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Objectives

In presenting the multilevel Monte Carlo method, I want to
emphasise:

I the simplicity of the idea

I its flexibility – it’s not prescriptive, more an approach

I future lectures will present a variety of applications – there are
lots of people around the world working on these

In this lecture I will focus on the fundamental ideas



Monte Carlo method

In stochastic models, we often have

ω −→ S −→ P
random input intermediate variables scalar output

The Monte Carlo estimate for E[P] is an average of N independent
samples ω(n):

Y = N−1
N∑

n=1

P(ω(n)).

This is unbiased, E[Y ]=E[P], and as N →∞ the error becomes
Normally distributed with variance N−1V where V =V[P].

RMS error of ε requires N =ε−2V samples, at a total cost of
ε−2V C , if C is the cost of a single sample.



Monte Carlo method

In many cases, this is modified to

ω −→ Ŝ −→ P̂
random input intermediate variables scalar output

where Ŝ , P̂ are approximations to S ,P, in which case the MC
estimate

Ŷ = N−1
N∑

n=1

P̂(ω(n))

is biased, and the Mean Square Error is

E[ (Ŷ−E[P])2] = N−1V[P̂] +
(
E[P̂]− E[P]

)2
Greater accuracy requires both larger N and smaller weak error
E[P̂]−E[P].



Two-level Monte Carlo

If we want to estimate E[P] but it is much cheaper to simulate
P̃ ≈ P, then since

E[P] = E[P̃] + E[P−P̃]

we can use the estimator

N−10

N0∑
n=1

P̃(0,n) + N−11

N1∑
n=1

(
P(1,n)− P̃(1,n)

)

Similar to a control variate except that

I we don’t know analytic value of E[P̃], so need to estimate it

I there is no multiplicative factor λ

Benefit: if P−P̃ is small, its variance will be small, so won’t need
many samples to accurately estimate E[P−P̃], so cost will be
reduced greatly.



Two-level Monte Carlo

If we define

I C0,V0 cost and variance of one sample of P̃

I C1,V1 cost and variance of one sample of P − P̃

then the total cost and variance of this estimator is

Ctot = N0C0 + N1C1 =⇒ Vtot = V0/N0 + V1/N1

Treating N0,N1 as real variables, using a Lagrange multiplier to
minimise the cost subject to a fixed variance gives

∂

∂N`
(Ctot + µ2Vtot) = 0, N` = µ

√
V`/C`

Choosing µ s.t. Vtot = ε2 gives

Ctot = ε−2(
√
V0C0 +

√
V1C1)2.



Multilevel Monte Carlo

Natural generalisation: given a sequence P̂0, P̂1, . . . , P̂L

E[P̂L] = E[P̂0] +
L∑
`=1

E[P̂`−P̂`−1]

we can use the estimator

Ŷ = N−10

N0∑
n=1

P̂
(0,n)
0 +

L∑
`=1

{
N−1`

N∑̀
n=1

(
P̂
(`,n)
` − P̂

(`,n)
`−1

)}

with independent estimation for each level of correction



Multilevel Monte Carlo

If we define

I C0,V0 to be cost and variance of P̂0

I C`,V` to be cost and variance of P̂`−P̂`−1

then the total cost is
L∑
`=0

N` C` and the variance is
L∑
`=0

N−1` V`.

Minimise the cost for a fixed variance

∂

∂N`

L∑
k=0

(
Nk Ck + µ2N−1k Vk

)
= 0

gives
N` = µ

√
V`/C` =⇒ N` C` = µ

√
V` C`



Multilevel Monte Carlo

Setting the total variance equal to ε2 gives

µ = ε−2

(
L∑
`=0

√
V` C`

)

and hence, the total cost is

L∑
`=0

N` C` = ε−2

(
L∑
`=0

√
V`C`

)2

in contrast to the standard cost which is approximately ε−2 V0 CL.

