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Multilevel MC Approach

Suppose we want to estimate E[P ] where P (ω) can be
simulated numerically with different levels of accuracy,
and corresponding costs, giving P̂l, l = 0, 1, . . . , L.

E[P̂L] = E[P̂0] +
L∑

l=1

E[P̂l−P̂l−1]

Expected value is same – aim is to reduce variance of
estimator for a fixed computational cost.

Key idea: approximate E[P̂l−P̂l−1] using Nl simulations with
P̂l and P̂l−1 obtained using same underlying sample ω).

Ŷl = N−1
l

Nl∑

i=1

(
P̂

(i)
l −P̂

(i)
l−1

)
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Multilevel MC Approach

Using independent samples for each level, the variance of
the combined estimator is

V

[
L∑

l=0

Ŷl

]
=

L∑

l=0

N−1
l Vl, Vl ≡

{
V[P̂l−P̂l−1], l > 0

V[P̂0], l = 0

and the computational cost is
L∑

l=0

Nl Cl,

where Cl is the cost of a single sample.

Hence, the variance is minimised for a fixed computational
cost by choosing Nl to be proportional to

√
Vl/Cl.
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Multilevel MC Approach

Since

E

[
(Ŷ −E[P ])2

]
= V[Ŷ ] +

(
E[P̂L] − E[P ]]

)2

can choose

constant of proportionality for Nl so that V[Ŷ ] ≈ 1
2ε2

finest level L so that
(
E[P̂L−P ]

)2
≈ 1

2ε2

to get Mean Square Error equal to ε2
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Previous work

First paper (Operations Research, 2006 – 2008) applied
idea to SDE path simulation using Euler-Maruyama
discretisation

Second paper (MCQMC 2006 – 2007) used Milstein
discretisation for scalar SDEs – improved strong
convergence gives improved multilevel variance
convergence

Multilevel method is a generalisation of two-level
control variate method of Kebaier (2005), and
similar to ideas of Speight (2009)

Also related to multilevel parametric integration by
Heinrich (2001)
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Multilevel Theorem

Theorem: Given multilevel estimators Ŷl based on
Nl samples, each with cost Cl, and positive constants
α, β, γ, c1, c2, c3 with α≥ 1

2 γ, such that

i)
∣∣∣E[P̂l−P ]

∣∣∣ ≤ c1 2−α l

ii) E[Ŷl] =





E[P̂0], l = 0

E[P̂l−P̂l−1], l > 0

iii) V[Ŷl] ≤ c2 N−1
l 2−β l

iv) Cl ≤ c3 2γ l
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Multilevel Theorem

then there is constant c4 such that for any ε<e−1 there are
values L and Nl for which the multilevel estimator

Ŷ =
L∑

l=0

Ŷl,

with Mean Square Error MSE ≡ E

[(
Ŷ − E[P ]

)2
]

< ε2

with a computational cost C with bound

C ≤






c4 ε−2, β > γ,

c4 ε−2(log ε)2, β = γ,

c4 ε−2−(γ−β)/α, 0 < β < γ.
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Multilevel path simulation

In multilevel path simulations for scalar SDEs such as

dS = a(S, t) dt + b(S, t) dW, 0 ≤ t ≤ T,

each level typically uses twice as many timesteps as the
previous, so γ=1.

Question then is: what is β?

Vl ∝ 2−β l ∝ hβ
l

where hl is timestep on level l.
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Multilevel path simulation

For applications in which P is a Lipschitz function of S(T ),
value of underlying path simulation at a fixed time,
strong convergence property

(
E

[
(ŜN − S(T ))2

])1/2
= O(hω)

implies that

V[P̂l−P ] = O(h2ω
l )

and hence

V[P̂l−P̂l−1] = O(h2ω
l )

and therefore β = 2ω.
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Multilevel path simulation

Euler Milstein
option numerics analysis numerics analysis
Lipschitz O(h) O(h) O(h2) O(h2)

Asian O(h) O(h) O(h2) O(h2)

lookback O(h) O(h) O(h2) o(h2−δ)

barrier O(h1/2) o(h1/2−δ) O(h3/2) o(h3/2−δ)

digital O(h1/2) O(h1/2 log h) O(h3/2) o(h3/2−δ)

Table: convergence for Vl as observed numerically and
proved analytically for both the Euler and Milstein
discretisations. δ can be any strictly positive constant.
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Multilevel path simulation

Analysis for Euler discretisations:

lookback and barrier: Giles, Higham & Mao (Finance &
Stochastics, 2009)

digital: Avikainen (Finance & Stochastics, 2009)

Analysis for Milstein discretisations:

Giles, Debrabant & Rößler (TU Darmstadt)

multilevel estimator for path-dependent options based
on conditional Brownian interpolation within timesteps
(or extrapolation in final timestep)
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Milstein Scheme

Brownian interpolation: within each timestep, model the
behaviour as simple Brownian motion (i.e. constant drift and
volatility) conditional on the two end-points

Ŝ(t) = Ŝn + λ(t)(Ŝn+1 − Ŝn)

+ bn

(
W (t) − Wn − λ(t)(Wn+1−Wn)

)
,

where λ(t) =
t − tn

tn+1 − tn
.

