
GPUs: what are they good for?
Mike Giles

mike.giles@maths.ox.ac.uk

Oxford e-Research Centre

University of Oxford

Fujitsu Research Laboratories: Feb 1, 2011

GPUs – p. 1



Outline

CPUs and GPUs: comparison, trends and opinions

what to look out for in GPU applications

libraries for GPUs

my experience with GPU programming

OP2: an open-source library for unstructured grid
applications

GPUs – p. 2



CPUs

Intel’s Sandy Bridge CPUs:

2-8 cores, each hyperthreaded

complex cores with out-of-order execution and branch
prediction to avoid delays when waiting for data

each core has an AVX vector unit (8 floats or 4 doubles)

30 DP GFlops/core (15 GFlops without AVX)

some models also have integrated graphics units
– mainly fixed function, not useful for HPC?

64kB L1 and 256kB L2 cache/core

up to 8MB shared LLC (Last Level Cache)

bandwidth to main DDR3 memory is around 30GB/s

GPUs – p. 3



GPUs

NVIDIA’s Fermi GPUs:

14 “units” called Streaming Multiprocessors (SMs)
which have:

32 simple in-order SIMD cores which act as a
vector unit =⇒ 37 DP GFlops/SM
16-48 threads/core to hide delays
32k 32-bit registers
16kB L1 cache
48kB shared memory

GPU also has
384kB unified L2 cache
150 GB/s bandwidth to main GDDR5 memory
5 GB/s bandwidth to CPU across PCIe bus

GPUs – p. 4



Differences

very different if AVX vectors are not used;
not so different if they are

factor 5-10× difference in peak GFlops

factor 5× difference in memory bandwidth

slow CPU-GPU link a potential bottleneck

CPU has cache coherency at L1 level; GPU avoids
the need through language construct which requires
no interference between different “thread blocks”

GPU uses much more multithreading; requires a lot
of registers so each thread has its own set

GPUs – p. 5



Future?

GPUs: more of the same

more memory bandwidth

more SMs?

more cores per SM?

more registers per core?

more shared memory?

more GPUs per graphics card?

Biggest headache: PCIe bottleneck

Solution: add ARM cores to run O/S and external I/O

(ties in nicely with Tegra SoC strategy at low-end for
smartphones and tablets)

GPUs – p. 6



Future?

CPUs:

increase cores
but will general purpose software use them?
. . . and is cache coherency scalable?

increase AVX vector length?
“simple” response to GPUs for HPC
. . . but what is the programming model?

Biggest headache: main memory bandwidth

Solution: memory stacking?

Big question: why care about HPC?

GPUs – p. 7



My opinion

NVIDIA have a clear vision, both for the hardware and
the software – and it’s important to have both

Intel may have a good roadmap for the hardware, but
I don’t think there’s a clear software vision
they’re trapped by their existing customer base
with lots of sequential applications
HPC is a negligible revenue source

I think NVIDIA GPUs will have a major presence in
HPC for at least the next 5 years

the real commercial fight is at the SoC level

GPUs – p. 8



Supercomputing

#1 Tianhe-1A: 7168 NVIDIA Fermi GPUs

#3 Nebulae: 4640 NVIDIA Fermi GPUs

#4 Tsubame-2: 4224 NVIDIA Fermi GPUs

New US petaflop systems coming soon:

NCSA/UIUC (IBM Blue Waters – 300k 8-core CPUs )

Oak Ridge (CRAY XE6 with NVIDIA GPUs)

US exascale plans currently assume an evolution
from one of these two architecures

GPUs – p. 9



Is a GPU suitable for HPC?

In general, I expect to get a 5-10× speedup on a single
GPU compared to two multicore Xeons.

However, when I look at a possible brand new application,
there are a few things I look out for:

where does the data live?

is there a lot of conditional branching?

are there existing libraries I can use?

GPUs – p. 10



Is a GPU suitable for HPC?

Where does the data live?

