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Radio-astronomy

SKA – the big new international astronomy project of
the next 20 years

will use a huge number of radio-telescopes spread
across southern Africa and/or Australia/NZ

like military phased-array radar, adjusts the relative
phase of signals from different receptors to “look” in
different directions

3 major parts to SKA: receptors, data processing,
power generation

lots of pathfinder projects, including LOFAR, to test
different technologies, including GPUs
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LOFAR dataflow

400MB/s input split into 4 streams of 100MB/s:

100MB/s

25MB/s

25MB/s

CPU: time-frequency conversion (PPF)

CPU: data cleaning (RFI)

GPU: de-dispersion (MDSM)

?

?

?

?
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LOFAR dataflow

PPF and RFI are data intensive, not much compute
required – since no need for high performance, simplest
to do these on CPU

MDSM de-dispersion is compute-intensive (for reasons
to be explained) so this is the target for GPU
implementation
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Physics

Pulsars produce a narrow beam of electromagnetic
radiation which rotates like a lighthouse beam, so
a pulse is seen as it sweeps over a radiotelescope

The signal is spread over a wide frequency range.
If space was an empty vacuum, all the signals would
travel at the same speed, but due to free electrons
different frequencies travel at slightly different speeds
(dispersion)

The difference in travel time is proportional to distance,
so the distance can be deduced from the relative time
lag between different frequencies
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Physics

The time delay depends on frequency f , and is proportional
to the dispersion measure m which corresponds (roughly)
to distance:

τ = m d(f)

Since d(f) is known, can work out m from signal data:
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Physics

Problem: the signal is often very weak, barely
distinguishable from the background noise
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Physics

Solution: if we know the right value for m, then we can
time-shift the data to correct for the dispersion (i.e. we can
de-disperse the signal) then sum over the frequencies

This reinforces the signal relative to the background noise
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Physics

New problem: we don’t know the right value for m

Solution: try lots of different values for m; the right one is
the one that gives a clear signal!

This needs lots of computation – that’s why we are
interested in using GPUs
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Maths

Let

f be integer frequency index, 0 ≤ f < F

t be integer time index

m be integer dispersion measure index, 0 ≤ m < M

Given input data u(f, t), the objective is to compute the
output

w(m, t) =
∑

f

u
(

f, t− s(m, f)
)

,

for an integer shift function s(m, f) which is approximately
linear in m, and varies little from m to m+1:

max
m,f

∣

∣s(m+1, f)− s(m, f)
∣

∣ ≤ 5 (for our testcase)
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Back-of-envelope assessment

For each time slice t:

F inputs

M outputs

M F floating point operations

Typically F, M ≃ 1000− 2000, so enough computation to
hide communication cost of PCIe bus

GPU memory bandwidth also not a problem, provided each
input data item isn’t transferred too many times
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Back-of-envelope assessment

Other thoughts:

no conditional code to worry about

no relevant libraries

looks a bit like matrix multiplication
key to performance will be blocking for data re-use
each output handled by one thread to avoid data
dependencies

should try to minimise the number of integer operations
required
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Initial software design
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Region in dispersion space worked on by a single CUDA
block with 128 threads – each will handle 8 points

Should get 8 blocks running on each SM if each thread
needs at most 32 registers
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Initial software design

Implementation:

1. load f -line into shared memory

2. sync threads

3. each thread adds shifted values to 8 accumulators

4. sync threads

5. go back to step 1 and repeat for next f -line

use of shared memory gives data reuse – most data
items are used 8 times, once for each m-line

this implementation alternates communication and
computation – relies on multiple blocks for overlapping
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Initial software design

Implementation 1:

each m-line needs 128 values

at most a 5-shift between one m-line and the next

at most a 35-shift for set of 8 m-lines, so at most
128+35 values required

requires 6 cache lines, each holding 32 floats

data reuse factor = (8× 128) / (6× 32) ≈ 5.3

cache-aligned device memory

f -line data

�
�
�

�
�
�

shared memory
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Optimised software design
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Rectangular region in dispersion space worked on by a
block of 10×19 threads, each handling 10 points using
24 registers

7 thread blocks run simultaneously on each SM – 1330
threads on each SM, almost 20,000 on whole GPU
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Optimised software design

Implementation:

each m-line needs 100 values

at most a 5-shift between one m-line and the next

at most a 90-shift for set of 19 m-lines, so at most
100+90 values required (1 per thread)

cache-aligned device memory

f -line data
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shared memory
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Performance

Static testcase:

2 mins of test data: 3GB

0.6s transfer time to GPU: 5GB/s

15s processing time
approx 500 Gops, roughly evenly split between SP
floating point, integer and shared memory reads
approx 40 GB/s bandwidth from graphics memory

overall: achieving 40–50% of peak compute capability
and communication

I’m very satisfied with performance, not much scope for
improvement – 1 GPU could handle all 4 data streams in
real-time
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Two lessons learned

Auto-tuning is important:

needs a lot of fiddling around to determine optimum
parameters – not obvious even to an expert

Optimising data movement is key to performance:

bandwidth struggling to match huge compute capability

need to minimise the number of times data is moved

applies also to CPU code – need good cache behaviour
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Sandy Bridge AVX

The same algorithm has also been implemented on Intel’s
new Sandy Bridge CPU with AVX vector units:

4 cores, 3.4 GHz

AVX vector unit is 128 bits wide – 8 floats

peak GFlop rate: 4× 3.4× 8 ≈ 100
(not bad compared to GPU)

auto-vectorising compiler does a very poor job

to get good performance, need to hand-code using
vector intrinsics (ugly!)

final performance about 50% of peak

currently working on improving the CPU performance
for other elements of the dataflow
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Final comments

I remain keen on GPUs, but not the only game in town:

even longer 256-bit AVX vector units in new Intel MIC
chip (successor to Larrabee, going into new 10 petaflop
supercomputer in Texas)

likely that these will also go into mainstream CPUs in
future?

key in both cases is idea of vector computing, and
minimising data movement

Acknowledgements: funded by the Oxford Martin School
http://www.futurecomputing.ox.ac.uk/
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