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Outline

“usual conditions” for analysis of SDE discretisations

unusual features of SDE path sensitivities

new analysis of strong convergence

This work is motivated by the use of Multilevel Monte Carlo (MLMC)
methods to calculate sensitivities (“Greeks”) in Mathematical Finance.

It seems to fill a gap in the existing literature, unless anyone knows
otherwise?
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Usual analysis of SDEs

When considering, for simplicity, the autonomous SDE

dSt = a(St) dt + b(St) dWt

the “usual conditions” assume that a(S) and b(S) are globally Lipschitz,
i.e. there exists L such that

∥a(v)− a(u)∥+ ∥b(v)− b(u)∥ < L ∥v−u∥, ∀u, v .

Under these conditions, the SDE has a unique solution given initial S0,
and for any finite time interval [0,T ] and p > 0 there exist constants

c
(1)
p , c

(2)
p such that

E
[

sup
0<t<T

∥St∥p
]

≤ c
(1)
p ,

E [ ∥St−St0∥p] ≤ c
(2)
p (t−t0)

p/2, for 0 < t0 < t < T .
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Usual analysis of SDE discretisations

Furthermore, for the Euler-Maruyama discretisation

Ŝ(n+1)h = Ŝnh + a(Ŝnh) h + b(Ŝnh)∆Wn,

with a uniform timestep of h, we have O(h1/2) strong convergence so

that for any p > 0 there exists c
(3)
p such that

E
[

sup
0<t<T

∥Ŝt−St∥p
]

≤ c
(3)
p hp/2.

This strong convergence is important for the effectiveness and analysis
of MLMC algorithms.
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Pathwise sensitivities

If St is scalar, and a(θ;S) and b(θ; S) depend smoothly on a scalar

parameter θ as well as S , then Ṡt ≡
dSt
dθ

satisfies the SDE

dṠt = (ȧ(θ; St) + a′(θ;St) Ṡt) dt + (ḃ(θ;St) + b′(θ; St) Ṡt) dWt

subject to initial Ṡ0, with ȧ ≡ ∂a

∂θ
, a′ ≡ ∂a

∂S
, and ḃ, b′ defined similarly.

The Euler-Maruyama discretisation of the pathwise sensitivity SDE, which
one also gets by differentiating the original E-M discretisation, is

̂̇S (n+1)h = ̂̇Snh +
(
ȧ(θ; Ŝnh) + a′(θ; Ŝnh)

̂̇Snh

)
h

+
(
ḃ(θ; Ŝnh) + b′(θ; Ŝnh)

̂̇Snh

)
∆Wn

Question: what is the order of strong convergence ̂̇S to Ṡ?
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Pathwise sensitivities

The pathwise sensitivity SDE can be appended to the original SDE to form
a vector SDE with St ≡ (St , Ṡt)

T

dSt = a(θ;St) dt + b(θ;St) dWt .

I think past work assumed this vector SDE satisfies the “usual conditions”

and hence leads to 1/2-order strong convergence for both Ŝ and ̂̇S .
However, this is not true in general.
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Pathwise sensitivities

Looking at the pathwise sensitivity SDE

dṠt = (ȧ(θ; St) + a′(θ;St) Ṡt) dt + (ḃ(θ;St) + b′(θ; St) Ṡt) dWt

even if we assume all derivatives of a(θ;S) and b(θ;S) are bounded, then

a′(θ; v1) v2−a′(θ; u1) u2 = (a′(θ; v1)−a′(θ; u1)) v2 + a′(θ; u1) (v2−u2)

= a′′(θ;w) v2 (v1−u1) + a′(θ; u1) (v2−u2)

for some u1<w<v1.

The problem is that |a′′(θ;w) v2| → ∞ as v2 → ∞ unless a′′(θ;w) = 0,
and something similar applies for b′(θ;S) Ṡ .

However, notice that Ṡt is multiplied by a′(θ;St) and b′(θ;St), both of
which are bounded
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Numerical analysis

The numerical analysis is not difficult – essentially retraces the steps
of the standard analysis, assuming that all derivatives of a and b are
bounded.

The key is that in the drift and diffusion terms Ṡt is multiplied by
a′t ≡ a(θ;St) and b′t ≡ b(θ; St), both of which are bounded.

Arbitrary moments of all other terms are bounded due to standard
results for St and Ŝt .

Beyond this, the methodology is standard: use Jensen, Hölder, and
Burkholder-Davis-Gundy inequalities to set things up for finally using
Grönwall’s inequality.
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Numerical analysis: step 1

Theorem

For a given time interval [0,T ], and any p ≥ 2, there exists a constant c
(1)
p

such that

E
[

sup
0<t<T

|Ṡt |p
]
≤ c

(1)
p .

Proof.

Starting from

Ṡt = Ṡ0 +

∫ t

0
(ȧs + a′s Ṡs) ds +

∫ t

0
(ḃs + b′s Ṡs) dWs ,

and defining Ṁ
(p)
t = E

[
sup

0<s<t
|Ṡs |p

]
, then . . .

