Multilevel Monte Carlo Simulation

Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute Oxford-Man Institute of Quantitative Finance

SPA 2009, July 27 – 31, 2009

Multilevel MC Approach

Suppose we want to estimate $\mathbb{E}[P]$ where $P(\omega)$ can be simulated numerically with different levels of accuracy, and corresponding costs, giving \hat{P}_l , $l = 0, 1, \ldots, L$.

$$\mathbb{E}[\widehat{P}_L] = \mathbb{E}[\widehat{P}_0] + \sum_{l=1}^{L} \mathbb{E}[\widehat{P}_l - \widehat{P}_{l-1}]$$

Expected value is same – aim is to reduce variance of estimator for a fixed computational cost.

Key idea: approximate $\mathbb{E}[\hat{P}_l - \hat{P}_{l-1}]$ using N_l simulations with \hat{P}_l and \hat{P}_{l-1} obtained using <u>same</u> underlying sample ω).

$$\widehat{Y}_{l} = N_{l}^{-1} \sum_{i=1}^{N_{l}} \left(\widehat{P}_{l}^{(i)} - \widehat{P}_{l-1}^{(i)} \right)$$

Multilevel Monte Carlo – p. 2/25

Multilevel MC Approach

Using independent samples for each level, the variance of the combined estimator is

$$\mathbb{V}\left[\sum_{l=0}^{L} \widehat{Y}_{l}\right] = \sum_{l=0}^{L} N_{l}^{-1} V_{l}, \qquad V_{l} \equiv \begin{cases} \mathbb{V}[\widehat{P}_{l} - \widehat{P}_{l-1}], & l > 0\\ \mathbb{V}[\widehat{P}_{0}], & l = 0 \end{cases}$$

and the computational cost is $\sum_{l=0}^{L} N_l C_l$, where C_l is the cost of a single sample.

Hence, the variance is minimised for a fixed computational cost by choosing N_l to be proportional to $\sqrt{V_l/C_l}$.

Multilevel MC Approach

Since

$$\mathbb{E}\left[(\widehat{Y} - \mathbb{E}[P])^2\right] = \mathbb{V}[\widehat{Y}] + \left(\mathbb{E}[\widehat{P}_L] - \mathbb{E}[P]]\right)^2$$

can choose

- constant of proportionality for N_l so that $\mathbb{V}[\widehat{Y}] \approx \frac{1}{2}\varepsilon^2$
- finest level *L* so that $\left(\mathbb{E}[\widehat{P}_L P]\right)^2 \approx \frac{1}{2}\varepsilon^2$

to get Mean Square Error equal to ε^2

Previous work

- First paper (Operations Research, 2006 2008) applied idea to SDE path simulation using Euler-Maruyama discretisation
- Second paper (MCQMC 2006 2007) used Milstein discretisation for scalar SDEs – improved strong convergence gives improved multilevel variance convergence
- Multilevel method is a generalisation of two-level control variate method of Kebaier (2005), and similar to ideas of Speight (2009)
- Also related to multilevel parametric integration by Heinrich (2001)

Multilevel Theorem

Theorem: Given multilevel estimators \hat{Y}_l based on N_l samples, each with cost C_l , and positive constants $\alpha, \beta, \gamma, c_1, c_2, c_3$ with $\alpha \ge \frac{1}{2}\gamma$, such that

i)
$$\left| \mathbb{E}[\hat{P}_l - P] \right| \leq c_1 2^{-\alpha l}$$

ii) $\mathbb{E}[\hat{Y}_l] = \begin{cases} \mathbb{E}[\hat{P}_0], & l = 0\\ \mathbb{E}[\hat{P}_l - \hat{P}_{l-1}], & l > 0 \end{cases}$
iii) $\mathbb{V}[\hat{Y}_l] \leq c_2 N_l^{-1} 2^{-\beta l}$
iv) $C_l \leq c_3 2^{\gamma l}$

Multilevel Theorem

then there is constant c_4 such that for any $\varepsilon < e^{-1}$ there are values L and N_l for which the multilevel estimator

$$\widehat{Y} = \sum_{l=0}^{L} \widehat{Y}_l,$$

with Mean Square Error $MSE \equiv \mathbb{E}\left[\left(\widehat{Y} - \mathbb{E}[P]\right)^2\right] < \varepsilon^2$ with a computational cost *C* with bound

$$C \leq \begin{cases} c_4 \varepsilon^{-2}, & \beta > \gamma, \\ c_4 \varepsilon^{-2} (\log \varepsilon)^2, & \beta = \gamma, \\ c_4 \varepsilon^{-2 - (\gamma - \beta)/\alpha}, & 0 < \beta < \gamma. \end{cases}$$

Multilevel Monte Carlo – p. 7/25

In multilevel path simulations for scalar SDEs such as

 $dS = a(S, t) dt + b(S, t) dW, \quad 0 \le t \le T,$

each level typically uses twice as many timesteps as the previous, so $\gamma = 1$.

