
Tackling a new CUDA application
Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Oxford e-Research Centre

Lecture 7 – p. 1



Initial planning

1) Has it been done before?

check CUDA SDK examples

check CUDA user forums

check gpucomputing.net

check with Google

Lecture 7 – p. 2



Initial planning

2) Where is the parallelism?

efficient CUDA execution needs thousands of threads

usually obvious, but if not
go back to 1)
talk to an expert – they love a challenge
go for a long walk

may need to re-consider the mathematical algorithm
being used, and instead use one which is more
naturally parallel – but this should be a last resort

Lecture 7 – p. 3



Initial planning

Sometimes you need to think about “the bigger picture”

Consider a 3D finite difference example:

lots of grid nodes so lots of inherent parallelism

even for ADI method (which needs a set of tri-diagonal
equations to be solved in each direction), a grid of 1283

has 1282 tri-diagonal solutions to be performed in
parallel so OK to assign each one to a single thread

but what if we have a 2D or even 1D problem to solve?

Lecture 7 – p. 4



Initial planning

If we only have one such problem to solve, why use a GPU?

But in practice, often have many such problems to solve:

different initial data

different model constants

This adds to the available parallelism

Lecture 7 – p. 5



Initial planning

2D:

48KB of shared memory == 12K float so grid of 642

could be held within shared memory
one kernel for entire calculation
each block handles a separate 2D problem; almost
certainly just one block per SM

for bigger 2D problems, would need to split each one
across more than one block

separate kernel for each timestep / iteration

Lecture 7 – p. 6



Initial planning

1D:

can certainly hold entire 1D problem within shared
memory of one SM

maybe best to use a separate block for each 1D
problem, and have multiple blocks executing
concurrently on each SM

but for implicit time-marching need to solve single
tri-diagonal system in parallel – how?

Lecture 7 – p. 7



Initial planning

Cyclic reduction: starting from

−an xn−1 + xn − cn xn+1 = dn, n = 1, . . . N

for even n, add an times row n−1, and cn times row n+1 to
get

− an an−1 xn−2 + (1− ancn−1 − cnan+1) xn − cn cn+1 xn+2

= dn + an dn−1 + cn dn+1

then normalise to get

−a∗
n
xn−2 + xn − c∗

n
xn+2 = d∗

n
, n = 2, 4, . . .

Note this can be done in parallel

Lecture 7 – p. 8



Initial planning

Repeat, halving the number of unknowns at each stage,
until 1 left, then do back substitution to get other values.

eqns: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

eqns: 2, 4, 6, 8, 10

eqns: 4, 8

eqns: 8

soln: 8

soln: 4

soln: 2, 6, 10

soln: 1, 3, 5, 7, 9, 11

Parallel implementation similar to scan
Lecture 7 – p. 9



Initial planning

3) Break the algorithm down into its constituent pieces

each will probably lead to its own kernels

do your pieces relate to the 7 dwarfs?
dense / sparse linear algebra
spectral methods
N-body methods
structured / unstructured grids
Monte Carlo

re-check literature for each piece – sometimes the
same algorithm component may appear in widely
different applications

check whether there are existing libraries which may be
helpful Lecture 7 – p. 10



Initial planning

4) Is there a problem with warp divergence?

GPU efficiency can be completely undermined if there
are lots of divergent branches

may need to implement carefully – lecture 3 example:

processing a long list of elements where, depending on
run-time values, a few involve expensive computation:

first process list to build two sub-lists of “simple” and
“expensive” elements
then process two sub-lists separately

. . . or again seek expert help

Lecture 7 – p. 11



Initial planning

5) Is there a problem with host <–> device bandwidth?

usually best to move whole application onto GPU,
so not limited by PCIe bandwidth (5GB/s)

occasionally, OK to keep main application on the host
and just off-load compute-intensive bits

dense linear algebra is a good off-load example;
data is O(N2) but compute is O(N3) so fine if
N is large enough

rule of thumb: need at least 100 operations on GPU per
byte of data transferred

Lecture 7 – p. 12



Heart modelling

Heart modelling is another interesting example:

keep PDE modelling (physiology, electrical field)
on the CPU

do computationally-intensive cellular chemistry on GPU
(naturally parallel)

minimal data interchange each timestep

Lecture 7 – p. 13



Initial planning

6) is the application compute-intensive or data-intensive?

