
AD in Monte Carlo
for finance

Mike Giles

giles@comlab.ox.ac.uk

Oxford University Computing Laboratory

AD & Monte Carlo – p. 1/30



Overview

overview of computational finance

stochastic o.d.e.’s

Monte Carlo simulation

sensitivity analysis

use of AD

future prospects

AD & Monte Carlo – p. 2/30



Computational finance

There are 3 main approaches to the pricing of financial
options based on equities, bonds, exchange rates, . . .

Monte Carlo methods (50%?)
simple, flexible
efficient for high-dimensional problems

trees (25%?)
simple version of explicit finite differences

PDE methods (25%?)
more complicated
efficient for low-dimensional problems
excellent for American options (free boundary)

AD & Monte Carlo – p. 3/30



Stochastic ODEs

A generic stochastic ODE is of the form

dX = a(X, t) dt + b(X, t) dW

Here W (t) is a Wiener variable (Brownian motion) with the
properties:

for s < t, W (t)−W (s) is Normally distributed with mean
0 and variance t − s

for any q < r < s < t, W (t) − W (s) is independent of
W (r) − W (q)

In the multi-dimensional generalisation X(t) and W (t) are
both vectors.

AD & Monte Carlo – p. 4/30



Stochastic ODEs

Example: geometric Brownian motion

dS = r S dt + σ S dW

This is the simplest model of the behaviour of a stock price
S with W (t) representing the uncertainty of the real world.

The simplest option is a European call (an option to buy at
a certain time T and price K) whose “payoff” value is

g(S(T )) = e−rT max(0, S−K)

What is wanted is the expected (or average) value E[f ]

simulate lots of paths

compute the average payoff
AD & Monte Carlo – p. 5/30



Stochastic ODEs

For the generic stochastic ODE, simplest to use Euler
approximation

Xn+1 = Xn + a(Xn, tn) ∆t + b(Xn, tn) ∆Wn

with each ∆Wn independently Normally distributed with
zero mean and variance ∆t.

For each path X
(m)
n can compute a payoff g(m), and then

average these to get

g = M−1
M
∑

m=1

g(m)

AD & Monte Carlo – p. 6/30



Stochastic ODEs

Key foundation is Central Limit Theorem:

If g has mean µg and variance σ2
g , then for large N

g − µg ∼ M−1/2 σg ν

where ν is Normally distributed with zero mean and unit
variance.

Hence, there is a 99.9% probability that µg lies in the
interval

[

g − 3M−1/2σg, g + 3M−1/2σg

]

with σg estimated from the sample variance.

AD & Monte Carlo – p. 7/30



Stochastic ODEs

The M−1/2 convergence is independent of dimension
(very good for high dimensions) but not very rapid

In practice, lots of techniques are used to reduce the
variance:

antithetic variables

control variates

stratified sampling

importance sampling

quasi Monte Carlo methods

. . . but these are not relevant to this talk

AD & Monte Carlo – p. 8/30



Greeks

What is relevant is that we don’t just want to know the
expected value of some payoff

V = E[g(S(T )].

We also want to know a whole range of “Greeks”
corresponding to first (and second) derivatives of V
with respect to various parameters:

∆ =
∂V

∂S0
, Γ =

∂2V

∂S2
0

,

ρ =
∂V

∂r
, Vega =

∂V

∂σ
.

These are needed for hedging (cancels out uncertainty to
leading order) and for risk analysis.

AD & Monte Carlo – p. 9/30



Finite difference sensitivities

If V (θ) = E[g(S(T ))] for a particular value of an input
parameter θ, and sufficiently differentiable, then the

sensitivity
∂V

∂θ
can be approximated by one-sided finite

difference

∂V

∂θ
=

V (θ+∆θ) − V (θ)

∆θ
+ O(∆θ)

or by central finite difference

∂V

∂θ
=

V (θ+∆θ) − V (θ−∆θ)

2∆θ
+ O((∆θ)2)

AD & Monte Carlo – p. 10/30



Finite difference sensitivities

The clear advantage of this approach is that it is very
simple to implement (hence the most popular in practice?)

However, the disadvantages are:

expensive (2 extra sets of calculations for central
differences)

significant bias error if ∆θ too large

large variance if g(S(T )) discontinuous and ∆θ small

AD & Monte Carlo – p. 11/30



Pathwise sensitivities

Under certain conditions (e.g. g, a and b are continuous and
piecewise differentiable)

∂

∂θ
E[g(X(T ))] = E

[

∂g(X(T ))

∂θ

]

= E

[

∂g

∂X

∂X(T )

∂θ

]

.

with
∂X(T )

∂θ
computed by differentiating the path evolution.

