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Multilevel Monte Carlo
MLMC is based on the telescoping sum

L
E[P.] = E[Po] + > E[P,—Pi]
=1

where 1/55 represents an approximation of some output P on level /.

In simple SDE applications with uniform timestep h, = 2~ hg,
if the weak convergence is

E[P, — P] = O(2~"),

and ?[ is an unbiased estimator for E[:Bg—:sg_l], based on N, samples,

with variance R
VY] = O(N; 12774,

and expected cost
E[C/] = O(N; 279),
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Multilevel Monte Carlo

then the finest level L and the number of samples N, on each level
can be chosen to achieve an RMS error of ¢ at an expected cost

0(e7?), B>,
cC=<¢ 0O (Efz(log 6)2) , B=m,

0 (e72-0=A/) 0 < B <.

| always try to get 8 > «, so the main cost comes from the coarsest levels
— use of QMC can then give substantial additional benefits.

With 8 >+, can also randomise levels to eliminate bias
(Rhee & Glynn, Operations Research, 2015).
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Multilevel Monte Carlo
The standard estimator for SDE applications is

N,
Vo= NS (BAW) — Py (WD)
n=0

using the same Brownian motion W(" for the n" sample on the fine
and coarse levels.

Uniform timestepping is not required — it is fairly straightforward to
implement MLMC using non-nested adaptive timestepping.

coarse path

weon |11 1T T
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Reflected diffusions

Motivating application comes from modelling of network queues

Reflected Brownian diffusion with constant volatility in a domain D has
SDE
dXt = a(Xt) dt+ b th + V(Xt) st,

where L; is a local time which increases when x; is on the boundary 0D.

v(x) can be normal to the boundary (pointing inwards), but in some cases
it is not and reflection from the boundary includes a tangential motion.
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Reflected diffusions

A penalised version is
dXt = a(Xt) dt + b th + I/(Xt) st,
dL; = X max(0,—d(x))dt, A>1

where d(x) is signed distance to the boundary (negative means outside)
and v(x) is a smooth extension from the boundary into the exterior.
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Reflected diffusions

When D is a polygonal domain, this generalises to

K
dxe = a(xe) dt + b dWe + > vi(xe) Ly,
k=1

with a different v, and local time L ; for each boundary face.

The corresponding penalised version is
K

dx; = a(x;)dt+ b dW; + Z vk(xe) dL z,
k=1
de,t = A maX(O, —dk(Xt))dt, A > 1
where di(x¢) is signed distance to the boundary face with a suitable
extension.
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Numerical approximations

3 different numerical treatments in literature:

@ projection (Gobet, Stomiriski): predictor step
XP) = X, + a(Xy, tn) h + b AW,
followed by correction step
Xip, = XP) (X)) AL,
with AZ,, > 0 if needed to put )AQM on boundary

o reflection (Gobet): similar but with double the value for AL,
— can give improved O(h) weak convergence

@ penalised (Stominski): Euler-Maruyama approximation of penalised
SDE with A = O(h™1), giving convergence as h — 0
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Numerical approximations

Concern:

@ because b is constant, Euler-Maruyama method corresponds to first
order Milstein scheme, suggesting an O(h) strong error

@ however, all three treatments of boundary reflection lead to a strong
error which is O(h'/2) — this is based primarily on empirical evidence,
with only limited supporting theory

@ if the output quantity of interest is Lipschitz with respect to the
path then

sup ()?t—Xt)2

V[ﬁ—P} < E[(ﬁ—P)ﬂ < PE sup

so the variance is O(h)

@ OK, but not great — would like O(h®) with 3 > 1 for O(¢2?) MLMC
complexity
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Adaptive timesteps

Simple idea: use adaptive timestep based on distance from the boundary
o far away, use uniform timestep h; = 27¢ hg
@ near the boundary, use uniform timestep h, = 2-20 pg

@ in between, define hy(x) to vary smoothly based on distance d(x)

What do we hope to achieve?
@ strong error 0(27%) == MLMC variance is O(22%)
@ computational cost per path O(2¢)
@ B3=2, y=1in MLMC theorem = complexity is O(¢72)
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Adaptive timesteps

In intermediate zone, want negligible probability of taking a single step
and crossing the boundary.

Stochastic increment in Euler timestep is b AW, so define h; so that

(t+3)||bll2 Vhe=d
Final 3-zone max-min definition of hy is

hy = max <2_2£h0, min (2_£h0, (d/((£+3) ||b||2)2))

Balancing terms, gives
@ boundary zone up to d = 0(27)
o intermediate zone up to d = O(27¢/2)
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Adaptive timesteps

Balancing terms, gives
@ boundary zone up to d ~ 0(27¢)
@ intermediate zone up to d ~ O(27%/?)

If p(y, t), the density of paths at distance y from the boundary at time t,
is uniformly bounded then the computational cost per unit time is
approximately

oo 1d 0(2_4/2)(]_
/ Py, dy zzfxzu/ Y pofx1 ~ 002
0

he(y) oty ¥?
~—————

boundary intermediate interior

so we get similar cost contributions from all 3 zones.
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Numerical analysis

Theorem (Computational cost)
If

o the density p(y,t) for the SDE paths at distance y from the
boundary is uniformly bounded

@ the numerical discretisation with the adaptive timestep has
strong convergence O(27¢)

then the computational cost is 0o(2(19%) for any 0< 5 < 1.

The second condition is needed to bound the difference between the
distributions of the paths and their numerical approximations.
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Numerical analysis

Theorem (Strong convergence)
If
@ the drift a is constant
@ a uniform timestep discretisation has O(h'/?) strong convergence

@ the adaptive timestep hy is rounded to the nearest multiple of the
boundary zone timestep

then the strong convergence is O(2~%)

The proof is based on a comparison with a discretisation using the uniform
boundary zone timestep:

@ adaptive numerical discretisation is exact when boundary not crossed

@ almost zero probability of crossing the boundary unless in the
boundary zone using the uniform timestep
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Numerical results

Simple test case:

@ 3D Brownian motion in a unit ball

@ normal reflection at the boundary

9 Xpg = 0

@ aim is to estimate E[||x||3] at time t=1.

@ implemented with both projection and penalisation schemes
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Numerical results . .
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Numerical results . 0
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Conclusions

Initial research is promising:
@ natural use of localised adaptive timestepping to reduce errors
@ O(c72) complexity for ¢ RMS error
@ significant progress with numerical analysis

@ numerical results are also encouraging

Future challenges:
@ finish writing up current work
@ extend analysis to include errors in local time

@ extend analysis to general drift and adaptive timesteps

Webpages:
http://people.maths.ox.ac.uk/gilesm/
http://people.maths.ox.ac.uk/gilesm/mlmc_community.html
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