
Some (strong) opinions on HPC
and the use of GPUs

Mike Giles

mike.giles@maths.ox.ac.uk

Oxford-Man Institute of Quantitative Finance

Oxford University Mathematical Institute

Oxford eResearch Centre

July 2-3, 2009

HPC on GPUs – p. 1/17



Apologies

I’m a mathematician/engineer, not a computer scientist,
and I’m well aware how much I don’t know

my intention is to provoke discussion, not cause offence

where I am wrong / ignorant, even that’s relevant
because I’m a relatively well informed user

HPC on GPUs – p. 2/17



FPGAs

I do not believe in FPGAs:

too hard to program

benefits are not sufficient to justify the effort

not convinced the future roadmap will change this

might be good in important niche areas
(e.g. bioinformatics?)

HPC on GPUs – p. 3/17



GPUs

I do believe in GPUs:

factor 10× improvement in energy efficiency and
price / performance compared to two multicore CPUs

produced in vast quantities so gain economies of scale

relatively easily programmed in CUDA or OpenCL
– C with extensions and some C++ features

already used in several top supercomputers

great excitement in academic supercomputing, lots of
PhDs and post-docs working on major applications

I think 20% of academic supercomputing spend in next
5 years will be on GPU clusters

HPC on GPUs – p. 4/17



GPUs

NVIDIA, IBM, AMD and Intel all producing GPUs

NVIDIA has good headstart on software side with
CUDA environment

new OpenCL software standard (based on CUDA and
pushed by Apple) will probably run on all platforms

driving applications are:
computer games “physics”
video (e.g. HD video decoding)
computational science
computational finance
oil and gas
medical imaging

HPC on GPUs – p. 5/17



Why GPUs will stay ahead

Technical reasons:

SIMD cores (instead of MIMD cores) means larger
proportion of chip devoted to floating point computation

tightly-coupled fast graphics memory means much
higher bandwidth

Commercial reasons:

CPUs driven by price-sensitive office/home computing;
not clear these need vastly more speed

CPU direction may be towards low cost, low power
chips for mobile and embedded applications

GPUs driven by high-end applications – prepared to
pay a premium for high performance

HPC on GPUs – p. 6/17



CPU development

CPUs are also evolving:

“Westmere” will have 10 cores by end of 2011

SSE vectors (4 float or 2 double) will double in
length with AVX in 2010, and then may double again
in 2012?

CPUs may also become increasingly heterogeneous
– e.g. 3 “normal” cores plus a graphics core?

applications will need to be substantially re-written to
obtain the benefits

HPC on GPUs – p. 7/17



Low-level software view

GPUs:

multiple units each with a collection of SIMD cores
operating like a vector unit

programmed from a thread point of view

CPUs:

multiple cores each with a vector unit

software is a mix of scalar and vector instructions

Quite similar in terms of limitations of vector execution
(e.g. branching)

HPC on GPUs – p. 8/17



Software opinions

I don’t believe in auto-parallelising C / C++ compilers
solving all the problems:

after 25 years I have low expectations

general purpose compilers (without domain-specific
knowledge) seem to have trouble identifying inherent
parallelism

HPC on GPUs – p. 9/17



Software opinions

I don’t believe in new general purpose languages:

unimpressed by Fortress

haven’t investigated Chapel

very hard for a new general purpose language to
compete against C / C++ / Java

programming doesn’t just need a language, it needs the
development environment – this takes time to develop

HPC on GPUs – p. 10/17



Software opinions

I do believe in extensions, parallel libraries and program
transformations for codes written in C / C++:

start from a familiar language with a mature
development environment

add the parallel elements needed to get good
performance

can’t do it all with libraries – need tools for program
transformation to generate code for target hardware

HPC on GPUs – p. 11/17



Software opinions

In considering HPC applications / parallelisation challenges,
helpful to look at 7 dwarfs (Phil Colella / A View from
Berkeley):

dense linear algebra

sparse linear algebra

spectral methods (FFT’s)

N-body problems (molecular dynamics)

structured grids

unstructured grids

Monte Carlo / Google MapReduce

HPC on GPUs – p. 12/17



Software opinions

I do believe in lazy execution on GPUs for high-level object
oriented languages:

current developments for C++ and MATLAB
– also wanted for R

OO features used to build up an execution DAG for
vector objects resident on GPU

DAG transferred (with JIT compilation?) and executed
when needed

I’d like to see work on packages which support multiple
front-ends (high-level languages) and back-ends
(low-level languages on target hardware)

HPC on GPUs – p. 13/17



Software opinions

I also believe in program generators:

application-specific high-level specification
(e.g. SciComp in computational finance)

generation of low-level target-specific code
(e.g. for multicore CPUs, or GPUs, or AVX for CPUs)

I’d like to see work on packages which makes it easy to
define a new application-specific high-level languages
and transform it into code for multiple back-ends

HPC on GPUs – p. 14/17



Software opinions

In some application areas, it would be helpful if low-level
language supported the execution of task DAGs

particularly important in linear algebra where big matrix
operations get expressed as a sequence of small ones
with various dependencies

want to declare the tasks and the dependencies, and
leave to run-time system to manage it

Other than this, I’m quite comfortable with low-level
languages like CUDA and OpenCL

HPC on GPUs – p. 15/17



Education and training

We need a lot more of both for both computer science and
application science students and post-docs:

parallel computing as part of undergraduate science
curriculum
– I’d settle for OpenMP as an addition to existing C/C++
teaching in science areas

all computational science PhDs and post-docs should
learn OpenMP, and have some exposure to MPI and
CUDA/OpenCL

courses also need to be put on for industry

HPC on GPUs – p. 16/17



Final thoughts

Without help from computer science, the HPC community
will get on and make the most of GPUs through

parallel libraries

community self-help

hard work

With help from computer science, it could make our jobs
a lot easier (so more productive) and motivate a lot of
interesting computer science research.

HPC on GPUs – p. 17/17


	Apologies
	FPGAs
	GPUs
	GPUs
	Why GPUs will stay ahead
	CPU development
	Low-level software view
	Software opinions
	Software opinions
	Software opinions
	Software opinions
	Software opinions
	Software opinions
	Software opinions
	Education and training
	Final thoughts

