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MLMC for parametric integration

Stefan Heinrich’s original MLMC research (2001) concerned the
approximation of

f (θ) = E[P(θ;ω)],

given exact sampling of P(θ;ω) at unit cost (finite-dimensional ω).

For simplicity can think of θ ∈ [0, 1]d .

In his formulation, the MLMC telescoping sum is

f ≈ IL[f ] = I0[f ] +
L∑
`=1

I`[f ]− I`−1[f ]

where I`[f ] represents a level ` interpolation, e.g. piecewise linear
interpolation in 1D with spacing 2−`, and tensor product multilinear
interpolation in higher dimensions.
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MLMC for parametric integration
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Here we see 3 levels of approximation, with the difference I`[f ]− I`−1[f ]
getting progressively smaller as ` increases.
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MLMC for parametric integration
Heinrich then approximates (I`−I`−1)[f ] through Monte Carlo sampling
at required values of θ:

(I`−I`−1)[f ] ≈ 1

M`

M∑̀
m=1

(I`−I`−1)[P( · ;ω`,m)]

As `→∞, (I`−I`−1)[f ]→ 0 and V [ (I`−I`−1)[P] ]→ 0, so fewer MC
samples needed on finer levels.

Analysis assumes the number of θ points increases exponentially with
dimension so the resulting complexity for linear interpolation is of order

ε−2, d < 2r

ε−2 | log ε|2, d = 2r

ε−d/r , d > 2r

where d is the dimension and r ∈ {1, 2} is the degree of smoothness
of f and P with respect to θ.
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MLMC for parametric integration

Heinrich’s work is the key starting point for our current work which
extends it in several directions:

PDEs with appropriate numerical approximation (not today)

sparse grid interpolation to address curse of dimensionality
(not today)

weaker assumptions on smoothness of P(θ;ω)

numerical approximation of f (θ) ≡ E[P(θ;ω)] in cases without
a finite variance, finite expected cost unbiased estimator

numerical analysis for PDEs (not today) and SDEs
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MLFA for parametric integration

If Y (θ;ω) is an unbiased estimator for f (θ) ≡ E[P(θ;ω)], with

‖(I` − I ) [f ] ‖ < c1 2−r`

V [(I` − I`−1) [Y ] ] < c2 2−s`

and the total expected cost is bounded by c3

L∑
0

2d`M`, for M` samples

per level, then ε r.m.s. accuracy can be achieved with cost of order

ε−2, d < s

ε−2| log ε|2, d = s

ε−2−(d−s)/r , d > s

This is a slight generalisation of Heinrich’s original result which
corresponds to s = 2r .
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Numerical analysis

In 1D, using piecewise linear interpolation, the maximum value
of (I` − I`−1) [Y ] is at a midpoint of a coarse θ interval, so the
numerical analysis involves bounding

E
[(
δ2Y (θ;ω)

)2
]

where δ2Y (θ0;ω) = Y (θ0+∆θ;ω)− 2Y (θ0;ω) + Y (θ0−∆θ;ω)

We are concerned with applications in mathematical finance for which

P(θ;ω) = g(ST (θ;ω))

with ST being the final value for an SDE solution with ω representing
the driving Brownian motion.
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Numerical analysis for integrable SDEs

For an integrable SDE, we use Y (θ;ω) = P(θ;ω) = g(ST (θ;ω)).

We assume the SDE satisfies the usual conditions and therefore for each
p > 0 there exists c(p) such that

E [‖ST‖p] ≤ c(p)

Furthermore, we assume the drift and diffusion coefficients are smooth
w.r.t. θ and therefore for integer q > 0, and any p > 0, there exists c(p,q)

such that

E
[ ∥∥∥∥∂qST∂θq

∥∥∥∥p] ≤ c(p,q)

This can be proved given bounded derivatives for the drift and diffusion
coefficients, but I haven’t yet found a reference for it.
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Numerical analysis for integrable SDEs