Question then is: what is β ?

$$V_l \propto 2^{-\beta l} \propto h_l^{\beta}$$

where h_l is timestep on level l.

For applications in which P is a Lipschitz function of S(T), value of underlying path simulation at a fixed time, strong convergence property

$$\left(\mathbb{E}\left[(\widehat{S}_N - S(T))^2\right]\right)^{1/2} = O(h^{\omega})$$

implies that

$$\mathbb{V}[\widehat{P}_l - P] = O(h_l^{2\omega})$$

and hence

$$\mathbb{V}[\widehat{P}_l - \widehat{P}_{l-1}] = O(h_l^{2\omega})$$

and therefore $\beta = 2 \omega$.

	Euler		Milstein	
option	numerics	analysis	numerics	analysis
Lipschitz	O(h)	O(h)	$O(h^2)$	$O(h^2)$
Asian	O(h)	O(h)	$O(h^2)$	$O(h^2)$
lookback	O(h)	O(h)	$O(h^2)$	$o(h^{2-\delta})$
barrier	$O(h^{1/2})$	$o(h^{1/2-\delta})$	$O(h^{3/2})$	$o(h^{3/2-\delta})$
digital	$O(h^{1/2})$	$O(h^{1/2}\log h)$	$O(h^{3/2})$	$o(h^{3/2-\delta})$

Table: convergence for V_l as observed numerically and proved analytically for both the Euler and Milstein discretisations. δ can be any strictly positive constant.

Analysis for Euler discretisations:

- Iookback and barrier: Giles, Higham & Mao (Finance & Stochastics, 2009)
- digital: Avikainen (Finance & Stochastics, 2009)

Analysis for Milstein discretisations:

- Giles, Debrabant & Rößler (TU Darmstadt)
- multilevel estimator for path-dependent options based on conditional Brownian interpolation within timesteps (or extrapolation in final timestep)

Brownian interpolation: within each timestep, model the behaviour as simple Brownian motion (i.e. constant drift and volatility) conditional on the two end-points

$$\widehat{S}(t) = \widehat{S}_n + \lambda(t)(\widehat{S}_{n+1} - \widehat{S}_n) + b_n \left(W(t) - W_n - \lambda(t)(W_{n+1} - W_n) \right),$$

where $\lambda(t) = \frac{t - t_n}{t_{n+1} - t_n}$.

There then exist analytic results for the distribution of the min/max/average over each timestep, and probability of crossing a barrier.

Theorem: Under standard conditions,

$$\mathbb{E}\left[\sup_{[0,T]} \left|\widehat{S}(t) - S(t)\right|^{m}\right] = O((h \log h)^{m}),$$
$$\sup_{[0,T]} \mathbb{E}\left[\left|\widehat{S}(t) - S(t)\right|^{m}\right] = O(h^{m}),$$
$$\mathbb{E}\left[\left(\int_{0}^{T} \widehat{S}(t) - S(t) \, \mathrm{d}t\right)^{2}\right] = O(h^{3}).$$

The variance convergence for the Asian option comes directly from this.

Will now outline the analysis for the lookback option – the barrier is similar but more complicated.

The digital option is based on a Brownian extrapolation from one timestep before the end – the analysis is similar.

The analysis for the lookback, barrier and digital options uses the idea of "extreme" paths which are highly improbable – the variance comes mainly from non-extreme paths for which one can use asymptotic analysis.

Computing $\widehat{P}_l - \widehat{P}_{l-1}$ requires a fine and coarse path simulation for the same underlying Brownian motion.

On the fine path, the minimum over one timestep is

$$\widehat{S}_{n,min}^{f} = \frac{1}{2} \left(\widehat{S}_{n}^{f} + \widehat{S}_{n+1}^{f} - \sqrt{\left(\widehat{S}_{n+1}^{f} - \widehat{S}_{n}^{f} \right)^{2} - 2 \, (b_{n}^{f})^{2} \, h_{l} \log U_{n}} \right)$$

where U_m is a (0, 1] uniform random variable.

For the coarse path, first define \widehat{S}_n^c for odd n using conditional Brownian interpolation, then use the same expression for the minimum with same U_n

Theorem: For any $\gamma > 0$, the probability that W(t), its increments ΔW_n and the corresponding SDE solution S(t) and approximations \widehat{S}_n^f and \widehat{S}_n^c satisfy any of the following "extreme" conditions

$$\max_{n} \left(\max(|S(nh)|, |\widehat{S}_{n}^{f}|, |\widehat{S}_{n}^{c}|) > h^{-\gamma} \right)$$
$$\max_{n} \left(\max(|S(nh) - \widehat{S}_{n}^{c}|, |S(nh) - \widehat{S}_{n}^{f}|, |\widehat{S}_{n}^{f} - \widehat{S}_{n}^{c}|) \right) > h^{1-\gamma}$$
$$\max_{n} |\Delta W_{n}| > h^{1/2-\gamma}$$

is $o(h^p)$ for all p > 0.