The 5GB/s bandwidth of the PCIe bus connecting the CPU
and GPU can be a major bottleneck.

Need 200–1000 operations per variable transferred for the
transfer cost to be negligible.

Apart from a few applications such as dense linear algebra
(N3 compute versus N

2 data) it generally means moving
the whole application over onto the GPU.

Porting big applications is easier on CPUs – use OpenMP
then concentrate on vectorising “hot spots”

GPUs – p. 11



Is a GPU suitable for HPC?

Is there conditional branching?

Old vector architectures (inc. Fujitsu’s?) executed both
sides of a conditional branch, and used a logical merge
operation to keep the results wanted.

Similarly, GPUs (and AVX vector units) use predicated
instructions where it’s only performed for required threads
within thread warp (32 threads).

With a lot of branching, can lose a factor 32 in performance
– then no benefit compared to scalar execution on CPUs.

(Can sometimes overcome this by re-structuring the code
– needs some thought / ingenuity.)

GPUs – p. 12



Is a GPU suitable for HPC?

Are there useful libraries?

Writing really efficient GPU code requires some expertise.
Application experts shouldn’t re-invent the wheel – should
always look to exploit libraries written by GPU experts.

Often, the key algorithms and techniques date back to the
days of CRAY and Fujitsu vector supercompuers, and
Thinking Machines’ massively-parallel Connection Machine.

e.g. binary tree reduction, extension to parallel scan (prefix
sum) and its use in radix sort.

GPUs – p. 13



Phil Colella and the 7 dwarfs

senior researcher at Lawrence Berkeley National
Laboratory

talked about “7 dwarfs” of numerical computation in
2004

expanded to 13 by a group of UC Berkeley professors
in a 2006 report: “A View from Berkeley”
www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

key algorithmic kernels in many scientific computing
applications

very helpful to focus attention on HPC challenges and
development of libraries and problem-solving
environments/frameworks.

GPUs – p. 14



Dense linear algebra

CUBLAS
library provided / maintained by NVIDIA

MAGMA
a new LAPACK for GPUs
Jack Dongarra, Jim Demmel and others

FLAME
similar, but being developed by Robert van de Geijn
at UT Austin with various collaborators

CULAtools
similar, but developed by a company, EM Photonics

GPUs – p. 15



Sparse linear algebra

iterative solvers:
CUSPARSE library for efficient sparse matrix-vector
multiplication developed / maintained by NVIDIA
Andreas Klöckner (Brown University) has “Iterative
CUDA” package based on same SpMV products
Manfred Liebmann & colleagues (University of Graz)
has implemented algebraic multigrid
www.austriangrid.at/fileadmin/uploads/media/talk haase ag3.pdf

commercial direct solvers:
Access Analytics (ex-Boeing Computer Services)
ANSYS/Acceleware
Robert Lucas (ISI/USC)
Grusoft

GPUs – p. 16



Spectral methods

CUFFT
library provided / maintained by NVIDIA
significant input from Satoshi Matsuoka and
others at Tokyo Institute of Technology
www.voltaire.com/assets/files/Case
studies/titech case study final for SC08.pdf

nothing else needed?

GPUs – p. 17



N-body methods

NAMD / VMD (UIUC)
molecular dynamics codes

OpenMM (Stanford)
open source package for molecular modelling

paper by Mark Harris (NVIDIA) and others
http.developer.nvidia.com/GPUGems3/gpugems3 ch31.html

recent work on fast multipole methods by
Barba and Yokota (Boston University)
www.maths.bris.ac.uk/∼maxry/publications/2009Yokota,R2.pdf

Lashuk et al at Georgia Tech
www.ma.utexas.edu/users/lexing/publications/sc09.pdf

GPUs – p. 18



Structured grids

lots of people have developed one-off applications

Fermi has greatly simplified single-GPU applications

Graham Pullan and Tobias Brandvik (Cambridge)
most impressive results I’ve seen, and a
general-purpose multi-GPU framework

