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Monte Carlo simulation

In many applications want to estimate E[P (ω)] where ω ∈ Ω
is an infinite-dimensional random variable.

computational finance:
ω represents Wt the driving Brownian motion in
an SDE (stochastic differential equation)
P is the financial payoff function

simulation of oil reservoirs & nuclear waste repositories:
ω represents k(x), the permeability in an elliptic
SPDE

− ∇ ·
(
k(x)∇p

)
= 0

P might be the flux of oil or contaminants across
some boundary
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Monte Carlo simulation

In MC simulation we estimate the expectation using

Ŷ = N−1
N∑

n=1

P̂ (ω(n))

where ω(n) are N independent samples

Note there are two sources of error here:

sampling error due to the finite number of samples

bias because P̂ (ω) is an approximation to P (ω) due to
discretisation error (finite timesteps, finite grid size)
finite dimensional approximation to ω
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Monte Carlo simulation

The mean square error is

E

[(
Ŷ − E[P ]

)2
]

= E

[(
Ŷ −E[Ŷ ] + E[Ŷ ]−E[P ]

)2
]

= E

[
(Ŷ −E[Ŷ ])2

]
+

(
E[Ŷ ]−E[P ]

)2

= V[Ŷ ] +
(

E[Ŷ ]−E[P ]
)2

= N−1
V[P̂ ] +

(
E[P̂ ]−E[P ]

)2

first term is due to sampling error

second term is due to bias
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Monte Carlo simulation

To achieve RMS accuracy of ε requires:

N = O(ε−2)

bias = O(ε)

In a d-dimensional SPDE application with grid spacing h,
if the bias is O(hα) then need h=O(ε1/α), and total cost is
O(ε−(2+d/α)), assuming efficient multigrid solution

(very challenging because of very rough coefficients
– Graham & Scheichl)

To get acceptable accuracy in 3D applications may need
10,000 simulations on a 1283 grid =⇒ very expensive
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Multilevel Monte Carlo

The multilevel objective is to greatly reduce this cost:

α = 1 α = 2

d MC MLMC MC MLMC
1 ε−3 ε−2 ε−2.5 ε−2

2 ε−4 ε−2(log ε)2 ε−3 ε−2(log ε)2

3 ε−5 ε−3 ε−3.5 ε−2.5

How does this compare to theoretical lower bound?

ε−2 calculations on coarsest grid costs O(ε−2)

1 calculation on finest grid costs O(ε−d/α)

so minimum cost is O(ε−max(2,d/α))
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Multilevel Monte Carlo

How can this be achieved?

Use multigrid philosophy:

fine grid accuracy at coarse grid cost

geometric sequence of grids

However, there’s no iteration in Monte Carlo simulation,
so in detail the method is quite different from multigrid.
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Multilevel Monte Carlo

Consider Monte Carlo simulations with different levels of
refinement, l = 0, 1, . . . , L, with level L being the finest.

If P̂l is the approximation of P on level l, then

E[P̂L] = E[P̂0] +
L∑

l=1

E[P̂l−P̂l−1].

Idea is to independently estimate each of the terms on the
r.h.s., in a way which minimises the overall variance for a
fixed computational cost.

Finest level is still the same, but will use very few samples
at that level.
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Multilevel Monte Carlo

Simplest estimator for E[P̂l−P̂l−1] for l>0 is

Ŷl = N−1
l

Nl∑

n=1

(
P̂

(n)
l −P̂

(n)
l−1

)

using same stochastic sample ω(n) for both levels

Variance is N−1
l Vl where Vl = V[P̂l−P̂l−1]

Key point: Vl gets progressively smaller as l increases
because P̂l, P̂l−1 both accurately approximate P for same ω
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Multilevel Monte Carlo

If Cl is cost of one sample on level l, the variance of the

combined estimator is
L∑

l=0

N−1
l Vl and its computational

cost is
L∑

l=0

Nl Cl so the variance is minimised for fixed cost

by choosing Nl ∝
√

Vl/Cl , and then the cost on level l is

proportional to Nl Cl ∝
√

Vl Cl

To make RMS error ε

choose constant of proportionality so variance is 1
2 ε2

choose L so that
(
E[P̂L]−E[P ]

)2
< 1

2 ε2
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MLMC Theorem

If there exist independent estimators Ŷl based on Nl Monte
Carlo samples, each costing Cl, and positive constants
α, β, γ, c1, c2, c3 such that α≥ 1

2 min(β, γ) and

i)
∣∣∣E[P̂l−P ]

∣∣∣ ≤ c1 2−α l

ii) E[Ŷl] =





E[P̂0], l = 0

E[P̂l−P̂l−1], l > 0

iii) V[Ŷl] ≤ c2 N−1
l 2−β l

iv) Cl ≤ c3 2γ l
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MLMC Theorem

then there exists a positive constant c4 such that for any
ε<1 there exist L and Nl for which the multilevel estimator

