
An introduction to
GPU programming

Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Oxford-Man Institute of Quantitative Finance

Oxford eResearch Centre

Lecture 1 – p. 1/27

Overview

motivation & objectives

hardware view

software view

CUDA programming

Lecture 1 – p. 2/27

Motivation

Current Intel quad-core Xeon:

4 cores

10-40 GFflops in SP; 10-20 GFlops in DP

20-30GB/s memory bandwidth

Current NVIDIA Tesla GPU

240 cores

1 Tflops in SP; 125 GFlops in DP

100GB/s memory bandwidth

1 Tesla GPU is usually 5-10× faster than two quad-core
Xeons, at roughly same cost and power consumption

Lecture 1 – p. 3/27

Motivation

Next generation Intel CPUs:

Westmere-EP: 6 core

Nehalem-EX: 8 core

Sandy Bridge: 4-10 cores, and SSE vectur unit
replaced by AVX with 8 float or 4 double

Next generation NVIDIA Fermi GPU:

512 SP cores, 256 DP cores

1.5 Tflops in SP; 800 GFlops in DP

L1/L2 cache on GPU

200GB/s memory bandwidth

Lecture 1 – p. 4/27

Motivation

Other GPUs?

AMD:
similar to NVIDIA for graphics/games applications
not very focussed on computing side, but supporting
new OpenCL standard

IBM Cell:
proved to be challenging to program
no further development for scientific computing?

Intel Larrabee:
16-32 cores each with a vector unit
project has suffered major delays, first-generation
product has been cancelled

Lecture 1 – p. 5/27

Motivation

My predictions?

GPUs will continue to evolve, with increasing cores and
features to make them more easily programmed

CPUs will also continue to evolve with increasing cores
and vector lengths will increase to compete with GPUs

GPUs will stay ahead because:
better bandwidth on graphics card than in
motherboard socket
GPUs aimed at high-end market, whereas CPUs
aimed more at low-end mobile mass market

Lecture 1 – p. 6/27

Objectives

an overview understanding of GPU hardware and
software

hands-on experience of CUDA programming
(very relevant to emerging OpenCL open standard)

learn about some key challenges, and how to approach
the GPU implementation of a new application

learn about resources for future learning

I hope to convince you it’s not difficult!

Lecture 1 – p. 7/27

Hardware view

At the top-level, a PCIe graphics card with a many-core
GPU and high-speed graphics “device” memory sits inside
a standard PC/server with one or two multicore CPUs:

DDR3 GDDR3/5

motherboard graphics card

Lecture 1 – p. 8/27

Hardware view

At the GPU level:

basic building block is a “streaming multiprocessor” with
8 cores, each with 2048 registers
16KB of shared memory
8KB cache for constants held in device memory
8KB cache for textures held in device memory

different chips have different numbers of these SMs:

product SMs bandwidth memory
GTX260 27 110 GB/s 1-2 GB
GTX285 30 160 GB/s 1-2 GB

Tesla M1060 30 102 GB/s 4 GB

Lecture 1 – p. 9/27

Hardware view

Key hardware feature is that the 8 cores in a multiprocessor
are SIMT (Single Instruction Multiple Threads) cores:

all 8 cores execute the same instructions
simultaneously, but with different data

similar to vector computing on CRAY supercomputers

minimum of 4 threads per core, so end up with a
minimum of 32 threads all doing the same thing at
(almost) the same time

natural for graphics processing and much scientific
computing

SIMT is also a natural choice for many-core chips to
simplify each core

Lecture 1 – p. 10/27

Multithreading

Lots of active threads is the key to high performance:

no “context switching”; each thread has its own
registers, which limits the number of active threads

threads execute in “warps” of 32 threads per
multiprocessor (4 per core) – execution alternates
between “active” warps, with warps becoming
temporarily “inactive” when waiting for data

Lecture 1 – p. 11/27

Multithreading

for each thread, one operation completes long before
the next starts – avoids the complexity of pipeline
overlaps which can limit the performance of modern
processors

-

time1 2 3 4 5-- -

1 2 3 4 5-- -

1 2 3 4 5-- -

memory access from device memory has a delay of
400-600 cycles; with 40 threads this is equivalent to
10-15 operations and can be managed by the compiler

Lecture 1 – p. 12/27

Software view

At the top level, we have a master process which runs on
the CPU and performs the following steps:

1. initialises card

2. allocates memory in host and on device

3. copies data from host to device memory

4. launches multiple copies of execution “kernel” on device

5. copies data from device memory to host

6. repeats 3-5 as needed

7. de-allocates all memory and terminates

Lecture 1 – p. 13/27

Software view

At a lower level, within the GPU:

each copy of the execution kernel executes on an SM

if the number of copies exceeds the number of SMs,
then more than one will run at a time on each SM if
there are enough registers and shared memory, and the
others will wait in a queue and execute later

all threads within one copy can access local shared
memory but can’t see what the other copies are doing
(even if they are on the same SM)

there are no guarantees on the order in which the
copies will execute

Lecture 1 – p. 14/27

CUDA programming

CUDA is NVIDIA’s program development environment:

based on C with some extensions

C++ support increasing steadily

FORTRAN support provided by PGI compiler

basis for OpenCL standard pushed by Apple and
supported by AMD, Intel and IBM

lots of example code and good documentation
– 2-4 week learning curve for those with experience of
OpenMP and MPI programming

large user community on NVIDIA forums

Lecture 1 – p. 15/27

CUDA programming

At the host code level, there are library routines for:

memory allocation on graphics card

data transfer to/from device memory
constants
texture arrays (useful for lookup tables)
ordinary data

error-checking

timing

There is also a special syntax for launching multiple copies
of the kernel process on the GPU.