For twice-differentiable payoff functions,

Ẏ (θ, ω) = g ′(ST (θ, ω)) ṠT (θ, ω),

Ÿ (θ, ω) = g ′′(ST (θ, ω)) (ṠT (θ, ω))2 + g ′(ST (θ, ω)) S̈T (θ, ω).

where Ẏ ≡ ∂Y /∂θ, and g ′ ≡ dg/dS . We then have

δ2Y =

∫ θ0+∆θ

θ0−∆θ
(∆θ − |θ − θ0|) Ÿ (θ, ω) dθ,

and hence δ2Y = O(∆θ2) and E[(δ2Y )2] = O(∆θ4), giving s=4
as well as r=2 in the meta-theorem.

This corresponds to the smooth case analysed by Stefan Heinrich.
However, in mathematical finance the payoff function is rarely
twice-differentiable.
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Numerical analysis for non-smooth payoffs

At the other extreme, consider a digital option for which the payoff
is an indicator function g(ST ) = 1ST∈K

For this, we follow previous research in assuming that there exists a
constant c such that for all θ, and all δ > 0,

P[d(ST , ∂K ) < δ] < c δ

where d(ST , ∂K ) is the distance of ST from the boundary ∂K .

Heuristically, this corresponds to ST having a bounded density, but it
also requires the set K to not be pathological.

G., Haji-Ali (2024) give conditions under which this assumption is
satisfied, and also examples of pathological K for which it is not.
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Numerical analysis for non-smooth payoffs

Heuristic analysis:

O(∆θ) probability of ST (θ0;ω) being within O(∆θ) of ∂K

=⇒ O(∆θ) probability of ST (θ;ω) for θ0−∆θ < θ < θ0+∆θ
crossing ∂K , giving δ2Y = O(1)

otherwise, δ2Y = 0

hence, E[(δ2Y )2] = O(∆θ)

The rigorous version of this gives

E[(δ2Y )2] = o(∆θ1−δ)

for any δ > 0, so s ≈ 1, but r = 2.

Mike Giles (Oxford) Multilevel Function Approximation May 30, 2024 12 / 37



Numerical analysis for non-smooth payoffs

Similarly, for Lipschitz functions with a bounded second derivative except
on ∂K (e.g. European put/call functions), the heuristic analysis is:

O(∆θ) probability of ST (θ0;ω) being within O(∆θ) of ∂K

=⇒ O(∆θ) probability of ST (θ;ω) for θ0−∆θ < θ < θ0+∆θ
crossing ∂K , giving δ2Y = O(∆θ)

otherwise, δ2Y = O(∆θ2)

hence, E[(δ2Y )2] = O(∆θ3)

The rigorous version of this gives

E[(δ2Y )2] = o(∆θ3−δ)

for any δ > 0, so s ≈ 3, but r = 2.
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MLMC for SDE approximations

Almost all SDEs in mathematical finance are not integrable, and instead
need to be approximated, e.g. using the Euler-Maruyama discretisation.

The standard MLMC method for path approximations uses

E[P̂L] =
L∑
`=0

E[∆P̂`], ∆P̂` ≡ P̂` − P̂`−1, P̂−1 ≡ 0

where P̂` approximates P on level ` using timestep h` = 2−γ`h0.

If there are constants α, β such that

E[P̂`−P] = O(2−α`), V[∆P̂`] = O(2−β`)

then we get the optimal complexity when β > γ.
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Randomised MLMC for SDE approximations

If β > γ then we can use the randomised MLMC of Rhee & Glynn (2015)
in which

Y = p−1
`′ ∆P`′

with `′ being a random level chosen with probability p` ∝ 2−(β+γ)`/2.
This works because

E[Y ] =
∑
`

P[`′=`] p−1
` E[∆P`] =

∑
`

E[∆P`] = E[P]

and it can be proved that Y has finite variance and finite expected cost
because β > γ.

