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Objective

Want to construct an approximation for a scalar function
f:[0,1]9 - R

with parametric dimension d in the range 1 — 8, where f(0) is one of the
following:

@ a functional of the solution u(#; x) of a PDE, with 6 dependence
in the PDE coefficients, the boundary data and/or the functional

@ a parametric expectation E,[g(0;w)], where g(6;w) is a functional
of the solution of an SDE

Problem: in either case we must approximate 7(f#), and the more accurate
the approximation, the greater the computational cost.

Objective: for given ¢, lowest cost approximation f with
If —f| <e
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Outline

@ quick recap of key literature:

v

dense grid linear interpolation

> sparse grid linear interpolation

» convergence of PDEs

» MLMC for SDEs, MIMC for SPDEs

» MLMC for parametric integration (Heinrich)

@ MLFA for PDEs

> idea
» dense grid linear interpolation
> sparse grid linear interpolation

@ MLFA for SDEs — extension of Heinrich's approach

» randomised MLMC for SDE

» randomised MLMC and sparse grids

» MLMC decomposition for SDE

» MLMC decomposition and sparse grids

@ conclusions and references
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Dense grid linear interpolation

For a 1-dimensional function, f : [0,1] — R, if we use a uniform grid
0; =j27¢ j=0,1,...,2% then the piecewise linear interpolation of the
values f(6;) has an error bound of the form

IF~fll < ()2

if f e C"([0,1]) for r € {1,2}.

Using a tensor product grid in higher dimension d, this generalises to
If — £l < c(f)2~"*

if £ € C"([0,1]9), but now the number of evaluation points is O(27)
so the expense is much greater
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Sparse grid linear interpolation

To avoid that “curse of dimensionality” as d increases, can instead

use a Smolyak sparse grid interpolation based on piecewise multi-linear
functions in each direction.

This has an error bound of the form
If — f| < c(f) 27 (£+1)71

with the number of interpolation points being O(2¢(¢+1)771).

However, it needs more regularity in f, including mixed derivatives of
degree up to r in each direction:

8O‘1+O‘2+"‘f

Much better than dense grid interpolation for modest values of d, up to 87
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Dense versus sparse grid interpolation
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Convergence of PDEs

If fo(@) is the functional which comes from the approximate solution of a
PDE using a discretisation with spacing h, and input 6, then typically

lfn = fIl = O(h)
for some g, and the cost of evaluating f4(0) is O(h~P) for some p.

Often, but not always, the 6 derivatives of f, will have the same rate of
convergence.
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MLMC for SDEs

When estimating E[P], with P a functional of the solution of an SDE,
MLMC is based on the telescoping sum
~ L ~ ~
E[P] =Y E[AP, AP, =P,— P, ,, P1=0
£=0
where ﬁg represents an approximation to output P on level ¢ using
timestep hy = 2~ hg. If there are also constants «, 3 such that

E[P,—P] = 0(27*), V[AP] = 0(2~%)

then the MLMC method chooses a near-optimal number of levels L, and
number of samples My, ¢ =0,1,..., L to obtain a r.m.s. accuracy of

at a cost of order )
€75, B>

e?|logel?, B=1
—2-(-B)fa B < ~
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MIMC for SPDEs

Haji-Ali, Nobile & Tempone developed an important extension, MIMC

(Multi-Index Monte Carlo), incorporating sparse grid ideas to separately
refine multiple parameters.

A

E[Pl~ Y  E[A,A,P)]
ls U+0<L

b1+, =4

4

This increases the range of applications with O(c72) complexity.
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Randomised MLMC for SDEs

In another important extension, in the “good” MLMC case, 8 > v,
Rhee & Glynn developed the randomised MLMC estimator

pr AP,
where L is a random level, with L = ¢ with probability p; oc 2~ (8+7)¢/2,

Since

Elp'AP] = S P[L=1] E[pglAﬁL L= e]
/=0

~ S nE[paB] - S EAR] - P
=0 =0

it is an unbiased estimator, and it can be proved that the variance and
expected cost are both finite if 3 > ~.
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MLMC for parametric integration

Stefan Heinrich's original MLMC research concerned the approximation
of f(8) = E[g(6; w)], given exact sampling of g(¢;w) at unit cost.

