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Outline

“usual conditions” for analysis of SDE discretisations

unusual features of SDE path sensitivities

new analysis of strong convergence

This work is motivated by the use of Multilevel Monte Carlo (MLMC)
methods to calculate sensitivities (“Greeks”) in Mathematical Finance.

It seems to fill a gap in the existing literature, unless anyone knows
otherwise?

Mike Giles (Oxford) Path sensitivities June 19th, 2024 2 / 23



Usual analysis of SDEs

When considering, for simplicity, the autonomous SDE

dSt = a(St) dt + b(St) dWt

the “usual conditions” assume that a(S) and b(S) are globally Lipschitz,
i.e. there exists L such that

∥a(v)− a(u)∥+ ∥b(v)− b(u)∥ < L ∥v−u∥, ∀u, v .

Under these conditions, the SDE has a unique solution given initial S0,
and for any finite time interval [0,T ] and p > 0 there exist constants

c
(1)
p , c

(2)
p such that

E
[

sup
0<t<T

∥St∥p
]

≤ c
(1)
p ,

E [ ∥St−St0∥p] ≤ c
(2)
p (t−t0)

p/2, for 0 < t0 < t < T .
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Usual analysis of SDE discretisations

Furthermore, for the Euler-Maruyama discretisation

Ŝ(n+1)h = Ŝnh + a(Ŝnh) h + b(Ŝnh)∆Wn,

with a uniform timestep of h, we have O(h1/2) strong convergence so

that for any p > 0 there exists c
(3)
p such that

E
[

sup
0<t<T

∥Ŝt−St∥p
]

≤ c
(3)
p hp/2.

This strong convergence is important for the effectiveness and analysis
of MLMC algorithms.
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Pathwise sensitivities

Suppose now that St is scalar, and a(θ;S) and b(θ;S) depend smoothly
on a scalar parameter θ as well as S

dSt = a(θ; St) dt + b(θ;St)dWt

and we are interested in the expected value of a “payoff” function P(ST ),

f (θ) = E
[
P(ST (θ; {Wt}0≤t≤T ))

]
and want to compute its derivative

ḟ ≡ df

dθ
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Pathwise sensitivities

If P is globally Lipschitz and piecewise smooth, then

ḟ ≡ d

dθ
E[P(ST ) ] = E[ Ṗ(ST ) ]

where

Ṗ =
dP

dS
ṠT

and Ṡt ≡
dSt
dθ

satisfies the SDE

dṠt = (ȧ(θ; St) + a′(θ;St) Ṡt) dt + (ḃ(θ;St) + b′(θ; St) Ṡt) dWt

subject to initial Ṡ0, with ȧ ≡ ∂a

∂θ
, a′ ≡ ∂a

∂S
, and ḃ, b′ defined similarly.

(Note: analysis can be extended to P depending explicitly on θ)
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Pathwise sensitivities

The Euler-Maruyama discretisation of the pathwise sensitivity SDE is

̂̇S (n+1)h = ̂̇Snh +
(
ȧ(θ; Ŝnh) + a′(θ; Ŝnh)

̂̇Snh

)
h

+
(
ḃ(θ; Ŝnh) + b′(θ; Ŝnh)

̂̇Snh

)
∆Wn

This is also the equation one gets by differentiating the E-M discretisation
of the original SDE.

Question: what is the order of strong convergence of ̂̇S to Ṡ?

Previous MLMC work has assumed the same strong convergence

E
[

sup
0<t<T

∥̂̇S t−Ṡt∥p
]
= O(hp/2)

but I have not found a reference for this.
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Pathwise sensitivities

The pathwise sensitivity SDE can be appended to the original SDE to form
a vector SDE with St ≡ (St , Ṡt)

T

dSt = a(θ;St) dt + b(θ;St) dWt .

I think past work assumed this vector SDE satisfies the “usual conditions”

and hence leads to 1/2-order strong convergence for both Ŝ and ̂̇S .
However, this is not true in general.
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Pathwise sensitivities

Looking at the pathwise sensitivity SDE

dṠt = (ȧ(θ; St) + a′(θ;St) Ṡt) dt + (ḃ(θ;St) + b′(θ; St) Ṡt) dWt

even if we assume all derivatives of a(θ;S) and b(θ;S) are bounded, then

a′(θ; v1) v2−a′(θ; u1) u2 = (a′(θ; v1)−a′(θ; u1)) v2 + a′(θ; u1) (v2−u2)

= a′′(θ;w) v2 (v1−u1) + a′(θ; u1) (v2−u2)

for some u1<w<v1.

