
1

OP2 FOR MANY-CORE ARCHITECTURES

G.R. Mudalige, M.B. Giles,

Oxford e-Research Centre, University of Oxford

gihan.mudalige@oerc.ox.ac.uk

27th Jan 2012

AGENDA

 OP2 Current Progress

 Future work for OP2

 EPSRC proposal for extending OP2 for structured grids

 OP2 for AWE applications

 Funding or support opportunities to be explored

THE OP2 FRAMEWORK

OP2 - Compiler

Distributed memory (MPI) Single-Node/Shared memory

Finite Element Applications
Finite Difference / Finite

Volume Applications

OP2 API (C/C++/Fortran)

C/C++
OpenMP

Fortran
OpenMP

C/C++
CUDA

Fortran
CUDA

 C/C++
SSE/AVX

C/C++
OpenCL

C/C++ or
Fortran

NVIDIA AMD IBM Intel

OP2 – GENERATING PLATFORM-SPECIFIC EXECUTABLES

Unstructured Mesh Application OP2 Application (C/C++ or FORTRAN API)

OP2 Source-to-Source Compiler (Matlab or ROSE generator)

Modified Platform
Specific OP2 Application

Platform Specific Optimized
Application Files

OP2 Platform Specific
Optimized Backend

libraries

Single Node CUDA

Single Node OpenMP

Cluster MPI

Cluster MPI+CUDA

Conventional Compiler + compiler flags
 (e.g. Icc, nvcc, pgcc)

Platform Specific Binary
Executable

Mesh
(hdf5, ASCII)

Hardware

Link

OP2 – FEATURES

 Parallel file I/O using HDF5

Partitioning routines from ParMetis and PT-Scotch
 geometric partitioning
 k-way partitioning

 Implicit diagnostics and performance monitoring
 Parallel loop runtime and bandwidth utilization
 partition and halo sizes per process
 message sizes, communication frequency and number of neighbours

communicated per process

 Automatic Check pointing – to be implemented

OP2 –PROGRESS TO DATE

 Currently Supports five back-ends:

 Single-threaded on a CPU

 Multi-threaded on a CPU using OpenMP

 Single GPU node using CUDA

Distributed memory CPU cluster using MPI

Distributed memory GPU cluster using MPI+CUDA

 Experimental (under testing):

 Cluster of multi-threaded CPUs using MPI and OpenMP

 Single GPU node using OpenCL

 Single multi-core CPU with AVX

EXAMPLE APPLICATION - AIRFOIL

 A non-linear 2D inviscid airfoil code
 2D Euler equations
 cell centred finite volume method
 with scalar dissipation

 Representative of the 3D viscous flow
 calculations we eventually want to do for
 Rolls Royce’s Hydra CFD application

 We investigate two mesh sizes
 720K nodes, 720K cells and 1.5 M edges.
 13 M nodes, 13 M cells and 26 M edges

 Consists of five parallel loops
 save_soln and update – direct loops
 adt_calc, res_calc, bres_calc – indirect loops

The most compute intensive loop (res_calc) is called 2000 times, in each

loop iteration an edge performs 100 floating-point operations

OP2 – SINGLE NODE PERFORMANCE (1.5 M EDGES)

Node System Cores

/node

(Clk/core)

Mem.

/node

Compiler +

Compiler Flags

Run-time (secs)

2 × Intel Xeon

X5650

(Westmere)

12

(2.67GHz)

24 GB Intel C++ (11.1)

-O3 -xSSE4.2

2 × AMD

Opteron 6276

(Interlagos)

32

(2.3GHz)

32 GB -O3 -fastsse

-Mipa=fast

-Minline=levels:10

GeForce

GTX560Ti

384

(1.6GHz)

1 GB

ecc-off

nvcc (4.0)

-O3 -arch=sm_20

-Dlcm=ca

-use_fast_math

Tesla C2050 448 (1.15

GHz)

3 GB

ecc-on

Tesla C2070 448 (1.15

GHz)

6 GB

ecc-off

42.53 (24 OMP)
31.79 (22 MPI)
31.50 (11 MPI x 2 OMP)

68.79(32 OMP)
43.83 (32 MPI)
23.63 (4 MPI x 8 OMP)

19.63 (CUDA)

19.40 (CUDA)

15.93 (CUDA)

OP2 – SINGLE NODE (OPENMP) PERFORMANCE (1.5 M EDGES)

Achieved Floating-point and Bandwidth Performance for res_calc

Node

System

res_calc

time (sec)

Achieved

FP-rate

(GFlops

/sec)

Peak

FP-rate

(GFlops

/sec)

Achieved

Bandwidth

(GB/s)

Peak

Bandwidth

(GB/s)

2 × Intel

Xeon

X5650

(Westmere)

140 32

2 × AMD

Opteron

6276

(Interlagos)

294 51

Tesla C2070 515 144

19.70

39.63

10.29

15

7.56

27.44

22.26

11.05

43.06

CLUSTER SPECIFICATIONS

System HECToR

(CrayXE6)

CX1

(Dell Cluster)

SkyNet

(GPU Cluster)

Node

Architecture

2x16-core AMD

Opteron 2.3 GHz

(Interlagos)

2x6-core Xeon

X5650 2.67 GHz

(Westmere)

2 x Tesla C2050 + 2 x Intel

Xeon E5440 2.83 GHz

Cores/Node 32 12 2 GPUs + 8 CPU cores

Mem./Node 32GB 24GB ~6 GB (on GPUs) + 8 GB

Interconnect Cray Gemini

Interconnect

Dual QDR

InfiniBand

DDR

InfiniBand

O/S CLE 4.0 RHEL 5.6 CentOS 5.6, Rocks 5.1

Compilers PGI CC 11.9

Cray MPI

ICC 11.1

Intel MPI 3.1

ICC 12.0.0

OpenMPI 1.4.3

Compiler

flags

-O3 -fastsse

-Mipa=fast

-Minline=levels:10

-O2 –xSSE4.2 -O2 -xSSE4.1

-arch=sm 20

-use fast math

CLUSTER PERFORMANCE (MPI ONLY) - 26M EDGES

-O3 –fastsse -Mipa=fast

-Minline=levels:10
Are there better optimization flags
to use with the Interlagos
processors ?

