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SDE Path Simulation

In these 2 lectures we are interested in SDEs of the form

dSt = a(St , t) dt + b(St , t) dWt

in which the multi-dimensional Brownian motion Wt has
covariance Σ.

The standard assumptions on the drift and diffusion functions are:

I Lipschitz in space:

‖a(x , t)−a(y , t)‖ ≤ La‖x−y‖, ‖b(x , t)−b(y , t)‖ ≤ Lb‖x−y‖,

I Hölder in time:

‖a(x , s)− a(x , t)‖ ≤ La(1 + ‖x‖) |s−t|1/2,

‖b(x , s)− b(x , t)‖ ≤ Lb(1 + ‖x‖) |s−t|1/2



SDE Path Simulation

The simplest approximation is the forward Euler scheme, which is
known as the Euler-Maruyama approximation when applied to
SDEs:

Ŝn+1 = Ŝn + a(Ŝn, tn) h + b(Ŝn, tn) ∆Wn

Here h is the timestep, Ŝn is the approximation to Snh and the
∆Wn are i.i.d. N(0, hΣ) Brownian increments.

For ODEs, the forward Euler method has O(h) accuracy, and other
more accurate methods would usually be preferred.

However, SDEs are very much harder to approximate so the
Euler-Maruyama method is used widely in practice.

Numerical analysis is also very difficult and even the definition of
“accuracy” is tricky.



Weak convergence

In many applications, mostly concerned with weak errors, the
error in the expected value of an output quantity of interest (QoI).

If the QoI is f (ST ) this is

E[f (ST )]− E[f (ŜT/h)]

and it is of order α if

E[f (ST )]− E[f (ŜT/h)] = O(hα)

For a path-dependent QoI, the weak error is

E[f (S)]− E[f̂ (Ŝ)]

where f (S) is a function of the entire path St , and f̂ (Ŝ) is a
corresponding approximation.



Weak convergence

Key theoretical result (Bally and Talay, 1995):

If p(S) is the p.d.f. for ST and p̂(S) is the p.d.f. for ŜT/h
computed using the Euler-Maruyama approximation,
then if a(S , t) and b(S , t) are Lipschitz w.r.t. S , t

‖p(S)− p̂(S)‖1 = O(h)

and hence for bounded function f

E[f (ST )]− E[f (ŜT/h)] = O(h)

This holds even if f is discontinuous; earlier theory only covered
smooth f .



Weak convergence

Numerical demonstration: Geometric Brownian Motion

dS = r S dt + σ S dW

r = 0.05, σ = 0.5, T = 1

European call: S0 = 100,K = 110.

Plot shows weak error versus analytic expectation when using 108

paths, and also Monte Carlo error (3 standard deviations)



Weak convergence
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Weak convergence -- comparison to exact solution

 Weak error

 MC error



Weak convergence

Previous plot showed difference between exact expectation and
numerical approximation.

What if the exact solution is unknown? Compare approximations
with timesteps h and 2h.

If
E[f (ST )]− E[f (Ŝh

T/h)] ≈ a h

then
E[f (ST )]− E[f (Ŝ2h

T/2h)] ≈ 2 a h

and so
E[f (Ŝh

T/h)]− E[f (Ŝ2h
T/2h)] ≈ a h



Weak convergence

To minimise the number of paths that need to be simulated, best
to use same driving Brownian path when doing 2h and h
approximations – i.e. take Brownian increments for h simulation
and sum in pairs to get Brownian increments for 2h simulation.

The variance is lower because the h and 2h paths are close to each
other (strong convergence).

This forms the basis for the Multilevel Monte Carlo method



Weak convergence
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Strong convergence

Strong convergence looks instead at the average error in each
individual path:

(
E
[(

ST − ŜT/h

)2])1/2

or

(
E

[
sup
[0,T ]

(
St − Ŝbt/hc

)2])1/2

It is of order β if it is O(hβ) as h→ 0.

The main theoretical result (Kloeden & Platen 1992) is that for
the Euler-Maruyama method these are both O(

√
h).



Strong convergence

Thus, each approximate path deviates by O(
√
h) from its true

path.

How can the weak error be O(h)? Because the error

ST − ŜT/h

has mean O(h) even though the r.m.s. is O(
√
h).

(In fact to leading order it is normally distributed with zero mean
and variance O(h).)



Strong convergence

Numerical demonstration for same Geometric Brownian Motion.

Plot shows two curves, one showing the difference from the true
solution

ST = S0 exp
(
(r− 1

2σ
2)T + σW (T )

)
and the other showing the difference from the 2h approximation

Note that:
g(E + δ) ≈ g(E ) + g ′(E ) δ

so a confidence interval of δ=± 3σ/
√
N for E≡E

[
∆S2

]
, where

σ2≡V
[
∆S2

]
, becomes a confidence interval of ±3

2σ/
√
N E for√

E .



Strong convergence
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Mean Square Error

Finally, how to decide whether it is better to increase the number
of timesteps (reducing the weak error) or the number of paths
(reducing the Monte Carlo sampling error)?

