines operations appropriately
e.g. (

a

ȧ

)
∗
(

b

ḃ

)
≡
(

a b

ȧ b+ a ḃ

)

For more information, see
www.autodiff.org/
people.maths.ox.ac.uk/gilesm/libor/

Computing Greeks – p. 19

Discontinuous payoffs

Pathwise sensitivity needs the payoff to be continuous.

What can you do when it is not?

for digital options, can use a crude piecewise linear
approximation

alternatively, use conditional expectations which
effectively smooth the payoff

the barrier option is a good example of this, using
the probability of crossing conditional on the path
values at discrete times
Glasserman discusses a similar approach for digital
options, stopping the path simulation one timestep
early then taking a conditional expectation

Computing Greeks – p. 20

Discontinuous payoffs

Glasserman’s approach has problems in multiple
dimensions (hard to evaluate expected value analytically)
so I developed an approach I call “vibrato Monte Carlo”.

It is a hybrid method. Conditional on the path value ŜN−1

one timestep before the end, the value value ŜN has a
Normal distribution, if using an Euler discretisation.

Hence, can use LRM for the final timetsep to get the
sensitivity to changes in ŜN−1, and combine this with
pathwise to get sensitivity of ŜN−1 to the input parameters.

M.B. Giles, ’Vibrato Monte Carlo sensitivities’, pp. 369-392
in Monte Carlo and Quasi Monte Carlo Methods 2008,
Springer, 2009. Computing Greeks – p. 21

Adjoint approach

The adjoint (or reverse mode AD) approach computes the
same values as the standard (forward) pathwise approach,
but much more efficiently for the sensitivity of a single
output to multiple inputs.

The approach has a long history in applied math and
engineering:

optimal control theory (find control which achieves
target and minimizes cost)

design optimization (find shape which maximizes
performance)

Computing Greeks – p. 22

Adjoint approach

Returning to the generic stochastic o.d.e.

dS = a(S) dt+ b(S) dW,

with Euler approximation

Ŝn+1 = Fn(Ŝn) ≡ Ŝn + a(Ŝn)h+ b(Ŝn)Zn

√
h

if ∆n =
∂Ŝn

∂S0
, then ∆n+1 = Dn∆n, Dn ≡ ∂Fn(Ŝn)

∂Ŝn

,

and hence

∂f(ŜN)

∂S0
=
∂f(ŜN)

∂ŜN

∆N =
∂f

∂S
DN−1DN−2 . . . D0∆0

Computing Greeks – p. 23

Adjoint approach

If S is m-dimensional, then Dn is an m×m matrix,
and the computational cost per timestep is O(m3).

Alternatively,

∂f(ŜN)

∂S0
=

∂f

∂S
DN−1DN−2 · · ·D0∆0 = V T

0 ∆0,

where adjoint Vn =

(
∂f(ŜN)

∂Ŝn

)T

is calculated from

Vn = DT
nVn+1, VN =

(
∂f

∂ŜN

)T

,

at a computational cost which is O(m2) per timestep.
Computing Greeks – p. 24

Adjoint approach

Note the flow of data within the path calculation:

S0 S1 . . . SN−1 SN
✲ ✲ ✲ ✲ ✩

❄

∂f/∂S

✪✛

D0 D1 DN−1

❄ ❄ ❄

✛ ✛ ✛ ✛V0 V1 . . . VN−1 VN

– memory requirements are not significant because data
only needs to be stored for the current path.

Computing Greeks – p. 25

Adjoint approach

To calculate the sensitivity to other parameters, consider a
generic parameter θ. Defining Θn = ∂Ŝn/∂θ, then

Θn+1 =
∂Fn

∂S
Θn +

∂Fn

∂θ
≡ DnΘn +Bn,

and hence

∂f

∂θ
=

∂f

∂ŜN

ΘN

=
∂f

∂ŜN

{
BN−1 +DN−1BN−2 + . . .

+DN−1DN−2 . . . D1B0

}

=

N−1∑

n=0

V T
n+1Bn.

Computing Greeks – p. 26

Adjoint approach

Different θ’s have different B’s, but same V ’s

=⇒ Computational cost ≃ m2 + m× # parameters,

compared to the standard forward approach for which

Computational cost ≃ m2 × # parameters.

However, the adjoint approach only gives the sensitivity of
one output, whereas the forward approach can give the
sensitivities of multiple outputs for little additional cost.

Computing Greeks – p. 27

LIBOR Market Model

Finite differences versus forward pathwise sensitivities:

0 20 40 60 80 100
0

50

100

150

200

250

Maturity N

re
la

ti
v
e
 c

o
s
t

finite diff delta
finite diff delta/vega
pathwise delta
pathwise delta/vega

Computing Greeks – p. 28

LIBOR Market Model

Forward versus adjoint pathwise sensitivities:

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

Maturity N

re
la

ti
v
e

 c
o

s
t

forward delta
forward delta/vega
adjoint delta
adjoint delta/vega

Computing Greeks – p. 29

Conclusions

Greeks are vital for hedging and risk analysis

Finite difference approximation is simplest to
implement, but far from ideal

Likelihood ratio method for discontinuous payoffs

In all other cases, pathwise sensitivities are best

Payoff smoothing may handle the problem of
discontinuous payoffs

Adjoint pathwise approach gives an unlimited number of
sensitivities for a cost comparable to the initial valuation

Computing Greeks – p. 30

References

M.B. Giles, P. Glasserman. ’Smoking adjoints: fast
Monte Carlo Greeks’, RISK, 19(1):88-92, January 2006.

M. Leclerc, Q. Liang, I. Schneider, ’Fast Monte Carlo
Bermudan Greeks’, RISK, 22(7):84-88, 2009.

L. Capriotti, M.B. Giles. ’Fast correlation Greeks by
adjoint algorithmic differentiation’, RISK, 23(4):77-83,
2010.

L. Capriotti, J. Lee, M. Peacock, ’Real Time
Counterparty Credit Risk Management in Monte Carlo’,
RISK 24(6):86-90, 2011.

L. Capriotti, ’Fast Greeks by algorithmic differentiation’,
Journal of Computational Finance 14(3):3-35, 2011.

L. Capriotti, M.B. Giles. ’Algorithmic differentiation:
adjoint Greeks made easy’, RISK, 25(10), 2012.Computing Greeks – p. 31