The MLMC cost savings are therefore approximately:

I VL/V0, if
√
V`C` increases with level

I C0/CL, if
√
V`C` decreases with level



Multilevel Monte Carlo

If P̂0, P̂1, . . . −→ P, then the Mean Square Error has the
decomposition

E
[
(Ŷ−E[P])2

]
= V[Ŷ ] +

(
E[Ŷ ]− E[P]

)2
=

L∑
`=0

V`/N` +
(
E[P̂L]− E[P]

)2
so can choose L so that

∣∣∣E[P̂L]− E[P]
∣∣∣ < ε/

√
2

and then choose N` so that
L∑
`=0

V`/N` < ε2/2



MLMC Theorem

(Slight generalisation of version in my original 2008 Operations
Research paper, ”Multilevel Monte Carlo path simulation”)

If there exist independent estimators Ŷ` based on N` Monte Carlo
samples, each costing C`, and positive constants α, β, γ, c1, c2, c3
such that α≥ 1

2 min(β, γ) and

i)
∣∣∣E[P̂`−P]

∣∣∣ ≤ c1 2−α `

ii) E[Ŷ`] =

 E[P̂0], ` = 0

E[P̂`−P̂`−1], ` > 0

iii) V[Ŷ`] ≤ c2N
−1
` 2−β `

iv) E[C`] ≤ c3 2γ `



MLMC Theorem

then there exists a positive constant c4 such that for any ε<1
there exist L and N` for which the multilevel estimator

Ŷ =
L∑
`=0

Ŷ`,

has a mean-square-error with bound E
[(

Ŷ − E[P]
)2]

< ε2

with an expected computational cost C with bound

C ≤


c4 ε
−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.



MLMC Theorem

Two observations of optimality:

I MC simulation needs O(ε−2) samples to achieve RMS
accuracy ε, so when β > γ, the cost is optimal — O(1) cost
per sample on average.

(Would need multilevel QMC to further reduce costs)

I When β < γ, another interesting case is when β = 2α, which

corresponds to E[Ŷ`] and
√
E[Ŷ 2

` ] being of the same order as
`→∞.
In this case, the total cost is O(ε−γ/α), which is the cost of a
single sample on the finest level — again optimal.



MLMC generalisation

The theorem is for scalar outputs P, but it can be generalised to
multi-dimensional (or infinite-dimensional) outputs with

i)
∥∥∥E[P̂`−P]

∥∥∥ ≤ c1 2−α `

ii) E[Ŷ`] =

 E[P̂0], ` = 0

E[P̂`−P̂`−1], ` > 0

iii) V[Ŷ`] ≡ E
[∥∥∥Ŷ` − E[Ŷ`]

∥∥∥2] ≤ c2N
−1
` 2−β `

Original multilevel research by Heinrich in 1999 did this for
parametric integration, estimating g(λ) ≡ E[f (x , λ)] for a
finite-dimensional r.v. x .



Three MLMC extensions

I unbiased estimation – Rhee & Glynn (2015)
I randomly selects the level for each sample
I no bias, and finite expected cost and variance if β > γ

I Richardson-Romberg extrapolation – Lemaire & Pagès (2013)
I reduces the weak error, and hence the number of levels

required
I particularly helpful when β < γ

I Multi-Index Monte Carlo – Haji-Ali, Nobile, Tempone (2015)
I important extension to MLMC approach, combining MLMC

with sparse grid methods



Randomised Multilevel Monte Carlo

Rhee & Glynn (2015) started from

E[P] =
∞∑
`=0

E[∆P`] =
∞∑
`=0

p` E[∆P`/p`],

to develop an unbiased single-term estimator

Y = ∆P`′ / p`′ ,

where `′ is a random index which takes value ` with probability p`.

β > γ is required to simultaneously obtain finite variance and finite
expected cost using

p` ∝ 2−(β+γ)`/2.

The complexity is then O(ε−2).