If the true option value is V = E[f ]

and the discrete approximation is V̂ = E[f̂ ]

and the Monte Carlo estimate is Ŷ =
1

N

N∑
n=1

f̂ (n)

then . . .



Mean Square Error

. . . the Mean Square Error is

E
[(

Ŷ − V
)2]

= E
[(

Ŷ−E[f̂ ] + E[f̂ ]−E[f ]
)2]

= E
[
(Ŷ−E[f̂ ])2

]
+ (E[f̂ ]−E[f ])2

= N−1V[f̂ ] +
(
E[f̂ ]−E[f ]

)2
I first term is due to the variance of estimator

I second term is square of bias due to weak error



Mean Square Error

If there are M timesteps, the computational cost is proportional to
C = NM and the MSE is approximately

aN−1 + bM−2 = aN−1 + b C−2N2.

For a fixed computational cost, this is a minimum when

N =

(
a C 2

2 b

)1/3

, M =

(
2 b C

a

)1/3

,

and hence

aN−1 =

(
2 a2b

C 2

)1/3

, bM−2 =

(
a2b

4C 2

)1/3

,

so the MC term is twice as big as the bias term.



Extra bits – path-dependent functionals

The Bally & Talay result is for functions of the terminal state ST .

For path-dependent output quantities of interest such as

f (S) = max

(
ST − inf

[0,T ]
St , 0

)
or

f (S) = max(ST−K , 0) 1inf [0,T ] St>B

then the most obvious approximation gives only O(h1/2) weak
convergence.

Fortunately first order convergence can be recovered (at least
for scalar SDEs) through a Brownian Bridge treatment.



Extra bits – Milstein

There is a key result by Clark & Cameron (1980) that in general
for multi-dimensional SDEs it is not possible to achieve better than
O(h1/2) strong convergence using just Brownian increments.

However, for scalar SDEs there is the first order Milstein
approximation

Ŝn+1 = Ŝn + a(Ŝn, tn) h + b(Ŝn, tn) ∆Wn

+ 1
2 b(Ŝn, tn) b′(Ŝn, tn) (∆W 2

n − h)

which has a multi-dimensional generalisation under certain
conditions.

I use this whenever I can, and for more general SDEs it is also the
basis for a very effective MLMC treatment (antithetic Milstein).



Extra bits – adaptive time-stepping

For simplicity, I have presented only the simplest Euler-Maruyama
approximation with uniform timesteps.

There are various circumstances under which it is good to
adaptively choose the current timestep based on the current Ŝn
to maximise the overall accuracy for a given average cost.

This can also be important to ensure stability for SDEs with a drift
which grows faster than linear

dSt = −S3
t dt + dWt



Extra bits – discontinuous drift

Recent research by Müller-Gronbach and Yaroslavtseva
(arXiv, 2018) proves that Euler-Maruyama also has O(h1/2)
strong convergence for SDEs with a discontinuous drift, such as

dSt = − sign(St) dt + dWt

There are also people researching what happens with discontinuous
diffusion coefficients.



Extra bits – jump-diffusion

Some applications (particularly in finance) use jump-diffusion
models

dSt = a(St) dt + b(St)dWt + c(S−t )dJt

where J(t) is the number of jumps which have taken place before
time t, and the jump times are typically modelled as a simple
Poisson process.

The Merton model is

dSt = r St dt + σ St dWt + (k−1)S−t dJt

with jump times exponentially distributed with rate λ, and the
jump magnitude k Normally distributed.

The numerical treatment of these is usually straightforward – you
simulate the jumps at the jump times, and in between use
Euler-Maruyama for the SDE.



Extra bits – Lévy processes

Jump-diffusion models have a finite rate of jumping.

A further generalisation is to Lévy processes in which there can
be an infinite number of jumps in each time interval, but most
are extremely small.

Exponential Lévy models have the form

St = exp(Lt)

where Lt is a Lévy process, while Lévy driven processes have the
form

dSt = a(St) dt + b(St)dLt .

Numerical methods often simulate the big jumps and approximate
the small ones as a Brownian diffusion.



Extra bits – reflected diffusions

In 1D, the simplest reflected diffusion starting from S0 = x ≥ 0 is

St = Wt + x + Lt , Lt ≡ max(− inf
[0,t]

Ws − x , 0)

which keeps St ≥ 0.

The multi-dimensional generalisation of this gets more complex,
and there is a distinction between normal and oblique reflections.

This class of problems is important in queueing theory, and there
seems to be good potential for further research in this area.



Final Words

I simple Euler-Maruyama method is basis for most Monte Carlo
simulation – O(h) weak convergence and O(

√
h) strong

convergence

I weak convergence is very important when estimating
expectations

I strong convergence is usually not important – but is key for
multilevel Monte Carlo method to be discussed next

I Mean-Square-Error is minimised by balancing bias due to
weak error and Monte Carlo sampling error
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