We then have to work out the corresponding s value for the interpolation
meta-theorem.
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MIMC for SDE approximations

Alternatively, we can use MIMC approach of Haji-Ali, Nobile & Tempone
(2016). The starting point is the interpolation decomposition:

f ≈
L∑
`=0

(I` − I`−1)[f ], I−1[f ] ≡ 0,

where I` uses a dense interpolation with spacing proportional to 2−`.

We then replace f with a timestep approximation expansion

f ≈
L∑
`=0

L′∑̀
`′=0

∆I`[∆f`′ ], ∆I`[∆f`′ ] ≡ (I`−I`−1)[f`′ − f`′−1]

in which L′` is a decreasing function of `, since ∆I`[f ] becomes smaller as `
increases and so less relative accuracy is required in its approximation.
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MIMC for SDE approximations
The final step is to replace ∆I`[∆f`′ ] by a Monte Carlo estimate,
giving the MIMC estimator

f̃ =
L∑
`=0

L′∑̀
`′=0

 1

M`,`′

M`,`′∑
m=1

∆I`[∆g`′(·;ω`,`
′,m)]


We now need to choose L, L′`,M`,`′ to achieve the desired accuracy
at the minimum cost.

E[f̃−f ] = (IL−I )[f ] +
L∑
`=0

(I`−I`−1)[fL′(`)−f ]

=⇒
∥∥∥E[f̃−f ]

∥∥∥ ≤ ‖(IL−I )[f ]‖+
L∑
`=0

‖(I`−I`−1)[fL′(`)−f ] ‖

and

V[f̃ ] =
L∑
`=0

L′∑̀
`′=0

(
1

M`,`′
V
[
∆I`[∆g`′(·;ω)]

])
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MIMC for SDE approximations
If we have

‖∆I`[∆f`′ ] ‖ < c1 2−r`−α`
′

V [∆I`[∆g`′ ] ] < c2 2−s`−β`
′

and the total cost is bounded by

c3

L∑
`=0

L′∑̀
`′=0

2d`+γ`
′
M`,`,

then ε RMS accuracy can be achieved at a computational cost of order

ε−2, η < 0

ε−2−η |log ε|p, η ≥ 0

for some p (see MIMC analysis by Haji-Ali et al (2016)), where

η = max

(
γ − β
α

,
d − s

r

)
.
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Numerical analysis

The challenge now for both the randomised MLMC and the MIMC
approaches is to bound

V [∆I`[∆g`′ ] ]

On a level ` with spacing ∆θ, and level `′ with timestep h, this involves
bounding

V
[ (

g(Ŝ(θ0−∆θ, h, ω)) − 2 g(Ŝ(θ0, h, ω)) + g(Ŝ(θ0+∆θ, h, ω))
)

−
(
g(Ŝ(θ0−∆θ, 2h, ω))− 2 g(Ŝ(θ0, 2h, ω)) + g(Ŝ(θ0+∆θ, 2h, ω))

) ]
In the smooth case, this variance is O(∆θ4h) for the E-M discretisation,
and O(∆θ4h2) for Milstein.
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Numerical analysis

In the non-smooth case, there are a number of scenarios to consider
regarding the position of ∂K
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Scenario 2: h1/2 > ∆θ
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Numerical analysis

Eventually, the conclusion is that the variance for the Euler-Maruyama
discretisation is approximately

O(min(h1/2,∆θ))

for the digital case, and

O(min(∆θ h,∆θ3))

for the Lipschitz case.

These are not of the form required by the meta-theorem, so the analysis
has to be extended.
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Strong convergence for pathwise sensitivities

The numerical analysis requires the following strong convergence result
for the Euler-Maruyama discretisation.

For any p > 0 there exists c(p) such that

E
[

sup
0<t<T

‖̂̇S t − Ṡt‖p
]
≤ c(p)hp/2

E
[

sup
0<t<T

‖̂̈S t − S̈t‖p
]
≤ c(p)hp/2

This can also be proved given bounded derivatives for the drift and
diffusion coefficients, but I haven’t yet found a reference for it, so
derived it from first principles
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Usual analysis of SDEs

When considering, for simplicity, the autonomous SDE

dSt = a(St) dt + b(St) dWt

the “usual conditions” assume that a(S) and b(S) are globally Lipschitz,
i.e. there exists L such that

‖a(v)− a(u)‖+ ‖b(v)− b(u)‖ < L ‖v−u‖, ∀u, v .