There then exist analytic results for the distribution of the
min/max/average over each timestep, and probability of
crossing a barrier.
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Milstein Scheme

Theorem: Under standard conditions,

E

[

sup
[0,T ]

∣∣∣Ŝ(t) − S(t)
∣∣∣
m
]

= O((h log h)m),

sup
[0,T ]

E

[ ∣∣∣Ŝ(t) − S(t)
∣∣∣
m]

= O(hm),

E




(∫ T

0
Ŝ(t)−S(t) dt

)2


 = O(h3).
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Milstein Scheme

The variance convergence for the Asian option comes
directly from this.

Will now outline the analysis for the lookback option – the
barrier is similar but more complicated.

The digital option is based on a Brownian extrapolation
from one timestep before the end – the analysis is similar.

The analysis for the lookback, barrier and digital options
uses the idea of “extreme” paths which are highly
improbable – the variance comes mainly from non-extreme
paths for which one can use asymptotic analysis.
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Milstein Scheme

Computing P̂l − P̂l−1 requires a fine and coarse path
simulation for the same underlying Brownian motion.

On the fine path, the minimum over one timestep is

Ŝf
n,min = 1

2

(
Ŝf

n + Ŝf
n+1 −

√(
Ŝf

n+1−Ŝf
n

)2
− 2 (bf

n)2 hl log Un

)

where Um is a (0, 1] uniform random variable.

For the coarse path, first define Ŝc
n for odd n using

conditional Brownian interpolation, then use the same
expression for the minimum with same Un
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Milstein Scheme

Theorem: For any γ>0, the probability that W (t), its
increments ∆Wn and the corresponding SDE solution S(t)

and approximations Ŝf
n and Ŝc

n satisfy any of the following
“extreme” conditions

max
n

(
max(|S(nh)|, |Ŝf

n |, |Ŝc
n|
)

> h−γ

max
n

(
max(|S(nh)−Ŝc

n|, |S(nh)−Ŝf
n |, |Ŝf

n−Ŝc
n|)
)

> h1−γ

max
n

|∆Wn| > h1/2−γ

is o(hp) for all p>0.
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Milstein Scheme

Furthermore, there exist constants c1, c2, c3, c4 such that if
none of these conditions is satisfied, and γ < 1

2 , then

max
n

|Ŝf
n − Ŝf

n−1| ≤ c1 h1/2−2γ

max
n

|bf
n− bf

n−1| ≤ c2 h1/2−2γ

max
n

(
|bf

n|+|bc
n|
)

≤ c3 h−γ

max
n

|bf
n− bc

n| ≤ c4 h1/2−2γ

where bc
n is defined to equal bc

n−1 if n is odd.
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Milstein Scheme

The lookback analysis splits paths into:

“extreme” paths, which have such low probability that
their contribution to the variance is negligible
(o(hp) for any p > 0)

non-extreme paths for which it can be proved that
∣∣∣Ŝf

min − Ŝc
min

∣∣∣ ≤ max
n

∣∣∣Ŝf
n,min − Ŝc

n,min

∣∣∣

= o(h
1−δ/2
l )

for any δ > 0, and hence Vl = o(h2−δ
l ).
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SPDE application

Currently working with Christoph Reisinger on an
SPDE application which arises in CDO modelling
(Bush, Hambly, Haworth & Reisinger)

dp = −µ
∂p

∂x
dt +

1

2

∂2p

∂x2
dt +

√
ρ

∂p

∂x
dW

with absorbing boundary p(0, t) = 0

derived in limit as number of firms −→ ∞
x is distance to default

p(x, t) is probability density function

dW term corresponds to systemic risk

∂2p/∂x2 comes from idiosyncratic risk
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SPDE application

numerical discretisation combines Milstein
time-marching with central difference approximations

coarsest level of approximation uses 1 timestep per
quarter, and 10 spatial points

each finer level uses four times as many timesteps,
and twice as many spatial points – ratio is due to
numerical stability constraints

mean-square stability theory, with and without
absorbing boundary

computational cost Cl ∝ 8l

numerical results suggest variance Vl ∝ 8−l

can prove Vl ∝ 16−l when no absorbing boundary
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SPDE application

Fractional loss on equity tranche of a 5-year CDO:
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SPDE application

Fractional loss on equity tranche of a 5-year CDO:
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Future work

“vibrato” technique for digital options:
current treatment uses conditional expectation one
timestep before maturity, which smooths the payoff
the “vibrato” idea generalises this to cases without a
known conditional expectation

Greeks:
the multilevel approach should work well, combining
pathwise sensitivities with “vibrato” treatment to cope
with lack of smoothness
can also incorporate the adjoint approach developed
with Paul Glasserman – more efficient when many
Greeks are wanted for one payoff function
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Future work

variance-gamma, CGMY and other Lévy processes:
given exact simulation techniques, multilevel benefit
is in treating path-dependent options
could also handle addition of a local vol surface

American options – the next big challenge:
instead of Longstaff-Schwartz approach, view it as
an exercise boundary optimisation problem, and use
multilevel optimisation?
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Conclusions

Multilevel Monte Carlo method has already achieved

improved order of complexity

significant benefits for model problems

but there is still a lot more research to be done, both
theoretical and applied.

M.B. Giles, “Multilevel Monte Carlo path simulation”,
Operations Research, 56(3):607-617, 2008.

M.B. Giles. “Improved multilevel Monte Carlo convergence
using the Milstein scheme”, pp. 343-358 in Monte Carlo
and Quasi-Monte Carlo Methods 2006, Springer, 2007.

Papers are available from:
www.maths.ox.ac.uk/∼gilesm/finance.html
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