Multilevel Richardson-Romberg extrapolation

If the weak error on level ` satisfies

E[Y`−Y ] =
L+1∑
j=1

cj 2−αj` + rL,`, |rL,`| ≤ CL+2 2−α(L+2)`

then

L∑
`=0

w` E[Y`] =

(
L∑
`=0

w`

)
E[Y ] +

L+1∑
j=1

cj

(
L∑
`=0

w` 2−αj`

)
+ RL,

with |RL| ≤ CL+2
∑L

`=0(|w`| 2−α(L+2)`).

We want to estimate E[Y ], so choose w` to satisfy

L∑
`=0

w` = 1,
L∑
`=0

w` 2−αj` = 0, j = 1, . . . , L.



Multilevel Richardson-Romberg extrapolation

Given these weights, we then obtain

L∑
`=0

w` E[Y`] = E[Y ] + cL+1w̃L+1 + RL,

where (see paper by Pagès and Lemaire)

w̃L+1 =
L∑
`=0

w` 2−α(L+1)` = (−1)L 2−αL(L+1)/2,

which is asymptotically much larger than |RL|, but also very much
smaller than the usual MLMC bias.



Multilevel Richardson-Romberg extrapolation

To complete the ML2R formulation we need to set

W` =
L∑

`′=`

w`′ = 1−
`−1∑
`′=0

w`′ .

=⇒
L∑
`=0

w` E[Y`] = W0 E[Y0] +
L∑
`=1

W` E[∆Y`].

The big difference from MLMC is that now we need just

LML2R ∼
√
| log2 ε|/α

which is much better than the usual

LMLMC ∼ | log2 ε|/α

and can give good savings when β ≤ γ.



Multi-Index Monte Carlo

Standard “1D” MLMC truncates the telescoping sum

E[P] =
∞∑
`=0

E[∆P̂`]

where ∆P̂` ≡ P̂` − P̂`−1, with P̂−1≡0.

In “2D”, MIMC truncates the telescoping sum

E[P] =
∞∑
`1=0

∞∑
`2=0

E[∆P̂`1,`2 ]

where ∆P̂`1,`2 ≡ (P̂`1,`2 − P̂`1−1,`2)− (P̂`1,`2−1 − P̂`1−1,`2−1)

Different aspects of the discretisation vary in each “dimension”



Multi-Index Monte Carlo

-
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MIMC truncates the summation in a way which minimises the cost
to achieve a target MSE – quite similar to sparse grids.

Can achieve O(ε−2) complexity for a wider range of applications
than plain MLMC.



MLMC

Numerical algorithm:

1. start with L=0

2. if L < 2, get an initial estimate for VL using NL = 1000
samples, otherwise extrapolate from earlier levels

3. determine optimal N` to achieve
L∑
`=0

V`/N` > ε2/2

4. perform extra calculations as needed, updating estimates of V`

5. if L<2 or the bias estimate is greater than ε/
√

2, set
L := L+1 and go back to step 2



MLQMC

For further improvement in overall computational cost, can switch
to QMC instead of MC for each level.

I use randomised QMC, with 32 random offsets/shifts

I define VN`,` to be variance of average of 32 averages using
N` QMC points within each average

I objective is therefore to achieve

L∑
`=0

VN`,` ≤ ε
2/2

I process to choose L is unchanged, but what about N`?



MLQMC

Numerical algorithm:

1. start with L=0

2. get an initial estimate for V1,L using 32 random offsets and
NL = 1

3. while
L∑
`=0

VN`,` > ε2/2, try to maximise variance reduction

per unit cost by doubling N` on the level with largest value of
VN`,` / (N` C`)

4. if L<2 or the bias estimate is greater than ε/
√

2, set
L := L+1 and go back to step 2



Final comments

I MLMC has become widely used in the past 10 years,
and also MLQMC in some application areas (mainly PDEs)

I will cover a range of applications in this course

I most applications have a geometric structure as in the main
MLMC theorem, but a few don’t

I research worldwide is listed on a webpage:
people.maths.ox.ac.uk/gilesm/mlmc community.html

along with links to all relevant papers