In his formulation, the MLMC telescoping sum is

L
F e [f] = blf]+ > llf] — le—1[f]
(=1

where Iy[f] represents a level ¢ interpolation.
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MLMC for parametric integration

Heinrich then approximates (l;—/y—1)[f] through Monte Carlo sampling
at required values of 6:

(le—=le-1)[f] = Z(’z le-1)lg (-5 w"™)

As ¢ — oo, (lp—1p—1)[f] — 0 and V[(lp—1i—1)[g]] — O, so fewer MC
samples needed on finer levels.

Analysis assumes the number of 6 points increases exponentially with
dimension (as with dense tensor product grid), so the resulting complexity
for linear interpolation is of order

e2, d<?2r

e 2|logel?, d=2r
gd/r, d>2r

assuming g(0; w) is sufficiently smooth w.r.t. 6
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MLMC for parametric integration

Heinrich's work is the key starting point for our current work which
extends it in several directions:

o PDEs with appropriate numerical approximation
@ sparse grid interpolation to address curse of dimensionality
@ weaker assumptions on smoothness of g(6;w)

@ numerical approximation of f(#) = E[g(6;w)] in cases without
a finite variance, finite expected cost unbiased estimator

The PDE aspect also follows the outline in the excellent review article

“Smolyak’s algorithm: a powerful black box for the acceleration
of scientific computations”, by Tempone & Wolfers

which presents a unifying framework and meta-analysis which includes
multilevel methods.
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MLFA for PDEs

The fundamental idea is very simple: building on Stefan Heinrich's
approach, if the function f has an interpolation expansion

fo= hlfl+ D Llfl-lealf] = > Allf]
=1 £=0

with Alp =1y — lj_1, I-1 =0, and as { — oo, Aly[f] — 0 and the cost
per evaluation increases, then we will use an approximation

L
F=> Alf]
£=0

where f; is based on a PDE approximation with grid spacing h, and
@ hy is small for small ¢ — a few expensive accurate PDE calculations

@ hy is large for large £ — lots of cheap PDE calculations
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MLFA for PDEs

It follows from the triangle inequality that

L

IF=FIL < NU=DI+ Y U= le-2) =1

(=0

If we assume second order accuracy in the interpolation so that
I0=NIF < a2, | ALlE—f] ] < 27 2h
and the cost C; of constructing (/;—Iy—1)[f;] on level ¢ is bounded by
Co < c32%h; P
then to achieve an accuracy of € we can choose L s.t.
a2l ~e/2 = L=0(logel)

and ...
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MLFA for PDEs

. choose hy to minimise

L
s Z 2d€ hf_p
=0

subject to the requirement that

L
e Z 27%h] ~e)2.
=0

Using a Lagrange multiplier gives the optimal hy as

hy = 2(d+2)/(p+a) p

The accuracy requirement then becomes

L

QhlY 2" ~e/2, v=(2p—dq)/(d+2)
(=0
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MLFA for PDEs

v > 0 leads to hy = O(£'/9) and a total cost of O(¢~P/9),
v =0 leads to hy = O(¢~Y/9LY/9) and a cost of O(c—P/9|log |1 TP/9).
v < 0 leads to hg = O(e7+/92L/9) and a cost of O(e~9/2).