break-even point is roughly 20 operations (FP and
integer) for each 32-bit device memory access
(assuming full cache line utilisation)

good to do a back-of-the-envelope estimate early on
before coding =⇒ changes approach to implementation

Lecture 7 – p. 14



Initial planning

If compute-intensive:

don’t worry (too much) about cache efficiency

minimise integer index operations – surprisingly costly

if using double precision, think whether it’s needed

If data-intensive:

ensure efficient cache use – may require extra coding

may be better to re-compute some quantities rather
than fetching them from device memory

Lecture 7 – p. 15



Initial planning

Need to think about how data will be used by threads,
and therefore where it should be held:

registers (private data)

shared memory (for shared access)

device memory (for big arrays)

constant arrays (for global constants)

“local” arrays (efficiently cached on Fermi)

Lecture 7 – p. 16



Initial planning

With complex applications, I increasingly worry about
“register pressure”, i.e. coping with a maximum of 63
registers per thread:

split big kernels into two – may increase bandwidth
requirements but probably reduces register count

(Example: in Monte Carlo simulations, pre-compute
random numbers or do them on-the-fly?)

if any variables have same value for all threads, put
them into shared memory, set by thread 0

sometimes hard to predict what will work best, may
need to experiment later

Lecture 7 – p. 17



Initial planning

When working with shared memory, be careful to think
about thread synchronisation.

Very important!

Forgetting a

__syncthreads();

may produce errors which are unpredictable / rare
— the worst kind.

Also, make sure all threads reach the synchronisation point
— otherwise could get deadlock.

Lecture 7 – p. 18



Initial planning

If you think you may need to use “exotic” features like
atomic locks:

look for SDK examples

write some trivial little test problems of your own

check you really understand how they work

Never use a new feature for the first time on a real problem!

Lecture 7 – p. 19



Initial planning

Read NVIDIA documentation on performance optimisation:

section 5 of CUDA Programming Guide

CUDA C Best Practices Guide

Fermi Tuning Guide

Lecture 7 – p. 20



Programming and debugging

Many of my comments here apply to all scientific computing

Though not specific to GPU computing, they are perhaps
particularly important for GPU / parallel computing because

debugging can be hard!

Above all, you don’t want to be sitting in front of a 50,000
line code, producing lots of wrong results (very quickly!)
with no clue where to look for the problem

Lecture 7 – p. 21



Programming and debugging

plan carefully, and discuss with an expert if possible

code slowly, ideally with a colleague, to avoid mistakes
but still expect to make mistakes!

code in a modular way as far as possible, thinking how
to validate each module individually

build-in self-testing, to check that things which ought to
be true, really are true

(In my current project I have a flag OP DIAGS;
the larger the value the more self-testing the code does)

overall, should have a clear debugging strategy to
identify existence of errors, and then find the cause

includes a sequence of test cases of increasing
difficulty, testing out more and more of the code

Lecture 7 – p. 22



Programming and debugging

In developing laplace3d, a 3D finite difference code, my
approach was to

first write CPU code for validation

next check/debug CUDA code with printf statements
as needed, with different grid sizes:

grid equal to 1 block with 1 warp (to check basics)
grid equal to 1 block and 2 warps (to check
synchronisation)
grid smaller than 1 block (to check correct treatment
of threads outside the grid)
grid with 2 blocks

then turn on all compiler optimisations

Lecture 7 – p. 23



Performance improvement

The size of the thread blocks can have a big effect on
performance:

often hard to predict optimal size a priori

optimal size can also vary significantly on different
hardware

optimal size for laplace3d with a 1283 grid is
32 × 4 on Tesla
128 × 2 on Fermi

I think I know why now, but it was a surprise at the time

we’re not talking about just 1-2% improvement,
can easily be a factor 2× by changing block size