Pros:

less expensive (1 cheap calculation for each sensitivity)

no bias

Cons:

more difficult to implement
AD & Monte Carlo – p. 12/30



Generic adjoint approach

Returning to the generic stochastic o.d.e.

dX = a(X, t) dt + b(X, t) dW,

an Euler approximation gives

X(n+1) = Fn(X(n))

Defining ∆(n) =
∂X(n)

∂X(0)
, then

∆(n+1) = D(n) ∆(n), D(n) ≡ ∂Fn(X(n))

∂X(n)
,

and hence

∂g(X(N))

∂X(0)
=

∂g(X(N))

∂X(N)
∆(N) =

∂g

∂X
D(N−1)D(N−2) . . . D(0)∆(0)

AD & Monte Carlo – p. 13/30



Generic adjoint approach

If X is m-dimensional, then D(n) is an m×m matrix,
and the overall computational cost is O(Nm3).

Alternatively,

∂g(X(N))

∂X(0)
=

∂g

∂X
D(N−1)D(N−2) · · ·D(0) ∆(0) = V (0)>∆(0),

where adjoint V (n) =

(

∂g(X(N))

∂X(n)

)>

is calculated from

V (n) = D(n)>V (n+1), V (N) =

(

∂g

∂X(N)

)>

,

at a computational cost which is O(Nm2).
AD & Monte Carlo – p. 14/30



Generic adjoint approach

Usual flow of data within the forward/reverse path
calculations:

X(0) X(1) . . . X(N−1) X(N)- - - - $
?

∂g/∂X

%�

D(0) D(1) D(N−1)

? ? ?

� � � �V (0) V (1) . . . V (N−1) V (N)

– memory requirements are not significant because data
only needs to be stored for the current path.

AD & Monte Carlo – p. 15/30



Generic adjoint approach

To calculate the sensitivity to other parameters, consider a
generic parameter θ. Defining Θ(n) = ∂X(n)/∂θ, then

Θ(n + 1) =
∂Fn

∂X
Θ(n) +

∂Fn

∂θ
≡ D(n) Θ(n) + B(n),

and hence

∂g

∂θ
=

∂g

∂X(N)
Θ(N)

=
∂g

∂X(N)

{

B(N−1) + D(N−1)B(N−2) + . . .

+ D(N−1)D(N−2) . . . D(1)B(0)
}

=
N−1
∑

n=0

V (n+1)>B(n).

AD & Monte Carlo – p. 16/30



Generic adjoint approach

Different θ’s have different B’s, but same V ’s

=⇒ Computational cost ' Nm2 + Nm × # parameters,

compared to the standard forward approach for which

Computational cost ' Nm2 × # parameters.

However, the adjoint approach only gives the sensitivity of
one output, whereas the forward approach can give the
sensitivities of multiple outputs for little additional cost.

AD & Monte Carlo – p. 17/30



Generic adjoint approach

Defining G(n) = ∂2X(n)/∂Xj(0)∂Xk(0) for a particular (j, k)
it can be shown that

G(n + 1) = D(n)G(n) + C(n),

where C(n) is a complicated quadratic function of ∆(n).

Hence, pathwise Gammas can be computed efficiently by
doing a forward calculation of ∆, followed by an adjoint
calculation to compute

N−1
∑

n=0

V (n+1)>C(n),

for each pair (j, k), at a savings of factor O(m) relative to a
standard forward approach.

AD & Monte Carlo – p. 18/30



LIBOR Market Model

This example models the evolution of future interest rates;
an important application and a representative example.

The forward rate for the interval [Ti, Ti+1) satisfies

dLi(t)

Li(t)
= µi(L(t)) dt + σ>

i dW (t), 0 ≤ t ≤ Ti,

where µi(L(t)) =
i

∑

j=η(t)

σ>

i σj δjLj(t)

1 + δjLj(t)
,

and η(t) is the index of the next maturity date.

For simplicity, we keep Li(t) constant for t > Ti, and take
the volatilities to be a function of the time to maturity,

σi(t) = σi−η(t)+1(0).
AD & Monte Carlo – p. 19/30



LMM implementation

Applying the Euler scheme to the logarithms of the forward
rates yields

Li(n+1) = Li(n) exp
(

[µi(L(n)) − ‖σi‖2/2]h + σ>

i Z(n+1)
√

h
)

.

For efficiency, we first compute

Si(n) =
i

∑

k=η(t)

σkδkLk(n)

1 + δkLk(n)
,

and then obtain µi = σ>

i Si.

Each timestep, there is an O(m) cost in computing the Si’s,
and then an O(m) cost in updating the Li’s.

