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Multi-dimensional SDEs

So far we have considered scalar SDEs with a single
driving Wiener path.

Now we consider the generalisation to a vector SDE
dS; = CL(St, t) dt + b(St, t) dW;

where a(S5,t) Is a vector, b(S,t) iIs a matrix and W, is a vector
of Wiener paths.

In some cases, the different components of WW; are
iIndependent, so over a time interval of length ~ we have

EAWAW! ] =h 1

where [ is the identity matrix.
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Multi-dimensional SDEs

In other cases we may have a correlation between the
components so that

AW ~ N(0,hX)

meaning that the components of AW have a joint Normal
distribution with covariance

E[AWAW!] =h ¥

AW can be simulated by letting AW = vk L Z where
Z Is a vector of independent N (0, 1) random variables

and L L1 = %, since
ElLzz'L!) = LE[ZzZ' LT = LIt = %
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It0 isometry

The generalisation of the It isometry is

2 - -
T T
E (/O (Zj:fjdwj)) - E /O ;fjszjkdt

[ AT
/fTZfdt
0

]
=

since
E[dW; dW}] = Xj.dt.
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I1t0 lemma

The generalisation of the It6 lemma for f(S,t) is

which comes from the fact that

E[dS; dSk] = > bjibgm E[AW; AWy,

[,m

= Z bﬂbkalm dt

[l.m
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Kuler-Maruyama method

For the vector SDE
dS = a(S,t) dt + b(S,t) dW

the Euler-Maruyama approximation is again

AN AN AN

n+1l — §n =+ a(ana tn) h + b(Sna tn) AWy,

)

Very simple — this is one of the great attractions of the
Euler-Maruyama method.

The strong error remains O(k!/2), and the weak error is still
O(h) iIn most applications.
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Milstein Method

In the vector case, the SDE

dS; = a;i(S,t) dt + Y by(S.t) AW
J

corresponds to the integral equation:

Si(t) = Si(O) + /0 CL@'(S(S), S) ds + Z/@ b@'j(S(S), S) de(S)
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Milstein Method

An asymptotic expansion gives

Si(t) — Si(0) ~ 3 by (5(0),0) W1
J

and hence

bij (S(t),t)

Q

b+ Y0 S (51(0) - 51(0)
[

L
AT
<
+
D
S
&
>
=

with b and its derivatives evaluated at (S(0), 0).
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Milstein Method

This then leads to

S@(h) > Si(O)—l—a@h—l—Zb@'jo(h)
J

by h
+ Z &S‘J bik / Wi (t) dW;(?)
T e 0

where a, b and its derivatives all evaluated at (S(0),0).

The problem now is to evaluate the iterated 1i6 integral

h
Ljk E/O Wi (t) dW;(¢)
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Lévy areas

1t6 calculus gives us
d(Wj W) = W; AWy (t) + Wy de(t) + 2y dt

where ¥, is the correlation between dIW; and dW.

Hence,
W](h) Wk(h) — ij h = [kj -+ [jk

If we define the Lévy area to be

h
Ajk = ]kj — ]jk = / Wj(t) de(t) — Wk(t) de(t)
0

then
Ly, = 5 (Wj(h) Wi(h) — S h — Ajr)
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Lévy areas

The problem is that it is hard to simulate the Lévy areas:

» conditional distribution depends on W;(h) and Wy (h) so
can’'t simply invert a cumulative distribution function

# Lyons & Gaines have an efficient technique in
2-dimensions but for higher dimensions, need to
simulate Brownian motion within each timestep to
approximate the Lévy area

Two notes for later use:
o E[A?k] — h? |f E[dW; dW ]| = 0.
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Milstein method

The Milstein method is

gi,n+1 = §zn +a;nh+ Z bijn AW, 1,
J
Z i b1k (AW o AWy — S h — Ajen)

5]
7,k,l

At = [ (W= W (8)) dIWA(0) = (W) Wi(t) dIV;(0)

The strong error is O(h), but the problem is the Lévy areas.
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Milstein method

However, using A, = —Ay;,

n — A n
asl A, Zasl &
35k, 7.k,
by,
— _Zﬁble]kn
[T et

B Obyy,
N Z(asl 25, " )AJ’”
and so the Lévy areas are not needed if, for all 4, j, k,

Ob; Obi, .
Z asl S, bij = 0.
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Milstein method

If b is a non-singular diagonal matrix, so each component
of S(t) is driven by a separate component of W (¢), the
commutativity condition reduces to

Ob; Ob;}.
b R
6Sk 05 =0
® ifeitheri=j=k, ori#j and i#k, this is satisfied
® ifi=jandi#k, it requires i =0
0S5},
. L . Obj
® ifi=kandi+#j, it requires =0

0S5
# hence, OK provided b;; depends only on S;
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Clark & Cameron paper

We now come to an important result in the paper:

“The maximum rate of convergence of discrete
approximations for stochastic differential equations”,
J.M.C. Clark & R.J. Cameron, pp 162-171 in Lecture Notes
in Control and Information Sciences, Volume 25, 1980.

Their analysis considers a very simple 2-dimensional SDE,
and proves that NO numerical approximation is capable of

better than O(k!/2) strong convergence if it is based solely
on the discrete Brownian increments AW,,.

Implication: in general you can’t do better than
Euler-Maruyama method.
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Clark & Cameron paper

Their model SDE is

dX; = dW;
d X5 X1 dWsy

with X1(0) = X5(0) = 0 and independent dW;, dWs
— could hardly be simpler!
They don’t consider a numerical approximation, but instead

look at how much we know about the analytic solution given
knowledge only of the Brownian increments.
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Clark & Cameron paper

Over a time interval [0, h], can integrate to obtain
Xi(h) =

X9 = /deWg

Now, 1t6’s lemma gives d(W Ws) = Wy dWy + Wy AW
h
—> Wl(h) Wg(h) = / (W1 dWsq 4+ Wo dWl)
0

h
— / W1 dWy = $W1(h) Wa(h) + 3A
0

where A is Lévy area for time interval [0, h].
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Clark & Cameron paper

Repeating this for NV “timesteps” of size h = T'/N we obtain
X(T) = » AW,

Xo(T) = ) (Xl(tn)Awg,n + LAWY, AW, + %An)

n

Now recall that E[A4,, | AW,,] = 0, and E[A2%] = h?, and also
that
V[Y] = EY?] — (E[Y))”

for any random variable Y.

Hence, for any numerical approximation X we have ...
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Clark & Cameron paper

[

N
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Clark & Cameron paper

Hence, the minimum RMS error is O(h!'/?), and the best
numerical approximation is the one which gives

Xy(T) = E[Xo(T) | AW

which corresponds to neglecting the Lévy areas A,,.

As well as proving that in general you can’t achieve a better
order of strong convergence than the Euler-Maruyama
method (when using only Brownian increments) it also
shows the Milstein approximation without the Lévy areas
gives the best asymptotic accuracy.
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