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Outline

This is the topic of my paper in the conference proceedings.

collection of mathematical results for forward and
reverse mode AD for matrices

highlights contribution by Dwyer & Macphail in 1948

relevant for those using highly-tuned high-level software
packages (e.g. LAPACK, MATLAB) for which it is
inappropriate to apply black-box AD

Friday’s talk is on opportunities and challenges for AD in
computational finance.
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Matrix Derivative

If f(C) is a scalar output of a matrix input A, then define

Cij =
∂f

∂Cij

and so
ḟ =

∑

ij

CijĊij = tr
(

C
T
Ċ

)

Note: for any A, B (with A and BT of same dimensions),

tr(AB) =
∑

ij

AjiBij = tr(BA)
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Key steps

If C is a function of matrices A,B,

C = g(A,B)

we use standard perturbation analysis to compute Ċ as a
function of Ȧ, Ḃ, and then use the identity

tr
(

C
T
Ċ

)

= tr
(

A
T
Ȧ + B

T
Ḃ

)

, ∀ C, Ȧ, Ḃ

to determine A,B as a function of C.

Once we have results for a range of elementary matrix
operations, we can combine them in the usual way to
construct forward or reverse mode derivatives for
“programs” composed of these.
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Matrix multiply

For example,

C = A B =⇒ Ċ = Ȧ B + A Ḃ

and so

tr
(

C
T
Ċ

)

= tr
(

C
T
Ȧ B + C

T
A Ḃ

)

= tr
(

B C
T
Ȧ + C

T
A Ḃ

)

and hence

A = C BT

B = AT C
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Other basics

Addition:

C = A + B, Ċ = Ȧ + Ḃ, A = C, B = C

Inverse:

C = A−1, Ċ = −CȦ C, A = −CT C CT

Determinant:

C = det(A), Ċ = C tr(A−1Ȧ), A = C C A−T
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Maximum Likelihood Estimation

We can build on these elementary results to tackle harder
applications.

In Maximum Likelihood Estimation, if p(x) is defined as

p(x) =
1√

det Σ (2π)d/2
exp

(

− 1

2
(x−µ)T Σ−1(x−µ)

)

then given a set of N data points xn, their joint probability
density function is

P =
N
∏

n=1

p(xn) =⇒ log P =
N

∑

n=1

log p(xn)
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Maximum Likelihood Estimation

The derivatives w.r.t. µ and Σ are

∂ log P

∂µ
= −

N
∑

n=1

Σ−1(xn−µ),

∂ log P

∂Σ
= − 1

2

N
∑

n=1

{

Σ−1 − Σ−1(xn−µ) (xn−µ)T Σ−1
}

.

and equating these to zero gives the maximum likelihood
estimates

µ = N−1

N
∑

n=1

xn, Σ = N−1

N
∑

n=1

(xn−µ) (xn−µ)T .
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Dwyer and Macphail

This MLE result was derived by Dwyer in 1967, building
on an earlier paper by Dwyer and Macphail in 1948 on
“Symbolic matrix derivatives” in The Annals of
Mathematical Statistics.

The statistics/econometrics community know and use
these results, but aren’t apparently aware of AD and the
fact that one can systematically apply these techniques
to much larger problems.

Key reference: Matrix differential calculus with applications
in statistics and econometrics, J. Magnus & H. Neudecker,
John Wiley & Sons (1988)

Matrix derivatives – p. 9



Matrix Polynomial

Suppose

C = p(A) =
N

∑

n=0

anAn.

Pseudo-code for the evaluation of C is as follows:

C := aNI

for n from N−1 to 0
C := AC + anI

end

where I is the identity matrix.
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Matrix Polynomial

The forward mode sensitivity is given by the pseudo-code:

Ċ := 0
C := aNI

for n from N−1 to 0
Ċ := Ȧ C + A Ċ
C := AC + anI

end
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Matrix Polynomial

Similarly, the reverse mode pseudo-code to compute A is:

CN := aNI

for n from N−1 to 0
Cn := ACn+1 + anI

end

A := 0

for n from 0 to N−1
A := A + C CT

n+1

C := AT C
end
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Matrix Exponential

In MATLAB, the matrix exponential

exp(A) ≡
∞

∑

n=0

1

n!
An,

is approximated through a scaling and squaring method as

exp(A) ≈
(

p1(A)−1p2(A)
)m

,

where m is a power of 2, and p1 and p2 are polynomials
such that p2(x)/p1(x) is a Padé approximation to exp(x/m)

Forward and reverse mode derivatives are obtained by
combining addition, multiplication, inverse and polynomial
results.
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Eigenvalues/eigenvectors

An expanded technical report treats the
eigenvalue/eigenvector problem.

Why is this important? In engineering, sometimes want to
ensure that natural vibration frequencies are well away from
forcing frequencies to minimise vibration.

Given a square matrix A with distinct eigenvalues,
the eigenvector matrix U and diagonal eigenvalue
matrix D satisfy

AU =U D

with the ordering of the eigenvalues and the scaling of the
eigenvectors undefined.
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Eigenvalues/eigenvectors

Defining the Hadamard product A◦B to be an element-wise
product (i.e. (A◦B)ij = AijBij), one can prove that for a
certain choice of eigenvector normalisation

Ḋ = I ◦ (U−1Ȧ U),

U̇ = U
(

F ◦ (U−1Ȧ U)
)

.

where Fij = (dj − di)
−1 for i 6= j, and zero otherwise.

In reverse mode, we get

A = U−T
(

D + F ◦ (UT U)
)

UT .
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Other results

Other results in the expanded technical report:

singular value decomposition (svd(A))

Choleksy factorisation (chol(A))

Frobenius and spectral norms (norm(A))

a MATLAB code uses “the complex variable trick”
(a form of operator overloading) to verify the forward
mode sensitivities, and the identity

tr
(

C
T
Ċ

)

= tr
(

A
T
Ȧ + B

T
Ḃ

)

, ∀ C, Ȧ, Ḃ

to check the reverse mode sensitivities
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Conclusions

Very few novel results, but hopefully the collection will
be a useful reference

Probably most relevant to those using high-level
packages (e.g. LAPACK, MATLAB)

Should give Dwyer & Macphail due credit for their 1948
paper

Acknowledgements: Andreas Griewank, Shaun Forth and
Nick Trefethen for key references
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Further information

M.B. Giles, “An extended collection of matrix derivative
results for forward and reverse mode algorithmic
differentiation”, Oxford University Computing Laboratory
Numerical Analysis report 08/01.

people.maths.ox.ac.uk/∼gilesm/
Email: mike.giles@maths.ox.ac.uk
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