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Objective
Want to construct an approximation for a scalar function

f : [0, 1]d → R

with parametric dimension d in the range 1 – 8, where f (θ) is one of the
following:

a functional of the solution u(θ; x) of a PDE, with θ dependence
in the PDE coefficients, the boundary data and/or the functional

a parametric expectation Eω[g(θ;ω)], where g(θ;ω) is a functional
of the solution of an SDE

Problem: in either case we must approximate f (θ), and the more accurate
the approximation, the greater the computational cost.

Objective: for given ε, lowest cost approximation f̃ with

∥f̃ − f ∥ < ε
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Outline

quick recap of key literature:
▶ dense and sparse grid linear interpolation
▶ MLMC for SDEs, and parametric integration (Heinrich)

MLFA for PDEs
▶ dense grid linear interpolation
▶ sparse grid linear interpolation

MLFA for SDEs – extension of Heinrich’s approach
▶ randomised MLMC for SDE
▶ randomised MLMC and sparse grids
▶ MLMC decomposition for SDE
▶ MLMC decomposition and sparse grids

conclusions and references
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Dense and sparse grid linear interpolation

If f ∈ C r ([0, 1]d) for r ∈ {1, 2}, then piecewise multi-linear interpolation
on a standard dense tensor product grid with spacing 2−ℓ has error

∥f̃ − f ∥ < c(f ) 2−rℓ

with a cost proportional to O(2dℓ).

Smolyak sparse grid interpolation instead has an error bound of the form

∥f̃ − f ∥ < c(f ) 2−rℓ(ℓ+1)d−1

with a cost proportional to O(2ℓ(ℓ+1)d−1). However, it needs more
regularity in f , including mixed derivatives of degree up to r in each
direction:

∂α1+α2+...f

∂θα1
1 ∂θα2

2 . . .
, 0 ≤ αj ≤ r ≤ 2.

Much better than dense grid interpolation for modest values of d , up to 8?
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Dense versus sparse grid interpolation
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MLMC for parametric integration
Stefan Heinrich’s original MLMC research concerned the approximation
of f (θ) = E[g(θ;ω)], given exact sampling of g(θ;ω) at unit cost.

In his formulation, the MLMC telescoping sum is

f ≈ IL[f ] = I0[f ] +
L∑

ℓ=1

Iℓ[f ]− Iℓ−1[f ]

where Iℓ[f ] represents a level ℓ interpolation.
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MLMC for parametric integration
Heinrich then approximates (Iℓ−Iℓ−1)[f ] through Monte Carlo sampling
at required values of θ:

(Iℓ−Iℓ−1)[f ] ≈
1

Mℓ

Mℓ∑
m=1

(Iℓ−Iℓ−1)[g( · ;ωℓ,m)]

As ℓ → ∞, (Iℓ−Iℓ−1)[f ] → 0 and V [ (Iℓ−Iℓ−1)[g ] ] → 0, so fewer MC
samples needed on finer levels.

Analysis assumes the number of θ points increases exponentially with
dimension (as with dense tensor product grid), so the resulting complexity
for linear interpolation is of order

ε−2, d < 2r

ε−2 | log ε|2, d = 2r

ε−d/r , d > 2r

assuming g(θ;ω) is sufficiently smooth w.r.t. θ
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MLMC for parametric integration

Heinrich’s work is the key starting point for our current work which
extends it in several directions:

PDEs with appropriate numerical approximation

sparse grid interpolation to address curse of dimensionality

weaker assumptions on smoothness of g(θ;ω)

numerical approximation of f (θ) ≡ E[g(θ;ω)] in cases without
a finite variance, finite expected cost unbiased estimator

The PDE aspect also follows the outline in the excellent review article

“Smolyak’s algorithm: a powerful black box for the acceleration
of scientific computations”, by Tempone & Wolfers

which presents a unifying framework and meta-analysis which includes
multilevel methods.
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MLFA for PDEs

