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Objectives

In presenting the multilevel Monte Carlo method, | want to
emphasise:

> the simplicity of the idea
> its flexibility — it's not prescriptive, more an approach

» future lectures will present a variety of applications — there are
lots of people around the world working on these

In this lecture | will focus on the fundamental ideas



Monte Carlo method

In stochastic models, we often have

w — S — P
random input intermediate variables scalar output

The Monte Carlo estimate for E[P] is an average of N independent
samples w(":
N

Y =N"1>"Pw).

n=1
This is unbiased, E[Y]=E[P], and as N — oo the error becomes

Normally distributed with variance N=*V where V =V[P].

RMS error of ¢ requires N=c"2V samples, at a total cost of
€72V C, if C is the cost of a single sample.



Monte Carlo method

In many cases, this is modified to

~ ~

w — S — P
random input intermediate variables scalar output

where §, P are approximations to S, P, in which case the MC
estimate

N
Y =N P
n=1
is biased, and the Mean Square Error is
~ 5 1 ~ ~ 2
E[(Y-E[P))?] = N"*V[P]+ (E[P] - E[P])

Greater accuracy requires both larger N and smaller weak error
E[P]-E[P].



Two-level Monte Carlo

If we want to estimate E[P] but it is much cheaper to simulate
P =~ P, then since

E[P] = E[P] + E[P—P]

we can use the estimator

Nt %02 PO 4 g1 %1: (P(l,n) P(1,n))
n=1 n=1

Similar to a control variate except that
» we don't know analytic value of E[P], so need to estimate it

> there is no multiplicative factor A

Benefit: if P—P is small, its variance will be~sma||, so won't need
many samples to accurately estimate E[P— P], so cost will be
reduced greatly.



Two-level Monte Carlo

If we define
» (o, Vo cost and variance of one sample of P
» (1, Vh cost and variance of one sample of P — P

then the total cost and variance of this estimator is
Cot =NoGo+ NG = Vior = Vo/No + Vi/ Ny

Treating Np, Ny as real variables, using a Lagrange multiplier to
minimise the cost subject to a fixed variance gives

(Crot + Mz Viot) =0, Np=p\/Vi/G

ON,

Choosing 1 s.t. Vior = g2 gives

Crot = £ 2(vV Vo Co + VV1C1)>.



Multilevel Monte Carlo

Natural generalisation: given a sequence ﬁo, ﬁl, ey ,BL
~ ~ L ~ ~
E[PL] = E[Po] + > E[Pi— Py 1]
=1

we can use the estimator

No N
V=N SRR 4+ N {Nel > (P PED) }

L
n=1 /=1 n=1

with independent estimation for each level of correction



Multilevel Monte Carlo

If we define
» (o, Vp to be cost and variance of ISO
» Cy, V, to be cost and variance of ﬁ’\g—ﬁ’\g,l
L L

then the total cost is Z Ny Cy and the variance is Z Ne_l\/g.
=0 £=0

Minimise the cost for a fixed variance

L
0 _
W Z Nka+M2Nk1Vk):O
k=0
gives
Ne=pu\Vi/C = NeCG=p\ Ve



Multilevel Monte Carlo

Setting the total variance equal to €2 gives
L
n= 2 (Z v Vy Cg)
=0
and hence, the total cost is
L L 2

Z Ny G = g2 (Z Vi VgCg)

£=0 =0
in contrast to the standard cost which is approximately ¢ =2 V, C;.
The MLMC cost savings are therefore approximately:

» Vi / Vo, if /VpCy increases with level
» Co/Cy, if VVyC; decreases with level



Multilevel Monte Carlo

If ﬁo, ﬁl, ... — P, then the Mean Square Error has the
decomposition

E[(V-E[P?| = v[V]+(E[V]- IE[P]>2

L ~ 2
= > Vi/Ne+ (B[P - E[P))
=0
so can choose L so that ‘]E[ﬁL] - E[P]‘ <e/V2

L
and then choose N, so that Z Vi/Np < €22
/=0



MLMC Theorem

(Slight generalisation of version in my original 2008 Operations
Research paper, " Multilevel Monte Carlo path simulation™)

If there exist independent estimators ?g based on N, Monte Carlo
samples, each costing C,, and positive constants «, 3,7, c1, ¢, C3
such that o> min(8,~) and
i) ‘E[ﬁg—P]‘ < 2o
= E[I/D\OL (=0
i) E[Ye] = S
E[P;—Pp1], £>0
i) V[Yy] < o N 12754
iv) E[Cg] < 3 2’M



MLMC Theorem

then there exists a positive constant ¢4 such that for any e <1
there exist L and N, for which the multilevel estimator

~ 2
has a mean-square-error with bound E [(Y — E[P]) ] <é?
with an expected computational cost C with bound

C45_2> /8 >
C << cace?(loge)?, B=r,

e 270-Fle o< p< .



MLMC Theorem

Two observations of optimality:

» MC simulation needs O(¢~2) samples to achieve RMS
accuracy &, so when 8 > =, the cost is optimal — O(1) cost
per sample on average.

(Would need multilevel QMC to further reduce costs)

» When 3 < ~, another interesting case is when 3 = 2, which

corresponds to IE[\A/E] and \/E[\A’f] being of the same order as

{ — oo.
In this case, the total cost is O(¢~7/®), which is the cost of a

single sample on the finest level — again optimal.