AD & Monte Carlo – p. 20/30



LMM implementation

Defining ∆ij(n) = ∂Li(n)/∂Lj(0), differentiating the Euler
scheme yields

∆ij(n+1) =
Li(n+1)

Li(n)
∆ij(n) + Li(n+1)σ>

i Sij(n)h,

where

Sij(n) =
i

∑

k=η(nh)

σk δk ∆kj(n)

(1 + δkLk(n))2
.

Each timestep, there is an O(m2) cost in computing the
Sij ’s, and then an O(m2) cost in updating the ∆ij ’s.

(Note: programming implementation requires only
multiplication and addition – very rapid on modern CPU’s).

AD & Monte Carlo – p. 21/30



LMM implementation

Working through the details of the adjoint formulation, one
eventually finds that Vi(n) = Vi(n+1) for i < η(nh), and

Vi(n) =
Li(n+1)

Li(n)
Vi(n+1) +

σ>

i δi h

(1+δiLi(n))2

m
∑

j=i

Lj(n+1)Vj(n+1)σj

for i ≥ η(nh).

Each timestep, there is an O(m) cost in computing the
summations, and then an O(m) cost in updating the Vi’s.

The correctness of the formulation is verified by checking it
gives the same sensitivities as the forward calculation.

AD & Monte Carlo – p. 22/30



LMM results

LMM portfolio has 15 swaptions all expiring at the same
time, N periods in the future, involving payments/rates
over an additional 40 periods in the future.

Interested in computing Deltas, sensitivity to initial N+40
forward rates, and Vegas, sensitivity to initial N+40
volatilities.

Focus is on the cost of calculating the portfolio value and
the sensitivities, relative to just the value.

AD & Monte Carlo – p. 23/30



LMM results

Finite differences versus forward pathwise sensitivities:

0 20 40 60 80 100
0

50

100

150

200

250

Maturity N

re
la

tiv
e 

co
st

finite diff delta
finite diff delta/vega
pathwise delta
pathwise delta/vega

AD & Monte Carlo – p. 24/30



LMM results

Forward versus adjoint pathwise sensitivities:

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

Maturity N

re
la

tiv
e 

co
st

forward delta
forward delta/vega
adjoint delta
adjoint delta/vega

AD & Monte Carlo – p. 25/30



AD results

The figures show my hand-coded implementations.

FastOpt have produced preliminary timings using TAC++
(C/C++ version of TAF, still under development)

Timings for 120 deltas and 120 vegas:

forward reverse
hand-coded 35 1.3
TAC + gcc 240? 5.3
TAC + icc ??? 3.0

AD & Monte Carlo – p. 26/30



AD in future?

First, some numbers:

104 – 106 paths

20 – 200 timesteps

20 – 2000 operations per timestep

1 – 100 state variables

Two good solutions:

complete taping of each individual path
(would probably fit within L2/L3 cache)

store just state variables on initial forward pass,
then recalculate/tape each timestep
(would probably fit within L1 cache)

AD & Monte Carlo – p. 27/30



AD in future?

The ideal (which is what I did in hand-coded version)

in forward pass, for each timestep store
state variables
all results of “expensive” operations
(e.g. exponential, inverse)

in reverse pass, recalculation only requires
“inexpensive” operations (e.g. addition, multiplication)

In principle, a natural tradeoff between memory access and
re-computation, and could be automated given some user
input on typical values for key loop indices.

However, difficult to develop generic tools which are optimal
under widely-differing circumstances.

AD & Monte Carlo – p. 28/30



Prospects for the future

just given presentations at Quant Congresses in
London and New York;

article with Monte Carlo expert (Paul Glasserman)
appearing in December issue of Risk;

CSFB planning to start an internal project;

HSBC may be interested too;

have also talked to some of the software vendors;

hard to predict but it could be an interesting new
application area for AD.

AD & Monte Carlo – p. 29/30



Further Information

www.comlab.ox.ac.uk/mike.giles/finance.html
— papers and talks on finance applications

www.comlab.ox.ac.uk/mike.giles/airfoil/
— paper and codes for a talk on using Tapenade to
generate linear/adjoint versions of a simple airfoil code
(to be presented at a workshop in Bangalore in Dec ’05)

AD & Monte Carlo – p. 30/30


	Overview
	Computational finance
	Stochastic ODEs
	Stochastic ODEs
	Stochastic ODEs
	Stochastic ODEs
	Stochastic ODEs
	Greeks
	Finite difference sensitivities
	Finite difference sensitivities
	Pathwise sensitivities
	Generic adjoint approach
	Generic adjoint approach
	Generic adjoint approach
	Generic adjoint approach
	Generic adjoint approach
	Generic adjoint approach
	LIBOR Market Model
	LMM implementation
	LMM implementation
	LMM implementation
	LMM results
	LMM results
	LMM results
	AD results
	AD in future?
	AD in future?
	Prospects for the future
	Further Information