The problem is that |a′′(θ;w) v2| → ∞ as v2 → ∞ unless a′′(θ;w) = 0,
and something similar applies for b′(θ;S) Ṡ .
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Pathwise sensitivities

If we use the shorthand at ≡ a(θ; St), ȧt ≡ ȧ(θ; St), a′t ≡ a′(θ; St),
and similarly for bt , ḃt , b

′
t and higher derivatives, then the first order

pathwise sensitivity SDE is

dṠt = (ȧt + a′t Ṡt)dt + (ḃt + b′t Ṡt) dWt

The second order pathwise sensitivity SDE is then

dS̈t = (ät +2ȧ′t Ṡt +a′′t (Ṡt)
2+a′t S̈t) dt+(b̈t +2ḃ′t Ṡt +b′′t (Ṡt)

2+b′t S̈t) dWt

and the (Ṡt)
2 terms makes it even clearer that the “usual conditions”

are not satisfied.

However, notice that Ṡt in the first equation, and S̈t in the second,
are multiplied by a′t and b′t which are bounded
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Pathwise sensitivities

There is a large literature on the approximation of SDEs which do not
satisfy the usual conditions.

These use modified numerical approximations (e.g. tamed schemes,
or adaptive timesteps) for which stability and strong convergence can
be proved.

However, with these pathwise equations there is no problem using the
standard Euler-Maruyama discretisation – all that is needed is a new
numerical analysis to prove it has the observed O(h1/2) strong
convergence order.

We will perform the analysis for the first order pathwise sensitivities,
but inductively it applies to higher orders too.

Mike Giles (Oxford) Path sensitivities June 19th, 2024 11 / 23



Numerical analysis

The numerical analysis is not difficult – essentially retraces the steps of the
standard analysis.

Focussing on the first order sensitivity equation, the key is that in the drift
and diffusion terms Ṡt is multiplied by the bounded a′t and b′t .

Arbitrary moments of all other terms are bounded due to standard results
for St and Ŝt .

Beyond this, the methodology is standard: use Jensen, Hölder, and
Burkholder-Davis-Gundy inequalities to set things up for finally using
Grönwall’s inequality.
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Numerical analysis: step 1

Lemma

For a given time interval [0,T ], and any p ≥ 2, there exists a constant c
(1)
p

such that
sup

0<t<T
E
[
|Ṡt |p

]
≤ c

(1)
p .

Proof.

For even integer p ≥ 2, if we define Pt = Ṡp
t then Ito’s lemma gives us

dPt =
(
p Ṡp−1

t (ȧt + a′t Ṡt) +
1
2 p (p−1) Ṡp−2

t (ḃt + b′t Ṡt)
2
)
dt

+p Ṡp−1
t (ḃt + b′t Ṡt) dWt ,

=⇒ dE[Pt ] ≤ (p La + p (p−1) L2b) (1 + 2E[Pt ])dt

Then apply Grönwall’s inequality, and use Jensen inequality for
intermediate p.
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Numerical analysis: step 2

Theorem

For a given time interval [0,T ], and any p ≥ 2, there exists a constant c
(1)
p

such that

E
[

sup
0<t<T

|Ṡt |p
]
≤ c

(1)
p .

Proof.

Starting from

Ṡt = Ṡ0 +

∫ t

0
(ȧs + a′s Ṡs) ds +

∫ t

0
(ḃs + b′s Ṡs) dWs ,

and defining Ṁ
(p)
t = E

[
sup

0<s<t
|Ṡs |p

]
, then . . .
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Numerical analysis: step 2

Proof (continued).

Jensen’s inequality gives

Ṁ
(p)
t ≤ 5p−1

(
|Ṡ0|p + E

[
sup

0<s<t

∣∣∣∣∫ s

0
ȧu du

∣∣∣∣p]+ E
[
sup

0<s<t

∣∣∣∣∫ s

0
a′uṠu du

∣∣∣∣p]
+ E

[
sup

0<s<t

∣∣∣∣∫ s

0
ḃu dWu

∣∣∣∣p]+ E
[
sup

0<s<t

∣∣∣∣∫ s

0
b′uṠu dWu

∣∣∣∣p] )
.

Bounding each term, using BDG inequality for stochastic integrals, leads
to an equation of the form

Ṁ
(p)
t ≤ c1 + c2

∫ t

0
Ṁ

(p)
u du

and then Grönwall’s inequality gives the desired result.
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Numerical analysis: step 3

Lemma

For a given time interval [0,T ], and any p ≥ 2, there exists a constant c
(2)
p

such that
E
[
|Ṡt − Ṡt0 |p

]
≤ c

(2)
p (t−t0)

p/2

for any 0 ≤ t0 ≤ t ≤ T .

Proof.