The fundamental idea is very simple: building on Stefan Heinrich’s
approach, if the function f has an interpolation expansion

f = I0[f ] +
∞∑
ℓ=1

Iℓ[f ]−Iℓ−1[f ] =
∞∑
ℓ=0

∆Iℓ[f ]

with ∆Iℓ ≡ Iℓ − Iℓ−1, I−1 ≡ 0, and as ℓ → ∞, ∆Iℓ[f ] → 0 and the cost
per evaluation increases, then we will use an approximation

f̃ =
L∑

ℓ=0

∆Iℓ[fℓ]

where fℓ is based on a PDE approximation with grid spacing hℓ and

hℓ is small for small ℓ – a few expensive accurate PDE calculations

hℓ is large for large ℓ – lots of cheap PDE calculations
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MLFA for PDEs

It follows from the triangle inequality that

∥f̃−f ∥ ≤ ∥(IL−I )[f ] ∥+
L∑

ℓ=0

∥ (Iℓ−Iℓ−1)[fℓ−f ] ∥ .

If we assume second order accuracy in the interpolation so that

∥(IL−I )[f ] ∥ < c1 2
−2L, ∥∆Iℓ[fℓ−f ] ∥ < c2 2

−2ℓhqℓ

and the cost Cℓ of constructing (Iℓ−Iℓ−1)[fℓ] on level ℓ is bounded by

Cℓ < c3 2
dℓh−p

ℓ

then to achieve an accuracy of ε we can choose L s.t.

c1 2
−2L ≈ ε/2 =⇒ L = O(| log ε|)

and . . .
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MLFA for PDEs
. . . choose hℓ to minimise

c3

L∑
ℓ=0

2dℓh−p
ℓ

subject to the requirement that

c2

L∑
ℓ=0

2−2ℓhqℓ ≈ ε/2.

Using a Lagrange multiplier gives the optimal hℓ as

hℓ = 2(d+2)ℓ/(p+q) h0

The accuracy requirement then becomes

c2 h
q
0

L∑
ℓ=0

2−νℓ ≈ ε/2, ν ≡ (2p−dq)/(d+2)
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MLFA for PDEs

ν > 0 leads to h0 = O(ε1/q) and a total cost of O(ε−p/q),

ν = 0 leads to h0 = O(ε−1/qL1/q) and a cost of O(ε−p/q| log ε|1+p/q).

ν < 0 leads to h0 = O(ε−1/q2νL/q) and a cost of O(ε−d/2).

Thus the total cost is

ε−p/q, p/q > d/2

ε−p/q | log ε|1+p/q, p/q = d/2

ε−d/2, p/q < d/2

Note:

O(ε−p/q) is the cost of a single ε-accurate PDE calculation

O(ε−d/2) is the cost of an ε-accurate interpolation of unit cost data

In this sense the method has near-optimal asymptotic efficiency
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MLFA for PDEs with sparse interpolation
With sparse interpolation the accuracy requirement becomes

c2

L∑
ℓ=0

2−2ℓ(ℓ+1)d−1hqℓ ≈ ε/2.

and the cost becomes

C = c3

L∑
ℓ=0

2ℓ(ℓ+1)d−1h−p
ℓ

Optimising this results in the total cost being

ε−p/q, p/q > 1/2

ε−p/q | log ε|3d/2, p/q = 1/2

ε−1/2 | log ε|3(d−1)/2, p/q < 1/2

Note:

O(ε−p/q) is again the cost of a single ε-accurate PDE calculation
O(ε−1/2 | log ε|3(d−1)/2) is the cost of an ε-accurate sparse
interpolation of unit cost data
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MLFA for SDEs

If β > γ in the standard SDE discretisation sense, then randomised
MLMC (see [RG15]) can be used to give an unbiased estimator Y ,
with E[Y (θ;ω)] = f (θ) and finite variance and expected cost. If

∥(Iℓ − I ) [f ] ∥ < c1 2
−rℓ

V [(Iℓ − Iℓ−1) [Y ] ] < c2 2
−sℓ

and the total expected cost is bounded by c3

L∑
0

2dℓMℓ, for Mℓ samples

per level, then ε r.m.s. accuracy can be achieved with cost of order

ε−2, s > d

ε−2| log ε|2, s = d

ε−2−(d−s)/r , s < d
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MLFA for SDEs

The previous result is a slight generalisation of Heinrich’s analysis
which assumed s = 2r .