On Interlagos only one FP
unit per 2 cores

CLUSTER PERFORMANCE (MPI + OPENMP) - 26M EDGES

4 MPI processes per HECToR node, 8
OMP threads per MPI process

CLUSTER PERFORMANCE (MPI ONLY) - 26M EDGES

HECToR is about 23% faster but with
16 FP-units/node compared to
12 cores/node on CX1

CLUSTER PERFORMANCE (MPI +OPENMP) - 26M EDGES

4 MPI processes per HECToR node,
8 OMP threads per MPI process

2x faster with
MPI + OpenMP

MANYCORE CLUSTER PERFORMANCE (26M EDGES)

SUMMARY

 Single node “pure” OpenMP performance getting worse as the number of
cores per node (i.e. different NUMa regions) increase –
 The interconnect between processor sockets is becoming a bottleneck ?

Better performance to when OpenMP is combined with MPI
 Must be careful of NUMa regions, otherwise performance could be worse than

running pure MPI.

 NVIDIA GPU cluster performance (using MPI+CUDA) is almost equivalent to
Cray XE6 performance (using MPI + OpenMP)

DOWNLOAD

Current OP2 source and Airfoil application + mesh available for download

 http://www.oerc.ox.ac.uk/research/op2

 OP2 development repository hosted at GIT-HUB

 https://github.com/carlobertolli/OP2-Common

FUTURE WORK

 Automatic Check pointing

 Additional back-end libraries
 AVX Multi-cores, OpenCL

 Additional Diagnostics, Instrumentation and Performance Modelling
 MPI + OpenMP achieved bandwidth figures
 Performance modelling hybrid back-ends
 Benchmarking power consumption

 Example/Prototype/Production Applications
 Finite Element applications currently being developed using OP2
 Rolls-Royce Hydra currently converted to OP2 at Imperial College London
 AWE benchmarks ?

EPSRC PROPOSAL – OP2 FOR STRUCTURED MESHES

 Increasing number of cores on a single chip

 Need to keep cores fully utilized – memory bandwidth becoming a key bottleneck

 Data movement on-chip is more power consuming than floating-point operations

 On new architectures we need to optimise algorithms for data movements

 “It’s not about the FLOPS, it’s about data movement”

 Complex processor architectures roadmap

 Need to achieve high productivity as well as high performance

Difficult to program emerging architectures and gain good performance

 Code longevity - need to maintain near-optimal performance

DATA-EFFICIENT TILING - SIMPLE EXAMPLE

for(i=0; i<I; i++) res[i] = 0.0; //loop 1

for(i=0; i<I-1; i++) { //loop 2

 flux = flux_function(q[i],q[i+1]);

 res[i] -= flux;

 res[i+1] += flux;

}

for(i=0; i<I; i++) q[i] += dt*res[i]; //loop 3

 A towers computed in parallel,
 then B towers

Both A and B towers can be computed in
parallel, with additional redundant computation

DATA-EFFICIENT TILING - SIMPLE EXAMPLE

for(i=0; i<I; i++) res[i] = 0.0; //loop 1

for(i=0; i<I-1; i++) { //loop 2

 flux = flux_function(q[i],q[i+1]);

 res[i] -= flux;

 res[i+1] += flux;

}

for(i=0; i<I; i++) q[i] += dt*res[i]; //loop 3

Standard Operation

Loop 1 : read/write res
Loop 2 : read q, read/write res
Loop 3 : read res, read/write q

Total : 8N transfers, where set size is N

DATA-EFFICIENT TILING - SIMPLE EXAMPLE

for(i=0; i<I; i++) res[i] = 0.0; //loop 1

for(i=0; i<I-1; i++) { //loop 2

 flux = flux_function(q[i],q[i+1]);

 res[i] -= flux;

 res[i+1] += flux;

}

for(i=0; i<I; i++) q[i] += dt*res[i]; //loop 3

Tiling – non-redundant version

Loop 1 : read res, hold in cache
Loop 2 : read q, update res in cache
Loop 3 : update q, write out q/res when moving to next tower (forcing cache
 line to be displaced)

Total : 4N transfers – factor of 2x savings

DATA-EFFICIENT TILING - SIMPLE EXAMPLE

for(i=0; i<I; i++) res[i] = 0.0; //loop 1

for(i=0; i<I-1; i++) { //loop 2

 flux = flux_function(q[i],q[i+1]);

 res[i] -= flux;

 res[i+1] += flux;

}

for(i=0; i<I; i++) q[i] += dt*res[i]; //loop 3

Tiling – redundant version

Loop 1 : initialize in cache
Loop 2 : read q, update res in cache
Loop 3 : q, res in cache write out q

Total : 2N transfers – factor of 4x savings

 ** res data does not have to
be stored back in main
memory --- just hold a
working set in cache **

 This is much like the use of

shared memory in the
current GPU/OpenMP
version

EPSRC PROPOSAL – OP2 FOR STRUCTURED MESHES

Objectives

Development of data-efficient tilling methods for PDEs based on structured

and unstructured mesh based applications

 Extension of the OP2 API for solving unstructured mesh based applications to

single-block structured mesh based applications.

 Implementation using lazy execution – evaluations are only performed as

required

 Extension of the structured mesh API to multi-block structured mesh

applications