Furthermore, there exist constants c_1, c_2, c_3, c_4 such that if none of these conditions is satisfied, and $\gamma < \frac{1}{2}$, then

$$\max_{n} |\widehat{S}_{n}^{f} - \widehat{S}_{n-1}^{f}| \leq c_{1} h^{1/2 - 2\gamma}
\max_{n} |b_{n}^{f} - b_{n-1}^{f}| \leq c_{2} h^{1/2 - 2\gamma}
\max_{n} \left(|b_{n}^{f}| + |b_{n}^{c}| \right) \leq c_{3} h^{-\gamma}
\max_{n} |b_{n}^{f} - b_{n}^{c}| \leq c_{4} h^{1/2 - 2\gamma}$$

where b_n^c is defined to equal b_{n-1}^c if *n* is odd.

The lookback analysis splits paths into:

- "extreme" paths, which have such low probability that their contribution to the variance is negligible (o(h^p) for any p > 0)
- non-extreme paths for which it can be proved that

$$\begin{aligned} \left| \widehat{S}_{min}^{f} - \widehat{S}_{min}^{c} \right| &\leq \max_{n} \left| \widehat{S}_{n,min}^{f} - \widehat{S}_{n,min}^{c} \right| \\ &= o(h_{l}^{1-\delta/2}) \end{aligned}$$

for any $\delta > 0$, and hence $V_l = o(h_l^{2-\delta})$.

Currently working with Christoph Reisinger on an SPDE application which arises in CDO modelling (Bush, Hambly, Haworth & Reisinger)

$$\mathrm{d}p = -\mu \,\frac{\partial p}{\partial x} \,\mathrm{d}t + \frac{1}{2} \,\frac{\partial^2 p}{\partial x^2} \,\mathrm{d}t + \sqrt{\rho} \,\frac{\partial p}{\partial x} \,\mathrm{d}W$$

with absorbing boundary p(0,t) = 0

- \checkmark derived in limit as number of firms $\longrightarrow \infty$
- \checkmark x is distance to default
- $\mathbf{P}(x,t)$ is probability density function
- \blacksquare dW term corresponds to systemic risk
- $\partial^2 p / \partial x^2$ comes from idiosyncratic risk

- numerical discretisation combines Milstein time-marching with central difference approximations
- coarsest level of approximation uses 1 timestep per quarter, and 10 spatial points
- each finer level uses four times as many timesteps, and twice as many spatial points – ratio is due to numerical stability constraints
- mean-square stability theory, with and without absorbing boundary
- \checkmark computational cost $C_l \propto 8^l$
- numerical results suggest variance $V_l \propto 8^{-l}$
- can prove $V_l \propto 16^{-l}$ when no absorbing boundary

Fractional loss on equity tranche of a 5-year CDO:

Multilevel Monte Carlo – p. 21/25

Fractional loss on equity tranche of a 5-year CDO:

Multilevel Monte Carlo – p. 22/25

Future work

- "vibrato" technique for digital options:
 - current treatment uses conditional expectation one timestep before maturity, which smooths the payoff
 - the "vibrato" idea generalises this to cases without a known conditional expectation
- Greeks:
 - the multilevel approach should work well, combining pathwise sensitivities with "vibrato" treatment to cope with lack of smoothness
 - can also incorporate the adjoint approach developed with Paul Glasserman – more efficient when many Greeks are wanted for one payoff function

Future work

variance-gamma, CGMY and other Lévy processes:

- given exact simulation techniques, multilevel benefit is in treating path-dependent options
- could also handle addition of a local vol surface
- American options the next big challenge:
 - instead of Longstaff-Schwartz approach, view it as an exercise boundary optimisation problem, and use multilevel optimisation?

Conclusions

Multilevel Monte Carlo method has already achieved

- improved order of complexity
- significant benefits for model problems

but there is still a lot more research to be done, both theoretical and applied.

M.B. Giles, "Multilevel Monte Carlo path simulation", *Operations Research*, 56(3):607-617, 2008.

M.B. Giles. "Improved multilevel Monte Carlo convergence using the Milstein scheme", pp. 343-358 in *Monte Carlo and Quasi-Monte Carlo Methods 2006*, Springer, 2007.

Papers are available from:

www.maths.ox.ac.uk/~gilesm/finance.html