MLMC generalisation

The theorem is for scalar outputs P, but it can be generalised to
multi-dimensional (or infinite-dimensional) outputs with

) [EP—P)| < ez

R E[Py], (=0
i) B[Ye] = S
E[Pg—Pg,l], >0

i) V[V)] =E [H% _ E[%]‘ﬂ < N1 5t

Original multilevel research by Heinrich in 1999 did this for
parametric integration, estimating g(\) = E[f(x, \)] for a
finite-dimensional r.v. x.



Three MLMC extensions

» unbiased estimation — Rhee & Glynn (2015)

» randomly selects the level for each sample
» no bias, and finite expected cost and variance if 5 > ~

» Richardson-Romberg extrapolation — Lemaire & Pages (2013)

» reduces the weak error, and hence the number of levels
required
» particularly helpful when g <~

» Multi-Index Monte Carlo — Haji-Ali, Nobile, Tempone (2015)

» important extension to MLMC approach, combining MLMC
with sparse grid methods



Randomised Multilevel Monte Carlo

Rhee & Glynn (2015) started from

E[P] = Y E[AP] = > p E[AP/pd],
=0 =0

to develop an unbiased single-term estimator
Y = APy / pr,

where ¢’ is a random index which takes value ¢ with probability py.

B > 7 is required to simultaneously obtain finite variance and finite
expected cost using

pr X o—(B+7)¢/2

The complexity is then O(c~2).



Multilevel Richardson-Romberg extrapolation

If the weak error on level ¢ satisfies

L+1
E[Y;=Y] =) g2 + e |nel < G272
=1
then

L+1

L
ZWgE[Yg] = (Z m) E[Y]+ch (Z Wy 2~ am) + Ry,
{=0 Jj=1

with |Re| < Crio Yoy o(|we| 272(F2)).

We want to estimate E[Y], so choose w; to satisfy

L L
Swe=1 Y w2 =0 j=1,...,L

=0 =0

—



Multilevel Richardson-Romberg extrapolation

Given these weights, we then obtain

L
Z wy E[Yg] = E[Y] + w1 + Ry,
=0

where (see paper by Pagés and Lemaire)

WL—i—l Z wy 2 L+1 ( 1)1_ 2—(XL(L+1)/27

which is asymptotically much larger than |R;|, but also very much
smaller than the usual MLMC bias.



Multilevel Richardson-Romberg extrapolation

To complete the ML2R formulation we need to set

L -1

Wg = Zng = ]_—ZWg/.
U=t =0
L L

— Z we E[Y(] = Wo E[Yo] + Z W, E[AY)].
/=0 /=1

The big difference from MLMC is that now we need just
Lvior ~ /| logy €| /o
which is much better than the usual

Lyivic ~ | logy el /a

and can give good savings when [ < ~.



Multi-Index Monte Carlo

Standard "1D” MLMC truncates the telescoping sum

E[P] = i E[AP]

(=0

where A//D\g = ﬁg — ,Bg_l, with 5,150.

In "2D", MIMC truncates the telescoping sum

E[P] = Z Z E[A'D@l 6]

=0 /=0
where A’D@l,fz = (Pfh@z - Pflflfz) - (Pfl,fzfl - Pflfl,fzfl)

Different aspects of the discretisation vary in each “dimension”



Multi-Index Monte Carlo

1%

four evaluations for
cross-difference AP(3 7)

4
MIMC truncates the summation in a way which minimises the cost

to achieve a target MSE — quite similar to sparse grids.

Can achieve O(¢72) complexity for a wider range of applications
than plain MLMC.



MLMC

Numerical algorithm:

1.

2.

start with L=0

if L <2, get an initial estimate for V; using N; = 1000
samples, otherwise extrapolate from earlier levels

L
determine optimal N, to achieve Z Vi/Np > 52/2
£=0

perform extra calculations as needed, updating estimates of V,

if L <2 or the bias estimate is greater than £/+/2, set
L:= L+1 and go back to step 2



MLQMC

For further improvement in overall computational cost, can switch
to QMC instead of MC for each level.

» use randomised QMC, with 32 random offsets/shifts

» define V)y, ; to be variance of average of 32 averages using
Ny, QMC points within each average

» objective is therefore to achieve

L
Z VNg,Z S 82/2

=0

» process to choose L is unchanged, but what about N,?



MLQMC

Numerical algorithm:

1.
2.

start with L=0

get an initial estimate for V4 ; using 32 random offsets and
N =1

L

. while Z Ve > £2/2, try to maximise variance reduction

£=0
per unit cost by doubling N, on the level with largest value of

Ve / (Ne Cp)

if L <2 or the bias estimate is greater than ¢/+/2, set
L:= L+1 and go back to step 2



Final comments

» MLMC has become widely used in the past 10 years,
and also MLQMC in some application areas (mainly PDEs)

> will cover a range of applications in this course

» most applications have a geometric structure as in the main
MLMC theorem, but a few don't

> research worldwide is listed on a webpage:
people.maths.ox.ac.uk/gilesm/mlmc_community.html
along with links to all relevant papers