With sparse interpolation, the cost is reduced to order

ε−2, s > 1

ε−2| log ε|2+3(d−1), s = 1

ε−2−(1−s)/r | log ε|(3+(1−s)/r)(d−1), s < 1
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MLFA for SDEs

If β ≤ γ, then we can use a MIMC combination of path-based MLMC and
Heinrich’s MLMC. The starting point is the interpolation decomposition:

f ≈
L∑

ℓ=0

(Iℓ − Iℓ−1)[f ], I−1[f ] ≡ 0,

where Iℓ uses a dense interpolation with spacing proprtional to 2−ℓ.

We then replace f with a timestep approximation expansion

f ≈
L∑

ℓ=0

L′ℓ∑
ℓ′=0

∆Iℓ[∆fℓ′ ], ∆Iℓ[∆fℓ′ ] ≡ (Iℓ−Iℓ−1)[fℓ′ − fℓ′−1]

in which L′ℓ is a decreasing function of ℓ, since ∆Iℓ[f ] becomes smaller as ℓ
increases and so less relative accuracy is required in its approximation.
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MLFA for SDEs
The final step is to replace ∆Iℓ[∆fℓ′ ] by a Monte Carlo estimate,
giving the MIMC-style estimator

f̃ =
L∑

ℓ=0

L′ℓ∑
ℓ′=0

 1

Mℓ,ℓ′

Mℓ,ℓ′∑
m=1

∆Iℓ[∆gℓ′(·;ωℓ,ℓ′,m)]


We now need to choose L, L′ℓ,Mℓ,ℓ′ to achieve the desired accuracy
at the minimum cost.

E[f̃−f ] = (IL−I )[f ] +
L∑

ℓ=0

(Iℓ−Iℓ−1)[fL′(ℓ)−f ]

=⇒
∥∥∥E[f̃−f ]

∥∥∥ ≤ ∥(IL−I )[f ]∥+
L∑

ℓ=0

∥(Iℓ−Iℓ−1)[fL′(ℓ)−f ] ∥

and

V[f̃ ] =
L∑

ℓ=0

L′ℓ∑
ℓ′=0

(
1

Mℓ,ℓ′
V
[
∆Iℓ[∆gℓ′(·;ω)]

])
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MLFA for SDEs
If we have

∥∆Iℓ′ [∆fℓ] ∥ < c1 2
−αℓ−rℓ′

V [∆Iℓ′ [∆gℓ] ] < c2 2
−βℓ−sℓ′

and the total cost is bounded by

c3

L∑
ℓ=0

L′ℓ∑
ℓ′=0

2γℓ+dℓ′Mℓ,ℓ,

then ε RMS accuracy can be achieved at a computational cost of order

ε−2, η < 0

ε−2−η |log ε|p, η ≥ 0

for some p (see MIMC analysis by [HNT16]), where

η = max

(
γ − β

α
,
d − s

r

)
.
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MLFA for SDEs

Note: in the best case when η < 0, the dominant contribution to the
total cost comes from the base level ℓ = ℓ′ = 0, which is why there are
no log terms in its complexity.

With sparse interpolation the corresponding cost is of order

ε−2, η < 0

ε−2−η |log ε|q, η ≥ 0

for some q, where now

η = max

(
γ − β

α
,
1− s

r

)
.
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Conclusions and future work

Conclusions:

excellent asymptotic efficiency in approximating parametric functions
arising from PDEs and SDEs – nearly optimal in some cases

meta-theorems make various assumptions which need to be verified,
especially for mixed derivatives when using sparse grid interpolation

On-going work:

numerical results

numerical analysis of PDEs to prove validity of mixed derivative
assumptions in specific cases (building on prior research within
the sparse grid community)

numerical analysis of SDEs to prove validity of mixed derivative
assumptions in specific cases (building on prior analysis by Giles
and Sheridan-Methven)
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