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Multi-dimensional SDEs

So far we have considered scalar SDEs with a single
driving Wiener path.

Now we consider the generalisation to a vector SDE

dSt = a(St, t) dt+ b(St, t) dWt

where a(S, t) is a vector, b(S, t) is a matrix and Wt is a vector
of Wiener paths.

In some cases, the different components of Wt are
independent, so over a time interval of length h we have

E[∆W∆W T ] = h I

where I is the identity matrix.
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Multi-dimensional SDEs

In other cases we may have a correlation between the
components so that

∆W ∼ N(0, hΣ)

meaning that the components of ∆W have a joint Normal
distribution with covariance

E[∆W∆W T ] = h Σ

∆W can be simulated by letting ∆W =
√
h LZ where

Z is a vector of independent N(0, 1) random variables

and LLT = Σ, since

E[LZ ZTLT ] = L E[Z ZT ] LT = LLT = Σ
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Itô isometry

The generalisation of the Itô isometry is

E
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



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
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
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

2

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
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0

∑
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fjfkΣjk dt




≡ E

[∫ T

0

fTΣ f dt

]

since

E[dWj dWk] = Σjkdt.
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Itô lemma

The generalisation of the Itô lemma for f(S, t) is

df =
∂f

∂t
dt+

∑

j

∂f

∂Sj
dSj

+ 1

2

∑

j,k

∂2f

∂Sj∂Sk


∑

l,m

bjlbkmΣlm


 dt

which comes from the fact that

E[ dSj dSk ] =
∑

l,m

bjlbkm E[dWl dWm]

=
∑

l,m

bjlbkmΣlm dt
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Euler-Maruyama method

For the vector SDE

dS = a(S, t) dt+ b(S, t) dW

the Euler-Maruyama approximation is again

Ŝn+1 = Ŝn + a(Ŝn, tn)h+ b(Ŝn, tn)∆Wn

Very simple – this is one of the great attractions of the
Euler-Maruyama method.

The strong error remains O(h1/2), and the weak error is still
O(h) in most applications.
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Milstein Method

In the vector case, the SDE

dSi = ai(S, t) dt+
∑

j

bij(S, t) dWj

corresponds to the integral equation:

Si(t) = Si(0) +

∫ t

0

ai(S(s), s) ds +
∑

j

∫ t

0

bij(S(s), s) dWj(s)
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Milstein Method

An asymptotic expansion gives

Si(t)− Si(0) ≈
∑

j

bij(S(0), 0)Wj(t)

and hence

bij(S(t), t) ≈ bij +
∑

l

∂bij
∂Sl

(Sl(t)− Sl(0))

≈ bij +
∑

k,l

∂bij
∂Sl

blk Wk(t)

with b and its derivatives evaluated at (S(0), 0).
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Milstein Method

This then leads to

Si(h) ≈ Si(0) + ai h+
∑

j

bij Wj(h)

+
∑

j,k,l

∂bij
∂Sl

blk

∫ h

0

Wk(t) dWj(t)

where a, b and its derivatives all evaluated at (S(0), 0).

The problem now is to evaluate the iterated Itô integral

Ijk ≡
∫ h

0

Wk(t) dWj(t)
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Lévy areas

Itô calculus gives us

d(Wj Wk) = Wj dWk(t) +Wk dWj(t) + Σjk dt

where Σjk is the correlation between dWj and dWk.

Hence,

Wj(h)Wk(h)− Σjk h = Ikj + Ijk

If we define the Lévy area to be

Ajk = Ikj − Ijk =

∫ h

0

Wj(t) dWk(t)−Wk(t) dWj(t)

then

Ijk = 1

2

(
Wj(h)Wk(h)− Σjk h− Ajk

)
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Lévy areas

The problem is that it is hard to simulate the Lévy areas:

conditional distribution depends on Wj(h) and Wk(h) so

can’t simply invert a cumulative distribution function

Lyons & Gaines have an efficient technique in
2-dimensions but for higher dimensions, need to
simulate Brownian motion within each timestep to
approximate the Lévy area

Two notes for later use:

E[Ajk | ∆W ] = 0

E[A2
jk] = h2 if E[ dWj dWk ] = 0.
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Milstein method

