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AGENDA 

 
 
 OP2 Current Progress  

 
 Future work for OP2  

 
 EPSRC proposal for extending OP2 for structured grids  

 
 OP2 for AWE applications  

 

 Funding or support opportunities to be explored  
 



THE OP2 FRAMEWORK 

OP2 - Compiler 

Distributed memory (MPI) Single-Node/Shared memory 

Finite Element Applications 
Finite Difference / Finite 

Volume Applications 

OP2 API (C/C++/Fortran) 

C/C++ 
OpenMP 

Fortran 
OpenMP 

C/C++ 
CUDA 

Fortran  
CUDA 

 C/C++ 
SSE/AVX 

C/C++ 
OpenCL 

C/C++ or 
Fortran 

NVIDIA AMD IBM Intel 



OP2 – GENERATING  PLATFORM-SPECIFIC EXECUTABLES 

Unstructured Mesh Application OP2 Application ( C/C++ or FORTRAN API) 

OP2 Source-to-Source Compiler (Matlab or ROSE generator) 

Modified Platform 
Specific OP2 Application 

 

Platform Specific Optimized 
Application Files 

 

OP2 Platform Specific 
Optimized Backend 

libraries 
 

Single Node CUDA 
 

Single Node OpenMP 
 

Cluster MPI 
 

Cluster MPI+CUDA 
 

Conventional Compiler + compiler flags 
 (e.g. Icc, nvcc, pgcc) 

Platform Specific Binary 
Executable 

Mesh 
(hdf5, ASCII) 

Hardware 

Link 



OP2 – FEATURES 

 
 Parallel file I/O using HDF5 

 
Partitioning routines from ParMetis and PT-Scotch 
 geometric partitioning 
 k-way partitioning  

 
 Implicit diagnostics and performance monitoring 
 Parallel loop runtime and bandwidth utilization 
 partition and halo sizes per process 
 message sizes, communication frequency and number of neighbours 

communicated per process 

 
 Automatic Check pointing – to be implemented 

 
 



OP2 –PROGRESS TO DATE  

 Currently Supports five back-ends: 
 
 Single-threaded on a CPU 

 
 Multi-threaded on a CPU using OpenMP  

 
 Single GPU node using CUDA 

 
Distributed memory CPU cluster using MPI 

 
Distributed memory GPU cluster using MPI+CUDA 
 

 Experimental (under testing): 
 
 Cluster of multi-threaded CPUs using MPI and OpenMP  

 
 Single GPU node using OpenCL 

 
 Single multi-core CPU with AVX 

 
 



EXAMPLE APPLICATION - AIRFOIL 

 A non-linear 2D inviscid airfoil code  
 2D Euler equations 
 cell centred finite volume method 
 with scalar dissipation 
 

 Representative of the 3D viscous flow  
     calculations we eventually want to do for  
     Rolls Royce’s Hydra CFD application 
 
 We investigate two mesh sizes 
 720K nodes, 720K cells and 1.5 M edges.  
 13 M nodes, 13 M cells and 26 M edges  

 Consists of five parallel loops   
 save_soln and update – direct loops 
 adt_calc, res_calc, bres_calc – indirect loops 

 
The most compute intensive loop (res_calc)  is called 2000 times, in each 

loop iteration an edge performs 100 floating-point operations 
   

 



OP2 – SINGLE NODE PERFORMANCE (1.5 M EDGES) 

Node System Cores 

/node 

(Clk/core) 

Mem. 

/node 

Compiler + 

Compiler Flags 

Run-time (secs) 

 

2 × Intel Xeon 

X5650 

(Westmere) 

12   

(2.67GHz) 

24 GB Intel C++ (11.1) 

-O3 -xSSE4.2 

2 × AMD  

Opteron 6276  

(Interlagos) 

32 

(2.3GHz) 

32 GB -O3 -fastsse  

-Mipa=fast  

-Minline=levels:10  

GeForce  

GTX560Ti 

384 

(1.6GHz) 

1 GB 

ecc-off 

 

nvcc  (4.0) 

-O3 -arch=sm_20  

-Dlcm=ca  

-use_fast_math  

 

Tesla C2050 448 (1.15 

GHz) 

3 GB 

ecc-on 

Tesla C2070 448 (1.15 

GHz) 