Mike Giles (Oxford) Path sensitivities March 6th, 2025 9 / 17



Numerical analysis: step 1

Proof (continued).

Jensen’s inequality gives

Ṁ
(p)
t ≤ 5p−1

(
|Ṡ0|p + E

[
sup

0<s<t

∣∣∣∣∫ s

0
ȧu du

∣∣∣∣p]+ E
[
sup

0<s<t

∣∣∣∣∫ s

0
a′uṠu du

∣∣∣∣p]
+ E

[
sup

0<s<t

∣∣∣∣∫ s

0
ḃu dWu

∣∣∣∣p]+ E
[
sup

0<s<t

∣∣∣∣∫ s

0
b′uṠu dWu

∣∣∣∣p] )
.

Bounding each term, using BDG inequality for stochastic integrals, leads
to an equation of the form

Ṁ
(p)
t ≤ c1 + c2

∫ t

0
Ṁ

(p)
u du

and then Grönwall’s inequality gives the desired result.
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Numerical analysis: step 2

Lemma

For a given time interval [0,T ], and any p ≥ 2, there exists a constant c
(2)
p

such that
E
[
|Ṡt − Ṡt0 |p

]
≤ c

(2)
p (t−t0)

p/2

for any 0 ≤ t0 ≤ t ≤ T.

Proof.

Almost identical to the previous proof, but starting from

Ṡt − Ṡt0 =

∫ t

t0

(ȧs + a′s Ṡs)ds +

∫ t

t0

(ḃs + b′s Ṡs) dWs ,

and defining

Ṁ
(p)
t = E

[
sup

t0<s<t
|Ṡs − Ṡt0 |p

]
.
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Numerical analysis: step 3

Lemma

For a given time interval [0,T ], and any p ≥ 2, there exists a constant c
(1)
p

such that

E
[

sup
0<t<T

|̂̇S t |p
]
≤ c

(1)
p .

Proof.

The proof follows the same approach used for E
[

sup
0<t<T

|Ṡt |p
]
.

Mike Giles (Oxford) Path sensitivities March 6th, 2025 12 / 17



Numerical analysis: step 4
Finally we come to the strong convergence theorem.

Theorem

Given the boundedness of all first and second derivatives, for a given time

interval [0,T ], and any p ≥ 2, there exists a constant c
(3)
p such that

E
[

sup
0<t<T

|̂̇S t − Ṡt |p
]
≤ c

(3)
p hp/2.

Proof.

The continuous-time Euler-Maruyama discretisation can be written as

̂̇S t =
̂̇S0 +

∫ t

0
(̂̇as + â′s

̂̇S s) ds +

∫ t

0
(̂̇bs + b̂′s

̂̇S s) dWs ,

where s denotes s rounded downwards to the nearest timestep, and ̂̇as
denotes ȧ(θ, Ŝs) with similar meanings for â′s ,

̂̇bs and b̂′s .
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Numerical analysis: step 4

Proof (continued).

Defining Et =
̂̇S t − Ṡt , the difference between the two is

Et =

∫ t

0
(̂̇as−ȧs) + (â′s

̂̇S s−a′s Ṡs) ds +

∫ t

0
(̂̇bs−ḃs) + (b̂′s

̂̇S s−b′s Ṡs) dWs

=

∫ t

0
(̂̇as−ȧs) + (â′s

̂̇S s−a′s Ṡs) + (ȧs−ȧs) + (a′s Ṡs−a′s Ṡs)ds

+

∫ t

0
(̂̇bs−ḃs) + (b̂′s

̂̇S s−b′s Ṡs) + (ḃs−ḃs) + (b′s Ṡs−b′s Ṡs)dWs

=

∫ t

0
(̂̇as−ȧs) + (â′s−a′s)

̂̇S s + (ȧs−ȧs) + (a′s−a′s)Ṡs + a′s(Ṡs−Ṡs) ds

+

∫ t

0
(̂̇bs−ḃs) + (b̂′s−b′s)

̂̇S s + (ḃs−ḃs) + (b′s−b′s)Ṡs + b′s(Ṡs−Ṡs) dWs

+

∫ t

0
a′sEs ds +

∫ t

0
b′sEs dWs .
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Numerical analysis: step 4

Proof (continued).

Defining

Zt = E
[
sup

0<s<t
|Es |p

]
and bounding each of the terms in turn, using Hölder’s inequality for
products, such as

E
[
|(a′s−a′s)Ṡs |p

]
≤ E

[
|a′s−a′s |2p

]1/2 E
[
|Ṡs |2p

]1/2
,

we end up with

Zt ≤ c1 h
p/2 + c2

∫ t

0
Zs ds,

and Grönwall’s inequality gives the desired result.
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Conclusions

Pathwise sensitivity analysis has been used extensively for many years.

This work fills in an apparent gap in the literature concerning the
strong convergence of the numerical approximations – this is essential
for MLMC analysis for computing Greeks in mathematical finance.

Extensions:

higher derivatives – no problem

vector SDEs – no problem

non-autonomous SDEs – no problem if a and b have bounded
derivatives in θ,S , t

other discretisations – probably fine for Milstein discretisation
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