Jonathan Cohen (NVIDIA Research)
developing a library called OpenCurrent:
kac.maths.ed.ac.uk/NSF-NAIS/Edit/Slides/Cohen.pdf

May be other general-purpose work I’m not aware of

GPUs – p. 19



Unstructured grids

Several projects underway:

OP2 (Oxford / Imperial College)

Liszt (Stanford)

German collaboration (DLR, T-systems, and others)

Rainald Löhner (GMU – Washington DC)

Again, there may be other work I’m not aware of

GPUs – p. 20



Monte Carlo

I’ve worked with NAG to develop a GPU library with
RNG and related routines

mrg32k3a, Mersenne Twister and Sobol
uniform, exponential, Normal and gamma output
distributions
Brownian bridge construction
more to come
www.nag.co.uk/numeric/GPUs/

NVIDIA has included my erfinv function in their math
library, and produced a RNG library CURAND

XOR-shift, Mersenne Twister and Sobol
(based on my code)

GPUs – p. 21



Summary

active work on all of the dwarfs

in most cases, significant effort to develop general
purpose libraries or frameworks, to enable users to get
the benefits without being CUDA experts

GPUs – p. 22



My experience

started in 2007 when NVIDIA released CUDA software
environment – previously using GPUs for scentific
applications was too tough

also tried Clearspeed accelerator – no harder to
program, but didn’t deliver great price / performance

haven’t tried the IBM Cell – feedback from others
suggests I was wise/lucky, and IBM have killed it
anyway

also haven’t tried AMD’s GPUs – their OpenCL compiler
is still immature

GPUs – p. 23



My experience

started with Monte Carlo simulations
very easy, up to 100× speedup in single precision
compared to 1 CPU thread

then moved to random number generation
more interesting
early hardware didn’t have double precision support
so I had to use non-standard implementation
I also had to improve the inverse error function
implementation because it branched too much
35× speedup for same RNG generator compared to
Intel’s VSL library on a Xeon

GPUs – p. 24



My experience

next step was simple structured grid PDE methods in
computational finance

explicit time-marching (like Jacobi iteration for
solving elliptic PDE)
ADI implicit time-marching (Alternating Direction
Implicit)
10× speedup in single precision compared to two
quad-core Xeons

GPUs – p. 25



My experience

Community building efforts:

EPSRC-funded Many-core and Reconfigurable
Supercomputing Network

FPGAs, GPUs and other accelerators
latest MRSC conference in Bristol in April

1-week CUDA Programming course
40 "students" in 2009, 80 in 2010
roughly 40% from Oxford, 40% from other
universities, 20% from industry and government

various research groups in Oxford
stochastic modelling in mathematical biology
particle filters in Bayesian statistical analysis
real-time data processing in astrophysics

GPUs – p. 26



More opinions

Problem:

lots of potential to be exploited from GPUs and CPUs
with vector units

programming too complex for many users

also, hardware and underlying software still evolving
quite rapidly

Solution:

numerical libraries and domain-specific high-level
languages

simple high-level abstraction for application users

computing experts provide optimised implementations
for multiple target platforms

GPUs – p. 27



OP2 History

OPlus (Oxford Parallel Library for Unstructured Solvers)

developed for Rolls-Royce 10 years ago

MPI-based library for HYDRA CFD code on clusters
with up to 200 nodes

OP2:

open source project

keeps OPlus abstraction, but slightly modifies API

an “active library” approach with code transformation to
generate CUDA or OpenCL code for GPUs, and
OpenMP/AVX code for CPUs

GPUs – p. 28



OP2 Abstraction

sets (e.g. nodes, edges, faces)

datasets (e.g. flow variables)

mappings (e.g. from edges to nodes)

parallel loops
operate over all members of one set
datasets have at most one level of indirection
user specifies how data is used
(e.g. read-only, write-only, increment)