6 GB 

ecc-off 

42.53 (24 OMP) 
31.79 (22 MPI) 
31.50 (11 MPI x 2 OMP) 

68.79(32 OMP) 
43.83 (32 MPI) 
23.63 (4 MPI x 8 OMP) 

19.63 (CUDA) 

19.40 (CUDA) 

15.93 (CUDA) 



OP2 – SINGLE NODE (OPENMP) PERFORMANCE (1.5 M EDGES) 

Achieved  Floating-point and Bandwidth Performance for res_calc 
 

Node 

System 

res_calc 

time (sec) 

Achieved  

FP-rate 

(GFlops 

/sec) 

Peak  

FP-rate 

(GFlops 

/sec) 

Achieved 

Bandwidth 

(GB/s) 

Peak 

Bandwidth 

(GB/s) 

2 × Intel 

Xeon 

X5650 

(Westmere) 

140 32 

2 × AMD 

Opteron 

6276 

(Interlagos) 

294  51 

Tesla C2070 515 144 

19.70 

39.63 

10.29 

15 

7.56 

27.44 

22.26 

11.05 

43.06 



CLUSTER SPECIFICATIONS 

System HECToR 

(CrayXE6) 

CX1 

(Dell Cluster) 

SkyNet 

(GPU Cluster) 

Node 

Architecture 

2x16-core AMD 

Opteron 2.3 GHz 

(Interlagos) 

2x6-core Xeon 

X5650 2.67 GHz 

(Westmere) 

2 x Tesla C2050 + 2 x Intel 

Xeon E5440 2.83 GHz 

Cores/Node 32 12 2 GPUs + 8 CPU cores 

Mem./Node 32GB 24GB ~6 GB (on GPUs) + 8 GB 

Interconnect Cray Gemini 

Interconnect 

Dual QDR 

InfiniBand 

DDR  

InfiniBand 

O/S CLE 4.0 RHEL 5.6 CentOS 5.6, Rocks 5.1 

Compilers PGI CC 11.9 

Cray MPI 

ICC 11.1 

Intel MPI 3.1 

ICC 12.0.0 

OpenMPI 1.4.3 

Compiler 

flags 

-O3 -fastsse  

-Mipa=fast  

-Minline=levels:10  

-O2 –xSSE4.2 -O2 -xSSE4.1 

-arch=sm 20 

-use fast math 



CLUSTER PERFORMANCE (MPI ONLY) - 26M EDGES 

-O3 –fastsse  -Mipa=fast  

-Minline=levels:10  
Are there better optimization flags 
to use with the Interlagos  
processors ? 
 

On Interlagos only one FP 
unit per 2 cores 



CLUSTER PERFORMANCE (MPI + OPENMP) - 26M EDGES 

4 MPI processes per HECToR node, 8 
OMP threads per MPI process 



CLUSTER PERFORMANCE (MPI ONLY) - 26M EDGES 

HECToR is about 23% faster but with 
16 FP-units/node compared to  
12 cores/node on CX1 



CLUSTER PERFORMANCE (MPI +OPENMP) - 26M EDGES 

4 MPI processes per HECToR node, 
8 OMP threads per MPI process 

2x faster with 
MPI + OpenMP 



MANYCORE CLUSTER PERFORMANCE (26M EDGES) 



SUMMARY 

 Single node “pure” OpenMP performance getting worse as the number of 
cores per node (i.e. different NUMa regions) increase –  
 The interconnect between processor sockets is becoming a bottleneck ? 

 
Better performance to when OpenMP is combined with MPI  
 Must be careful of NUMa regions,  otherwise performance could be worse than 

running pure MPI. 
 

 NVIDIA GPU cluster performance (using MPI+CUDA) is almost equivalent to 
Cray XE6 performance (using MPI + OpenMP) 

 



DOWNLOAD 

Current OP2 source and Airfoil application + mesh available for download 
 
   http://www.oerc.ox.ac.uk/research/op2 
 
 OP2 development repository hosted at GIT-HUB 

 
  https://github.com/carlobertolli/OP2-Common 

 
 
 

 



FUTURE WORK 

 Automatic Check pointing 
 
 Additional back-end libraries  
 AVX Multi-cores, OpenCL 

 

 Additional Diagnostics, Instrumentation and Performance Modelling 
 MPI + OpenMP achieved bandwidth figures 
 Performance modelling hybrid back-ends 
 Benchmarking power consumption  

 

 Example/Prototype/Production Applications 
 Finite Element applications currently being developed using OP2 
 Rolls-Royce Hydra currently converted to OP2 at Imperial College London 
 AWE benchmarks ? 