Lecture 1 – p. 16/27

CUDA programming

In its simplest form it looks like:

kernel_routine<<<gridDim, blockDim>>>(args);

where

gridDim is the number of copies of the kernel
(the “grid” size”)

blockDim is the number of threads within each copy
(the “block” size)

args is a limited number of arguments, usually mainly
pointers to arrays in graphics memory

The more general form allows gridDim and blockDim to
be 2D or 3D to simplify application programs

Lecture 1 – p. 17/27

CUDA programming

At the lower level, when one copy of the kernel is started
on a multiprocessor it is executed by a number of threads,
each of which knows about:

some variables passed as arguments

pointers to arrays in device memory (also arguments)

global constants in device memory

shared memory and private registers/local variables

some special variables:
gridDim size (or dimensions) of grid of blocks
blockIdx index (or 2D/3D indices)of block
blockDim size (or dimensions) of each block
threadIdx index (or 2D/3D indices) of thread

Lecture 1 – p. 18/27

CUDA programming

The kernel code looks fairly normal once you get used to
two things:

code is written from the point of view of a single thread
quite different to OpenMP multithreading
similar to MPI, where you use the MPI “rank” to
identify the MPI process
all local variables are private to that thread

need to think about where each variable lives
any operation involving data in the device memory
forces its transfer to/from registers in the GPU
there’s no cache (currently) so a second operation
with the same data will force a second transfer
usually better to copy the value into a local register
variable

Lecture 1 – p. 19/27

Host code
int main(int argc, char **argv) {
float *h_x, *d_x; // h=host, d=device
int nblocks=2, nthreads=8, nsize=2*8;

h_x = (float *)malloc(nsize*sizeof(float));
cudaMalloc((void **)&d_x, nsize*sizeof(float));

my_first_kernel<<<nblocks,nthreads>>>(d_x);

cudaMemcpy(h_x,d_x,nsize*sizeof(float),
cudaMemcpyDeviceToHost);

for (int n=0; n<nsize; n++)
printf(" n, x = %d %f \n",n,h_x[n]);

cudaFree(d_x); free(h_x);
} Lecture 1 – p. 20/27

Kernel code
#include <cutil_inline.h>

__global__ void my_first_kernel(float *x)
{
int tid = threadIdx.x + blockDim.x*blockIdx.x;

x[tid] = threadIdx.x;
}

global identifier says it’s a kernel function

each thread sets one element of x array

within each block of threads, threadIdx.x ranges
from 0 to blockDim.x-1, so each thread has a unique
value for tid

Lecture 1 – p. 21/27

CUDA distribution

3 components:

graphics driver

toolkit (nvcc compiler and libraries)

SDK code samples and utilities

Everything is available for Windows, Linux and OS X.

I’ll focus on Linux, but there is good integration for
Visual Studio 2008.

Lecture 1 – p. 22/27

CUDA Makefile

Two choices:

use nvcc within a standard Makefile

use the special Makefile template provided in the SDK

I use the SDK Makefile because it provides useful options:

make emu=1
uses an emulation library for debugging on a CPU

make dbg=1
activates run-time error checking (see Practical 1)

I would use a standard Makefile for more complex cases:

producing a GPU library

when needing different compiler flags for different files
Lecture 1 – p. 23/27

Practical 1

start from code shown above (but with comments)

try out the various Makefile options

modify code to add two vectors together (including
sending them over from the host to the device)

if time permits, look at CUDA SDK examples

Lecture 1 – p. 24/27

Practical 1

Things to note:

memory allocation
cudaMalloc((void **)&d x, nbytes);

data copying
cudaMemcpy(h x,d x,nbytes,

cudaMemcpyDeviceToHost);

kernel routine is declared by global prefix, and is
written from point of view of a single thread

Lecture 1 – p. 25/27

Practical 1

Second version of the code is very similar to first, but uses
CUDA SDK toolkit for various safety checks – gives useful
feedback in the event of errors.

check for error return codes:
cutilSafeCall(...);

check for failure messages:
cutilCheckMsg(...);

Lecture 1 – p. 26/27

Webpages

NVIDIA’s CUDA homepage:
www.nvidia.com/object/cuda home.html

Wikipedia overviews of NVIDIA GPUs:
en.wikipedia.org/wiki/GeForce 200 Series
en.wikipedia.org/wiki/Nvidia Tesla

GPU computing community website:
www.gpucomputing.net

LIBOR test code:
www.maths.ox.ac.uk/∼gilesm/hpc/

Lecture 1 – p. 27/27