Ŷ =
L∑

l=0

Ŷl,

has a mean-square-error with bound E

[(
Ŷ − E[P ]

)2
]

< ε2

with a computational cost C with bound

C ≤






c4 ε−2, β > γ,

c4 ε−2(log ε)2, β = γ,

c4 ε−2−(γ−β)/α, 0 < β < γ.
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Papers

Initial motivation was SDE applications in finance:

first paper (Operations Research, 2006 – 2008) applied
idea to SDE path simulation, and proved slightly less
general form of the theorem

second paper (MCQMC 2006) improved multilevel
variance convergence using better discretisation

third paper with D. Higham & X. Mao (Finance and
Stochastics, 2009) performed numerical analysis of
discretisation in first paper

new paper with K. Debrabant and A. Rößler analyses
discretisation in second paper
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Other work

Yuan Xia, G – jump-diffusion models

Sylvestre Burgos, G – Greeks (sensitivities)

Hoel, von Schwerin, Szepessy, Tempone – adaptive
discretisations

Dereich, Heidenreich – Lévy processes

Hickernell, Müller-Gronbach, Niu, Ritter – complexity
analysis

Müller-Gronbach, Ritter – parabolic SPDEs

G, Reisinger – parabolic SPDEs

Teckentrup, Scheichl, Cliffe, G – elliptic SPDEs

Barth, Schwab, Zollinger – elliptic SPDEs
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Elliptic SPDE

We consider the elliptic PDE

−∇. (k(x, ω)∇p(x, ω)) = 0, x ∈ D,

with random coefficient k(x, ω).

We model k as a lognormal random field , i.e. log k is a
Gaussian field with mean 0 and covariance function

R(x,y) = σ2 exp
(
− ‖x−y‖1/λ

)

Numerical experiments use σ=1 and

in 1D, λ = 0.1 on unit interval [0, 1]

in 2D, λ = 0.2 on unit square [0, 1]2
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Elliptic SPDE

Samples of log k are provided by a Karhunen-Loève
expansion:

log k(x, ω) =

∞∑

n=0

√
θn ξn(ω) fn(x),

where θn, fn are eigenvalues / eigenfunctions of the
correlation function:

∫
R(x,y) fn(y) dy = θn fn(x)

and ξn(ω) are standard Normal random variables.

Numerical experiments truncate the expansion.
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Elliptic SPDE

Decay of 1D eigenvalues
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When λ = 1, can use a low-dimensional polynomial chaos
approach, but it’s impractical for smaller λ.
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Elliptic SPDE

Discretisation:

cell-centred finite volume discretisation on a uniform
grid – for rough coefficients we need to make grid
spacing very small on finest grid

each level of refinement has twice as many grid points
in each direction

current numerical experiments use a direct solver for
simplicity, but in the future will use an efficient multigrid
solver and so “computational cost” is defined to be
proportional to the total number of grid points
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1D Results

Numerical results for unit interval [0, 1].

Boundary conditions – fixed pressure: p(0)=1, p(1)=0

Output quantity – mass flux: −k
dp

dx

Correlation length: λ = 0.1

Coarsest grid: h = 1/16 (comparable to λ)

Finest grid: h = 1/256

Karhunen-Loève truncation: mKL = 800

Cost taken to be proportional to number of nodes
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1D Results
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1D Results
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2D Results

Boundary conditions for unit square [0, 1]2:
– fixed pressure: p(0, x2)=1, p(1, x2)=0
– Neumann b.c.: ∂p/∂x2(x1, 0)=∂p/∂x2(x1, 1)=0

Output quantity – mass flux: −
∫

k
∂p

∂x1
dx2

Correlation length: λ = 0.2

Coarsest grid: h = 1/8 (comparable to λ)

Finest grid: h = 1/128

Karhunen-Loève truncation: mKL = 4000

Cost still taken to be proportional to number of nodes
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2D Results
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2D Results
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Greater savings because of greater cost on finer grids
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Conclusions

standard Monte Carlo is prohibitively expensive for 2D
and 3D elliptic SPDE applications

multilevel Monte Carlo greatly reduces the cost, making
this feasible for engineering applications

should be superior to the polynomial chaos approach
for applications with minimal spatial correlation

numerical analysis is tough, but making some headway
with finite element analysis to gain insight into its
effectiveness

Multilevel Monte Carlo – p. 26/26


	Outline
	Monte Carlo simulation
	Monte Carlo simulation
	Monte Carlo simulation
	Monte Carlo simulation
	Multilevel Monte Carlo
	Multilevel Monte Carlo
	Multilevel Monte Carlo
	Multilevel Monte Carlo
	Multilevel Monte Carlo
	MLMC Theorem
	MLMC Theorem
	Papers
	Other work
	Elliptic SPDE
	Elliptic SPDE
	Elliptic SPDE
	Elliptic SPDE
	1D Results
	1D Results
	1D Results
	2D Results
	2D Results
	2D Results
	Conclusions

