
Monte Carlo Methods for Uncertainty Quantification: Practical 2

This practical is all about the use of MLMC (multilevel Monte Carlo) for
uncertainty quantification in various settings.

A number of exercises are suggested, but if you have particular application
interests you may want to try your own application once you have a solid
understanding of the way in which MLMC works.

1. Download from the course webpage the Matlab routines mlmc test.m,

mlmc.m, gbm.m, ellip.m, para.m, hyp.m.

• mlmc test.m performs a number of tests for an MLMC
application.

• mlmc.m does the main MLMC computation, working out the
optimal number of samples to use on each level of approximation.

• gbm.m is an application for a financial option based on an
underyling stock represented by a Geometric Brownian Motion
model.

• ellip.m is a very simple 1D elliptic solver with random forcing.

• para.m is a very simple 1D parabolic solver with random initial
data.

2. Start with the gbm.m application. Look carefully at the routine gbm l

which computes N` fine path samples Sf and coarse path samples Sc,
and the corresponding payoff functions P f

` and P c
`−1, for a given level `.

Run the code and see the results it produces. Look at the code and see
how the fine and coarse paths are computed; check that this matches
the explanation given in the lectures.

Note that in gbm l the sample paths are computed in groups of 10,000.
This is a trick to minimise the overheads in MATLAB. If programmed
in C / C++ / FORTRAN you would typically do one path at a time.

There are a number of ways in which you can modify this example:

(a) Change the payoff function to the “digital” option:

P = exp(−r T ) ×
{

10, S > K
0, S ≤ K

which is currently commented out in the code.

Re-run the example. What do you see? How does it affect the
multilevel parameters α and β?

1



(b) Change the payoff function to a “lookback” call option based on
the maximum path value:

P = exp(−r T ) max(0,max
[0,T ]

S(t) −K)

You can approximate the maximum by using the maximum of the
values at the discrete timesteps.

(c) As written currently, the number of timesteps on level ` is 2`.
Change this so that it is instead 4`.

Note: this changes the way in which the computational cost grows
with level, so you will have to change the parameter M
accordingly.

(d) The Euler discretisation is not very accurate. Modify the code to
instead use the Milstein approximation:

Sn+1 = Sn + r Sn ∆t+ σSn∆Wn + 1
2
σ2Sn(∆W 2

n − ∆t)

which has a first order strong error.

3. ellip.m solves the 1D elliptic PDE:

u′′(x) = 100Z sin(πx), 0 < x < 1

where Z is a standard Normal random variable (zero mean and unit
variance), and the boundary conditions are u(0) = u(1) = 0.

The output of interest is taken to be

P =

∫ 1

0

u2(x) dx.

A simple finite difference approximation is used for the PDE, and the
integral is approximated by trapezoidal integration.

Since the coefficients of the tri-diagonal matrix do not vary, the matrix
is precomputed. This then allows us to compute samples 100 at a time
to minimise the MATLAB overhead.

(a) Modify the code so that it is solving

(a u′)′ = 100, 0 < x < 1

with a(x) = exp(−Z sin(πx)), where Z is again a standard Normal
random variable, and the boundary conditions are still
u(0) = u(1) = 0.

Note that in this case you will need to generate a separate matrix
for each random sample, and so you will need to process all of the
samples one by one.

2



(b) Modify the code so that the boundary conditions are u(0) = 0,
u(1) = Z2, where Z2 is a second independent standard Normal
random variable.

(c) Experiment with other combinations of uncertain forcing,
coefficients and boundary conditions, using multiple independent
random variables.

(d) Experiment also with different output functions.

4. para.m solves the 1D parabolic PDE:

∂u

∂t
=
∂2u

∂x2
, 0 < x < 1, 0 < t < 1

4

subject to boundary conditions u(0, t) = u(1, t) = 0, and random initial
data

u(x, 0) = 100Z sin(πx).

The output of interest is taken to be

P =

∫ 1

0

u2(x, 1
4
) dx.

The numerical approximation uses simple explicit time-marching and
central spatial finite differences. To maintain numerical stability, the
timestep is proportional to the square of the grid spacing, so doubling
the number of points in space increases the number of timesteps by
factor 4, and hence increases the computational cost by factor 8. That
is why M is set equal to 8 in the code.

(a) Modify the code to use implicit time-marching. You will then be
able keep the timestep proportional to the grid spacing as you
refine the grid.

(b) Using the implicit time-marching, modify the code again to solve

∂u

∂t
=

∂

∂x

(
a(x)

∂u

∂x

)
, 0 < x < 1, 0 < t < 1

4

where a(x) = exp(−Z sin(πx)). with Z being a standard Normal
random variable.

(c) Experiment with various combinations of uncertain forcing,
coefficients and boundary conditions, using multiple independent
random variables, and also with different output functions.

3



5. hyp.m solves Burgers nonlinear hyperbolic PDE

∂u

∂t
+

∂

∂x
(1
2
u2) = 0, 0 < x < 1

using explicit time-marching and central space differences.

It uses random initial conditions

u(x, 0) =

{
U1, 0 < x ≤ 0.5
−U2, 0.5 < x < 1,

where U1, U2 are two independent uniformly distributed random
numbers in the interval [0, 1].

The boundary conditions are u(0, t) = 1, u(1, t) = −1, and the output is

P = 10

∫ 1

0

u2(x, 1
4
) dx.

(a) Again experiment with various modifications, but you will need to
be careful to maintain the numerical stability. That’s why I
switched to uniform random numbers in this example, so I could
control the maximum and minimum values of u(x, 0) to ensure the
timestep and smoothing were chosen in a way which would be
stable.

4