The Milstein method is

Ŝi,n+1 = Ŝi,n + ai,n h+
∑

j

bij,n∆Wj,n

+ 1

2

∑

j,k,l

∂bij
∂Sl

blk,n
(
∆Wj,n∆Wk,n − Σjk h− Ajk,n

)

with

Ajk,n =

∫ tn+1

tn

(Wj(t)−Wj(tn)) dWk(t)− (Wk(t)−Wk(tn)) dWj(t)

The strong error is O(h), but the problem is the Lévy areas.
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Milstein method

However, using Ajk = −Akj,

∑

j,k,l

∂bij
∂Sl

blk Ajk,n = −
∑

j,k,l

∂bij
∂Sl

blk Akj,n

= −
∑

j,k,l

∂bik
∂Sl

blj Ajk,n

= 1

2

∑

j,k,l

(
∂bij
∂Sl

blk −
∂bik
∂Sl

blj

)
Ajk,n

and so the Lévy areas are not needed if, for all i, j, k,

∑

l

∂bij
∂Sl

blk −
∂bik
∂Sl

blj = 0.
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Milstein method

If b is a non-singular diagonal matrix, so each component
of S(t) is driven by a separate component of W (t), the
commutativity condition reduces to

∂bij
∂Sk

bkk −
∂bik
∂Sj

bjj = 0

if either i=j=k, or i 6=j and i 6=k, this is satisfied

if i=j and i 6=k, it requires
∂bii
∂Sk

= 0

if i=k and i 6=j, it requires
∂bii
∂Sj

= 0

hence, OK provided bii depends only on Si
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Clark & Cameron paper

We now come to an important result in the paper:

“The maximum rate of convergence of discrete
approximations for stochastic differential equations”,
J.M.C. Clark & R.J. Cameron, pp 162-171 in Lecture Notes
in Control and Information Sciences, Volume 25, 1980.

Their analysis considers a very simple 2-dimensional SDE,
and proves that no numerical approximation is capable of

better than O(h1/2) strong convergence if it is based solely
on the discrete Brownian increments ∆Wn.

Implication: in general you can’t do better than
Euler-Maruyama method.
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Clark & Cameron paper

Their model SDE is

dX1 = dW1

dX2 = X1 dW2

with X1(0) = X2(0) = 0 and independent dW1, dW2

– could hardly be simpler!

They don’t consider a numerical approximation, but instead
look at how much we know about the analytic solution given
knowledge only of the Brownian increments.
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Clark & Cameron paper

Over a time interval [0, h], can integrate to obtain

X1(h) = W1(h)

X2 =

∫ h

0

X1 dW2

Now, Itô ’s lemma gives d(W1W2) = W1 dW2 +W2 dW1

=⇒ W1(h) W2(h) =

∫ h

0

(W1 dW2 +W2 dW1)

=⇒
∫ h

0

W1 dW2 =
1

2
W1(h) W2(h) +

1

2
A

where A is Lévy area for time interval [0, h].
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Clark & Cameron paper

Repeating this for N “timesteps” of size h = T/N we obtain

X1(T ) =
∑

n

∆W1,n

X2(T ) =
∑

n

(
X1(tn)∆W2,n + 1

2
∆W1,n∆W2,n + 1

2
An

)

Now recall that E[An | ∆Wn] = 0, and E[A2
n] = h2, and also

that

V[Y ] = E[Y 2]− (E[Y ])2

for any random variable Y .

Hence, for any numerical approximation X̂ we have . . .
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Clark & Cameron paper

E

[
(X2(T )− X̂2(T ))

2

]
= E

[
E[(X2(T )− X̂2(T ))

2 | ∆W ]
]

≥ E [ V[X2(T ) | ∆W ] ]

= 1

4
E

[
N−1∑

n=0

V[An | ∆W ]

]

= 1

4
E

[
N−1∑

n=0

E[A2
n | ∆W ]

]

= 1

4

[
N−1∑

n=0

E[A2
n]

]

= 1

4
T h.
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Clark & Cameron paper

Hence, the minimum RMS error is O(h1/2), and the best
numerical approximation is the one which gives

X̂2(T ) = E[X2(T ) | ∆W ]

which corresponds to neglecting the Lévy areas An.

As well as proving that in general you can’t achieve a better
order of strong convergence than the Euler-Maruyama
method (when using only Brownian increments) it also
shows the Milstein approximation without the Lévy areas
gives the best asymptotic accuracy.
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