Thus the total cost is of order

e~P/a, p/q>d/2
e P9 |loge[*tP/9, p/q=d/2
ed/2, p/q<d/2

Note:

@ O(c7P/9) is the cost of a single e-accurate PDE calculation
o O(c79/2) is the cost of an e-accurate interpolation of unit cost data

In this sense the method has near-optimal asymptotic efficiency
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MLFA for PDEs with sparse interpolation

With sparse interpolation the accuracy requirement becomes

L
@Y 27 (+1)" ] ~ /2.
=0
and the cost bound becomes

L
C=csy 2/(t+1)9 7 hP
(=0
Optimising this results in the total cost being of order
e=P/, p/q>1/2

5_p/q||og5|3d/2, p/q=1/2
e 12 |logelPd1/2 p/g<1/2
Note:

e O(s7P/9) is again the cost of a single e-accurate PDE calculation
o O(e~ Y2 |loge[3(d=1)/2) is the cost of an e-accurate sparse
interpolation of unit cost data
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MLFA for SDEs

If 8 > = in the standard SDE discretisation sense, then randomised
MLMC can be used to give an unbiased estimator Y, with
E[Y(6;w)] = f(#) and finite variance and expected cost. If

(e =N < a2
V[l = l—1)[Y]] < 27

L
and the total expected cost is bounded by c3 Z2dzM5, for M, samples

0
per level, then ¢ r.m.s. accuracy can be achieved with cost of order

£72, s>d

e 2|logel?, s=d
6727(d75)/r’ s<d
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MLFA for SDEs

The previous result is a slight generalisation of Heinrich's analysis
which assumed s = 2r.

With sparse interpolation, the cost is reduced to order

g2, s>1

£2|log [2+3(d-1), s—1

8—2—(1—5)/r‘ |OgE}.‘(Z&—l—(l—s)/r)(d—l)7 s<1
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MLFA for SDEs

If 5 <7, then we can use a MIMC combination of path-based MLMC and
Heinrich's MLMC. The starting point is the interpolation decomposition:

L

Frd (lo—1l)lfl,  1a[f] =0,

£=0
where I; uses a dense interpolation with spacing proprtional to 2.
We then replace f with a timestep approximation expansion

L L

f ~ Z Z A/Z[Afﬁl], AIg[AQ;] = (If—lﬂ—l)[fe/ _ fé’_l]
(=0 £'=0

in which L} is a decreasing function of ¢, since Aly[f] becomes smaller as ¢
increases and so less relative accuracy is required in its approximation.
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MLFA for SDEs

The final step is to replace Al[Afy] by a Monte Carlo estimate,
giving the MIMC-style estimator

I\/Ié o

f_zz o 3 Alag (i)

(=0 0=

We now need to choose L, Lj, My ;s to achieve the desired accuracy
at the minimum cost.

L
E[f—f] = (IL_/)[f]+Z(/€—I€—1)[fL’(Z)_f]
=0

L
[BF=A| < =0+ It~
=0
and

RS (V atlag (i) )

(=0 {¢'=
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MLFA for SDEs

If we have
[ALIAR] ]| < 27
V[Al[Age]] < 2758
and the total cost is bounded by

L L
dir~e
sy D 2 My,

=0 ¢'=0
then € RMS accuracy can be achieved at a computational cost of order
72, n <0
72 |logelP, n>0
for some p (see MIMC analysis by [HNT16]), where
— B8 d—
7 = max (7 ﬁ, s) .

(&% r
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MLFA for SDEs

Note: in the best case when 1 < 0, the dominant contribution to the
total cost comes from the base level ¢ = ¢ = 0, which is why there are
no log terms in its complexity.

With sparse interpolation the corresponding cost is of order

72, n <0
e Mlogel9, 7 >0

for some g, where now

(=)
1N = max , .
e} r
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Conclusions and future work

Conclusions:

@ excellent asymptotic efficiency in approximating parametric functions
arising from PDEs and SDEs — nearly optimal in some cases

@ meta-theorems make various assumptions which need to be verified,
especially for mixed derivatives when using sparse grid interpolation

On-going work:
@ numerical results

@ numerical analysis of PDEs to prove validity of mixed derivative
assumptions in specific cases (building on prior research within
the sparse grid community)

@ numerical analysis of SDEs to prove validity of mixed derivative
assumptions in specific cases (building on prior analysis by Giles
and Sheridan-Methven)
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