Under these conditions, the SDE has a unique solution given initial S0,
and for any finite time interval [0,T ] and p > 0 there exist constants

c
(1)
p , c

(2)
p such that

E
[

sup
0<t<T

‖St‖p
]
≤ c

(1)
p ,

E [ ‖St−St0‖p] ≤ c
(2)
p (t−t0)p/2, for 0 < t0 < t < T .
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Usual analysis of SDE discretisations

Furthermore, for the Euler-Maruyama discretisation

Ŝ(n+1)h = Ŝnh + a(Ŝnh) h + b(Ŝnh) ∆Wn,

with a uniform timestep of h, we have O(h1/2) strong convergence so

that for any p > 0 there exists c
(3)
p such that

E
[

sup
0<t<T

‖Ŝt−St‖p
]
≤ c

(3)
p hp/2.

This strong convergence is important for the effectiveness and analysis
of MLMC algorithms.
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Pathwise sensitivities

Suppose now that St is scalar, and a(θ;S) and b(θ;S) depend smoothly
on a scalar parameter θ as well as S

dSt = a(θ; St) dt + b(θ;St)dWt

and we are interested in the expected value of a “payoff” function P(ST ),

f (θ) = E
[
P(ST (θ; {Wt}0≤t≤T ))

]
and want to compute its derivative

ḟ ≡ df

dθ
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Pathwise sensitivities

If P is globally Lipschitz and piecewise smooth, then

ḟ ≡ d

dθ
E[P(ST ) ] = E[ Ṗ(ST ) ]

where

Ṗ =
dP

dS
ṠT

and Ṡt ≡
dSt
dθ

satisfies the SDE

dṠt = (ȧ(θ; St) + a′(θ;St) Ṡt) dt + (ḃ(θ;St) + b′(θ; St) Ṡt) dWt

subject to Ṡ0 = 0, with ȧ ≡ ∂a

∂θ
, a′ ≡ ∂a

∂S
, and ḃ, b′ defined similarly.

(Note: analysis can be extended with P and S0 depending explicitly on θ)
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Pathwise sensitivities

The Euler-Maruyama discretisation of the pathwise sensitivity SDE is

̂̇S (n+1)h = ̂̇Snh +
(
ȧ(θ; Ŝnh) + a′(θ; Ŝnh) ̂̇Snh

)
h

+
(
ḃ(θ; Ŝnh) + b′(θ; Ŝnh) ̂̇Snh

)
∆Wn

This is also the equation one gets by differentiating the E-M discretisation
of the original SDE.

Question: what is the order of strong convergence of ̂̇S to Ṡ?

Previous MLMC work has assumed

E
[

sup
0<t<T

‖̂̇S t−Ṡt‖p
]

= O(hp/2)

but I have not found a reference for this.
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Pathwise sensitivities

The pathwise sensitivity SDE can be appended to the original SDE
to form a vector SDE with St ≡ (St , Ṡt)

T

dSt = a(θ; St) dt + b(θ; St) dWt .

I think past work assumed this vector SDE satisfied the “usual conditions”

and hence gave 1/2-order strong convergence for both Ŝ and ̂̇S .

However, this is not true in general.
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Pathwise sensitivities

Looking at the pathwise sensitivity SDE

dṠt = (ȧ(θ; St) + a′(θ;St) Ṡt) dt + (ḃ(θ;St) + b′(θ; St) Ṡt) dWt

even if we assume all derivatives of a(θ;S) and b(θ;S) are bounded, then

a′(θ; v1) v2−a′(θ; u1) u2 = (a′(θ; v1)−a′(θ; u1)) v2 + a′(θ; u1) (v2−u2)

= a′′(θ;w) v2 (v1−u1) + a′(θ; u1) (v2−u2)

for some u1<w<v1.