Almost identical to the previous proof, but starting from

Ṡt − Ṡt0 =

∫ t

t0

(ȧs + a′s Ṡs)ds +

∫ t

t0

(ḃs + b′s Ṡs) dWs ,

and defining

Ṁ
(p)
t = E

[
sup

t0<s<t
|Ṡs − Ṡt0 |p

]
.
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Numerical analysis: step 4

Lemma

For a given time interval [0,T ], and any p ≥ 2, there exists a constant c
(1)
p

such that

E
[

sup
0<t<T

|̂̇S t |p
]
≤ c

(1)
p .

Proof.

The proof follows the same approach used for E
[

sup
0<t<T

|Ṡt |p
]
.
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Numerical analysis: step 5
Finally we come to the strong convergence theorem.

Theorem

Given the boundedness of all first and second derivatives, for a given time

interval [0,T ], and any p ≥ 2, there exists a constant c
(3)
p such that

E
[

sup
0<t<T

|̂̇S t − Ṡt |p
]
≤ c

(3)
p hp/2.

Proof.

The continuous-time Euler-Maruyama discretisation can be written as

̂̇S t =
̂̇S0 +

∫ t

0
(̂̇as + â′s

̂̇S s) ds +

∫ t

0
(̂̇bs + b̂′s

̂̇S s) dWs ,

where s denotes s rounded downwards to the nearest timestep, and ̂̇as
denotes ȧ(θ, Ŝs) with similar meanings for â′s ,

̂̇bs and b̂′s .
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Numerical analysis: step 5

Proof (continued).

Defining Et =
̂̇S t − Ṡt , the difference between the two is

Et =

∫ t

0
(̂̇as−ȧs) + (â′s

̂̇S s−a′s Ṡs) ds +

∫ t

0
(̂̇bs−ḃs) + (b̂′s

̂̇S s−b′s Ṡs) dWs

=

∫ t

0
(̂̇as−ȧs) + (â′s

̂̇S s−a′s Ṡs) + (ȧs−ȧs) + (a′s Ṡs−a′s Ṡs)ds

+

∫ t

0
(̂̇bs−ḃs) + (b̂′s

̂̇S s−b′s Ṡs) + (ḃs−ḃs) + (b′s Ṡs−b′s Ṡs)dWs

=

∫ t

0
(̂̇as−ȧs) + (â′s−a′s)

̂̇S s + (ȧs−ȧs) + (a′s−a′s)Ṡs + a′s(Ṡs−Ṡs) ds

+

∫ t

0
(̂̇bs−ḃs) + (b̂′s−b′s)

̂̇S s + (ḃs−ḃs) + (b′s−b′s)Ṡs + b′s(Ṡs−Ṡs) dWs

+

∫ t

0
a′sEs ds +

∫ t

0
b′sEs dWs .
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Numerical analysis: step 5

Proof (continued).

Defining

Zt = E
[
sup

0<s<t
|Es |p

]
and bounding each of the terms in turn, using Hölder’s inequality for
products, such as

E
[
|(a′s−a′s)Ṡs |p

]
≤ E

[
|a′s−a′s |2p

]1/2 E
[
|Ṡs |2p

]1/2
,

we end up with

Zt ≤ c1 h
p/2 + c2

∫ t

0
Zs ds,

and Grönwall’s inequality gives the desired result.
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Numerical analysis: extensions

higher derivatives – no problem based on this lemma

Lemma

If ui , vi i = 1, 2, . . . k are scalar random variables, and for any p ≥ 2 there
are finite constants Cp, Dp such that

E[ |ui |p] ≤ Cp, E[ |vi |p] ≤ Cp, E[ |ui−vi |p] ≤ Dp

for all i , then

E

[ ∣∣∣∣∣
k∏

i=1

ui −
k∏

i=1

vi

∣∣∣∣∣
p ]

≤ kp C
1−1/k
pk D

1/k
pk

vector SDEs – no problem

non-autonomous SDEs – no problem if a and b have bounded derivs
in θ,S , t (probably OK if θ,S derivatives are 1/2-Hölder in time)

other discretisations – probably fine for Milstein discretisation
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Conclusions

Pathwise sensitivity analysis has been used extensively for many years.

In the literature, the focus has been on conditions under which

d

dθ
E[P(ST ) ] = E

[
dP

dS

dST
dθ

]

This work fills in an apparent gap in the literature concerning the
strong convergence of the numerical approximations – this is essential
for MLMC analysis.

It is also needed for new research on Multilevel Function Approximation,
building on the original research of Stefan Heinrich in approximating

f (θ) = E[ g(θ;ω) ]

– subject of talks at MCQMC’24
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