Lecture 7 – p. 24



Performance improvement

A number of numerical libraries (e.g. FFTW, ATLAS) now
feature auto-tuning – optimal implementation parameters
are determined when the library is installed on the specific
hardware

I think this is going to be important for GPU programming:

write parameterised code

use optimisation (possibly brute force exhaustive
search) to find the optimal parameters

an Oxford student, Ben Spencer, has developed a
simple flexible automated system to do this
http://mistymountain.co.uk/flamingo/

Lecture 7 – p. 25



Performance improvement

Use profiling to understand the application performance:

where is the application spending most time?

how much data is being transferred?

are there lots of cache misses?

on Fermi, there are a number of on-chip counters can
provide this kind of information

The CUDA 4.0 profiler is greatly improved

provides lots of information (a bit daunting at first)

gives hints on improving performance

Lecture 7 – p. 26



Going further

In some cases, a single GPU is not sufficient

Shared-memory option:

single system with up to 8 GPUs

single process with a separate host thread for each
GPU, or use just one thread and switch between GPUs
(new CUDA 4.0 capability)

in CUDA 4.0 can also now transfer data directly
between GPUs

Distributed-memory option:

a cluster, with each node having 1 or 2 GPUs

MPI message-passing, with separate process for each
GPU Lecture 7 – p. 27



Going further

Keep a watchful eye on what is happening in computing

NVIDIA:

Kepler due out in 2012
3× improvement in performance per watt
PCIe gen 3 (2× improvement)

Maxwell due in 2013
another 3× improvement in performance per watt

project Denver due in 2013
adds some ARM cores to Maxwell GPU
no longer need a CPU or PCIe bus?

lots of supercomputers, by CRAY and others, built on
NVIDIA GPUs

Lecture 7 – p. 28



Going further

AMD:

AMD has had good GPU hardware, but aimed purely at
graphics & games, not HPC

some signs that is changing with increased effort on
OpenCL software

APU (Accelerated Processing Unit) called Llano
combined CPU/GPU supporting OpenCL/DirectX 11
29GB/s, 500GFlops single precision
aimed at laptops/desktops, not HPC

new high-end GPU, Radeon HD 7970

Lecture 7 – p. 29



Going further

Intel:

latest “Sandy Bridge” CPU architecture
some chips have built-in GPU, purely for graphics
4−10 cores, each with a 256-bit AVX vector unit

MIC (Many Integrated Core) architecture
32−48 cores, each with a 512-bit vector unit
I’m told performance is comparable to Fermi
and power consumption (300 watts)
new supercomputers based on this (Stampede)

ARM:

already designed OpenCL GPUs for smart-phones

will design much more powerful GPUs in the future
Lecture 7 – p. 30



Going further

My current software assessment:

CUDA is dominant in HPC, because of ease-of-use and
NVIDIA dominance of hardware

PGI has developed a FORTRAN CUDA compiler
PGI also developing capability to compile CUDA to
generate AVX vector code for Intel CPUs

OpenCL is the multi-platform standard, but currently
only used for low-end mass-market applications

computer games
HD video codecs

Lecture 7 – p. 31



Going further

Intel is promoting a confusing variety of alternatives for
MIC and multicore CPUs with vector units

auto-vectoring compiler
Ct/ABB (array building blocks)
OpenCL
vector operations

Microsoft has just announced a new initiative:
C++ Accelerated Massive Parallelism (C++ AMP)
which will target GPUs and multicore CPUs

Lecture 7 – p. 32



Final words

exciting times for HPC

the fun will wear off, and the challenging coding will
remain – computer science objective should be to
simplify this for application developers through

libraries
domain-specific high-level languages
code transformation
better auto-vectorising compilers

confident prediction: GPUs and other accelerators /
vector units will be dominant in HPC for next 5-10 years,
so it’s worth your effort to re-design and re-implement
your algorithms

Lecture 7 – p. 33


	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Heart modelling
	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Initial planning
	Programming and debugging
	Programming and debugging
	Programming and debugging
	Performance improvement
	Performance improvement
	Performance improvement
	Going further
	Going further
	Going further
	Going further
	Going further
	Going further
	Final words