The problem is that |a′′(θ;w) v2| → ∞ as v2 →∞ unless a′′(θ;w) = 0,
and something similar applies for b′(θ;S) Ṡ .
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Pathwise sensitivities

If we use the shorthand at ≡ a(θ; St), ȧt ≡ ȧ(θ; St), a
′
t ≡ a′(θ; St),

and similarly for bt , ḃt , b
′
t and higher derivatives, then the first order

pathwise sensitivity SDE is

dṠt = (ȧt + a′t Ṡt)dt + (ḃt + b′t Ṡt) dWt

The second order pathwise sensitivity SDE is then

dS̈t = (ät + 2ȧ′t Ṡt +a′′t (Ṡt)
2 +a′t S̈t) dt + (b̈t + 2ḃ′t Ṡt +b′′t (Ṡt)

2 +b′t S̈t) dWt

and the (Ṡt)
2 terms makes it even clearer that the “usual conditions”

are not satisfied.

However, notice that Ṡt in the first equation, and S̈t in the second,
are multiplied by a′t and b′t which are bounded
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Pathwise sensitivities

There is a large literature on the approximation of SDEs which do not
satisfy the usual conditions.

These use modified numerical approximations (e.g. tamed schemes,
or adaptive timesteps) for which stability and strong convergence can
be proved.

However, with these pathwise equations there is no problem using the
standard Euler-Maruyama discretisation – all that is needed is a new
numerical analysis to prove it has the observed O(h1/2) strong
convergence order.
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Numerical analysis

The numerical analysis is not difficult – essentially retraces the steps of the
standard analysis.

Focussing on the first order sensitivity equation, the key is that in the drift
and diffusion terms Ṡt is multiplied by the bounded a′t and b′t .

Arbitrary moments of all other terms are bounded due to standard results
for St and Ŝt .

Beyond this, the methodology is standard: use Jensen, Hölder, and
Burkholder-Davis Gundy inequalities to set things up for finally using
Grönwall’s inequality
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Numerical analysis: SDE

Lemma

For a given time interval [0,T ], and any p ≥ 2, there exists a constant c
(1)
p

such that

E
[

sup
0<t<T

|Ṡt |p
]
≤ c

(1)
p .

Lemma

For a given time interval [0,T ], and any p ≥ 2, there exists a constant c
(2)
p

such that
E
[
|Ṡt − Ṡt0 |p

]
≤ c

(2)
p (t−t0)p/2

for any 0 ≤ t0 ≤ t ≤ T.
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Numerical analysis: Euler-Maruyama scheme

Lemma

For a given time interval [0,T ], and any p ≥ 2, there exists a constant c
(1)
p

such that

E
[

sup
0<t<T

|̂̇S t |p
]
≤ c

(1)
p .

Theorem

Given the boundedness of all first and second derivatives, for a given time

interval [0,T ], and any p ≥ 2, there exists a constant c
(3)
p such that

E
[

sup
0<t<T

|̂̇S t − Ṡt |p
]
≤ c

(3)
p hp/2.
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Numerical analysis: extensions

higher derivatives – no problem

vector SDEs – no problem

non-autonomous SDEs – no problem if a and b have bounded derivs
in θ,S , t (probably OK if θ,S derivatives are 1/2-Hölder in time)

other discretisations – probably fine for Milstein discretisation with
additional bounded derivatives

Mike Giles (Oxford) Multilevel Function Approximation May 30, 2024 35 / 37



Conclusions and future work

Conclusions:

excellent asymptotic efficiency in approximating parametric functions
arising from SDEs – nearly optimal in some cases

initial numerical results support numerical analysis

Future work:

a lot more numerical results

extension of analysis to sparse interpolation – challenging in
non-smooth cases

investigate path-branching and conditional expectation for improved
variance for non-smooth cases
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