 
    
 
 

 



EPSRC PROPOSAL – OP2 FOR STRUCTURED MESHES 

 Increasing number of cores on a single chip  
 
 Need to keep cores fully utilized – memory bandwidth becoming a key bottleneck 

 
 Data movement on-chip is more power consuming than floating-point operations 

 
 On new architectures we need to optimise algorithms for data movements 
 
    “It’s not about the FLOPS, it’s about data movement”  

 
 Complex processor architectures roadmap  

 
 Need to achieve high productivity as well as high performance  

 
Difficult to program emerging architectures and gain good performance 

 
 Code longevity - need to maintain near-optimal performance 

 

    
 



DATA-EFFICIENT TILING  - SIMPLE EXAMPLE 

 

    
 

for(i=0; i<I; i++) res[i] = 0.0;    //loop 1 

 

for(i=0; i<I-1; i++) {    //loop 2 

 flux = flux_function(q[i],q[i+1]); 

 res[i] -= flux; 

 res[i+1] += flux; 

} 

 

for(i=0; i<I; i++) q[i] += dt*res[i]; //loop 3 

 A  towers computed in parallel, 
 then B towers 

Both  A and B  towers can be computed in 
parallel, with additional redundant computation 



DATA-EFFICIENT TILING - SIMPLE EXAMPLE 

 

    
 

for(i=0; i<I; i++) res[i] = 0.0;    //loop 1 

 

for(i=0; i<I-1; i++) {    //loop 2 

 flux = flux_function(q[i],q[i+1]); 

 res[i] -= flux; 

 res[i+1] += flux; 

} 

 

for(i=0; i<I; i++) q[i] += dt*res[i];  //loop 3 

Standard Operation 
 

Loop 1 : read/write res 
Loop 2 : read q, read/write res 
Loop 3 : read res, read/write q 
 
Total : 8N transfers, where set size is N 



DATA-EFFICIENT TILING  - SIMPLE EXAMPLE 

 

    
 

for(i=0; i<I; i++) res[i] = 0.0;    //loop 1 

 

for(i=0; i<I-1; i++) {    //loop 2 

 flux = flux_function(q[i],q[i+1]); 

 res[i] -= flux; 

 res[i+1] += flux; 

} 

 

for(i=0; i<I; i++) q[i] += dt*res[i];  //loop 3 

Tiling – non-redundant version 
 

Loop 1 : read res, hold in cache 
Loop 2 : read q,  update res in cache 
Loop 3 : update q, write out q/res when moving to next tower (forcing cache  
        line to be displaced) 
 
Total : 4N transfers – factor of 2x savings 



DATA-EFFICIENT TILING  - SIMPLE EXAMPLE 

 

    
 

for(i=0; i<I; i++) res[i] = 0.0;    //loop 1 

 

for(i=0; i<I-1; i++) {    //loop 2 

 flux = flux_function(q[i],q[i+1]); 

 res[i] -= flux; 

 res[i+1] += flux; 

} 

 

for(i=0; i<I; i++) q[i] += dt*res[i];  //loop 3 

Tiling – redundant version 
 

Loop 1 : initialize in cache 
Loop 2 : read q,  update res in cache 
Loop 3 : q, res in cache write out q 
 
Total : 2N transfers – factor of 4x savings 

 ** res data does not have to 
be stored back in main 
memory --- just hold a 
working set in cache ** 

 
 This is much like the use of 

shared memory in the 
current GPU/OpenMP 
version 



EPSRC PROPOSAL – OP2 FOR STRUCTURED MESHES 

Objectives 
  
Development of data-efficient tilling methods for PDEs based on structured 

and unstructured mesh based applications 
 
 Extension of the OP2 API for solving unstructured mesh based applications to 

single-block structured mesh based applications. 
 
 Implementation using lazy execution – evaluations are only performed as 

required 
 
 Extension of the structured mesh API to multi-block structured mesh 

applications 
 

    
 