GPUs – p. 29



OP2 Restrictions

set elements can be processed in any order, doesn’t
affect result to machine precision

explicit time-marching, or multigrid with an explicit
smoother is OK
Gauss-Seidel or ILU preconditioning in not

static sets and mappings (no dynamic grid adaptation)

GPUs – p. 30



OP2 User build processes

Using the same source code, the user can build different
executables for different target platforms:

sequential single-thread CPU execution
purely for program development and debugging
very poor performance

CUDA / OpenCL for single GPU

OpenMP/AVX for multicore CPU systems

MPI plus any of the above for clusters

GPUs – p. 31



GPU Parallelisation

Could have up to 10
6 threads in 3 levels of parallelism:

MPI distributed-memory parallelism (1-100)
one MPI process for each GPU
all sets partitioned across MPI processes, so each
MPI process only holds its data (and halo)

block parallelism (50-1000)
on each GPU, data is broken into mini-partitions,
worked on separately and in parallel by different
functional units in the GPU

thread parallelism (32-128)
each mini-partition is worked on by a block of
threads in parallel

GPUs – p. 32



Airfoil test code

2D Euler equations, cell-centred finite volume method
with scalar dissipation (miminal compute per memory
reference – should consider switching to more
compute-intensive “characteristic” smoothing more
representative of real applications)

roughly 1.5M edges, 0.75M cells

5 parallel loops:
save soln (direct over cells)
adt calc (indirect over cells)
res calc (indirect over edges)
bres calc (indirect over boundary edges)
update (direct over cells with RMS reduction)

GPUs – p. 33



Airfoil test code

Current performance relative to a single CPU thread:

35× speedup on a single GPU

7× speedup for 2 quad-core CPUs

OpenMP performance seems bandwidth-limited – loops
use in excess of 20GB/s bandwidth from main memory.

CUDA performance also seems bandwidth-limited:

count time GB/s GB/s kernel name
1000 0.2137 107.8126 save_soln
2000 1.3248 61.0920 63.1218 adt_calc
2000 5.6105 32.5672 53.4745 res_calc
2000 0.1029 4.8996 18.4947 bres_calc
2000 0.8849 110.6465 update

GPUs – p. 34



Conclusions

OP2:

a new open-source high-level framework for parallel
execution of algorithms on unstructured grids

looks encouraging for providing ease-of-use, high
performance, and longevity through new back-ends

next step is addition of MPI layer for cluster computing

GPUs:

a major development in HPC

likely to have coninuing impact for next 5 years

more work needed to simplify their use by
application scientists

GPUs – p. 35



Acknowledgements

Gihan Mudalige (Oxford)

Paul Kelly, Graham Markall (Imperial College)

Nick Hills (Surrey) and Paul Crumpton

Leigh Lapworth, Yoon Ho, David Radford (Rolls-Royce)
Jamil Appa, Pierre Moinier (BAE Systems)

Tom Bradley, Jon Cohen and others (NVIDIA)

Jacques du Toit, Robert Tong (NAG)

EPSRC, TSB, NVIDIA, Rolls-Royce and NAG for
financial support

Oxford Supercomputing Centre

GPUs – p. 36


	Outline
	CPUs
	GPUs
	Differences
	Future?
	Future?
	My opinion
	Supercomputing
	Is a GPU suitable for HPC?
	Is a GPU suitable for HPC?
	Is a GPU suitable for HPC?
	Is a GPU suitable for HPC?
	Phil Colella and the 7 dwarfs
	Dense linear algebra
	Sparse linear algebra
	Spectral methods
	N-body methods
	Structured grids
	Unstructured grids
	Monte Carlo
	Summary
	My experience
	My experience
	My experience
	My experience
	More opinions
	OP2 History
	OP2 Abstraction
	OP2 Restrictions
	OP2 User build processes
	GPU Parallelisation
	Airfoil test code
	Airfoil test code
	Conclusions
	Acknowledgements

