
Optimising the OP2 Framework
for GPU Architectures

Mike Giles, Gihan Mudalige, Ben Spencer

mike.giles@maths.ox.ac.uk

Oxford e-Research Centre

MRSC 2011, April 12, 2011

OP2 – p. 1

Outline

OP2 framework

GPU optimisation
Array-of-Structs or Struct-of-Arrays?
auto-tuning

Conclusions

OP2 – p. 2

Many-core hardware

For 10 years, 1995-2005, HPC was relatively simple:

large clusters, with each node having 2 scalar CPUs

MPI programming with FORTRAN / C / C++

Now things have become much more complicated:

multi-core CPUs – up to 12 cores / 24 threads per CPU
and each core has an increasingly large vector unit

GPUs have up to 512 cores

best programming approach unclear:
MPI + OpenMP, or MPI + ArBB for CPUs
CUDA for GPUs (and CPUs?)
OpenCL?

OP2 – p. 3

Software Challenges

HPC application developers want the benefits of the
latest hardware but are very worried about the software
development costs, and the level of expertise required

status quo is not an option – running 24 MPI processes
on a single CPU would give very poor performance,
plus we need to exploit the vector units

For GPUs, we’re happy with NVIDIA’s CUDA (C with
extensions) but like MPI it’s too low-level for many

For CPUs, MPI + OpenMP may be a good starting
point, and PGI/CRAY are proposing OpenMP
extensions which would support GPUs and vector units

However, hardware is likely to change rapidly in next
few years, and developers can not afford to keep
changing their software implementation

OP2 – p. 4

Software Abstraction

To address these challenges, need to move to a suitable
level of abstraction:

separate the user’s specification of the application from
the details of the parallel implementation

aim to achieve application level longevity with the
top-level specification not changing for perhaps 10
years

aim to achieve near-optimal performance through
re-targetting the back-end implementation to different
hardware and low-level software platforms

OP2 – p. 5

OP2

framework aimed at unstructured grid applications

user writes a code in C/C++ or FORTRAN, specifying
sets (e.g. nodes, edges, faces)
datasets (e.g. flow variables)
mappings (e.g. from edges to nodes)
parallel loops

automated code generation produces efficient code for
GPUs (using CUDA or OpenCL)
many-core CPUs (using OpenMP + vectorisation)

OP2 – p. 6

OP2 API

Example of parallel loop syntax for a sparse matrix-vector
product:

op par loop(res,"res", edges,
A, -1,OP ID, 1,"float",OP READ,
u, 0,pedge2,1,"float",OP READ,
du, 0,pedge1,1,"float",OP INC);

This is equivalent to the C code:

for (e=0; e<nedges; e++)
du[pedge1[e]] += A[e] * u[pedge2[e]];

where each “edge” corresponds to a non-zero element in
the matrix A, and pedge1 and pedge2 give the
corresponding row and column indices.

OP2 – p. 7

GPU Parallelisation

Could have up to 10
6 threads in 3 levels of parallelism:

MPI distributed-memory parallelism (1-100)
one MPI process for each GPU
all sets partitioned across MPI processes, so each
MPI process only holds its data (and halo)

block parallelism (50-1000)
on each GPU, data is broken into mini-partitions,
worked on separately and in parallel by different
streaming multi-processors (SMs) in the GPU

thread parallelism (32-128)
each mini-partition is worked on by a block of
threads in parallel

OP2 – p. 8

AoS or SoA?

One key implementation decision is how to store datasets in
which there are several data elements for each set element
(e.g. 4 flow variables at each grid point)

Array-of-Structs (AoS) approach views the 4 flow
variables as a contiguous item, and holds an array of
these

0 0 0 0 01 1 1 1 12 2 2 2 23 3 3 3 3

Struct-of-Arrays (SoA) approach has a separate array
for each one of the data elements

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

OP2 – p. 9

AoS or SoA?

The SoA approach is natural for streaming hardware, like
old CRAY vector supercomputers

memory sub-system designed to stream long vectors of
data from memory to compute units and back again

many think GPUs are modern descendents, and hence
SoA is natural choice

very suitable for structured grid applications as
neighbouring grid points are worked on one after the
other

. . . but what about unstructured grids?

CRAY systems had special gather/scatter hardware
support – GPUs don’t

OP2 – p. 10

AoS or SoA?

The AoS approach is natural for conventional CPUs

only a few active virtual pages at a time

(20 years ago, SoA approach was 10 times slower on
an IBM RS/6000 system due to number of active pages
and limited size of TLB – Translation Lookaside Buffer)

provided all of the local elements are used, cache
utilisation is good

NVIDIA Fermi-based GPUs have L1 / L2 caches,
so AoS is natural approach?

OP2 – p. 11

AoS or SoA?

For GPUs, key is cache utilisation:

used used used used

cache line cache line

1 float elements in a 128 byte cache line is equivalent to
4 float elements in a 512 byte cache line

=⇒ SoA approach has bigger effective cache line,
so less efficient for unstructured grid applications

. . . but this assumes all the data at each point is needed

OP2 – p. 12

AoS or SoA?

What about coalesced memory transfers?

Not as important for Fermi GPUs as previous generation,
but can still be achieved for simple loops by careful
programming using shared memory:

float arg_l[4]; % register array
__shared__ float arg_s[4*32]; % shared memory

for (int m=0; m<4; m++)
arg_s[tid+m*32] = arg_d[tid+m*32];

for (int m=0; m<4; m++)
arg_l[m] = arg_s[m+tid*4];

By using a separate “scratchpad” for each warp, can
generalise this without needing thread synchronisation

OP2 – p. 13

Auto-tuning

In the CUDA implementation there are various parameters
and settings which apply to the whole code:

compiler flags, such as whether to use L1 caching

(whether to use AoS or SoA storage for each dataset)

and others which can be different for each CUDA kernel:

number of threads in a thread block

size of each mini-partition

(whether to use a 16/48 or 48/16 split for the L1 cache /
shared memory)

OP2 – p. 14

Auto-tuning

In each case, the optimum choice / value is not obvious,
but it is possible to

give a small set of possible values for each
(usually two or three)

state which can be optimised independently
(e.g. the parameters for one kernel don’t affect
the execution of another kernel)

What is then needed is a flexible auto-tuning system to
select the optimum combination by exhaustive “brute force”
search.

The parameter independence is essential to making this
viable.

OP2 – p. 15

Auto-tuning

A flexible auto-tuning package has been developed:

written in Python

input specification includes
parameters and possible values
a mechanism to compile the code, perhaps using
some of the parameter values
a mechanism to run the code, again perhaps using
some of the parameter values
by default, the run-time is used as the
“figure-of-merit” to be optimised

at present only brute-force optimisation is supported,
but in the future other strategies may be included

OP2 – p. 16

Auto-tuning

Example configuration file:
#

parameters and values

#

PARAMS = { flag, {block0, part0}, {block1, part1} }

flag = {"-Xptxas -dlcm=ca", "-Xptxas -dlcm=cg" } # compiler flag

block0 = {64, 96, 128} # thread block size for loop 0

part0 = {128, 192, 256} # partition size for loop 0

block1 = {64, 96, 128} # thread block size for loop 1

part1 = {128, 192, 256} # partition size for loop 1

#

compilation and evaluation mechanisms

#

COMPILER = make -B flag=%flag% block0=%block0% part0=%part0%

block1=%block1% part1=%part1%

EVALUATION = ./executable

OP2 – p. 17

Airfoil test code

2D Euler equations, cell-centred finite volume method
with scalar dissipation (miminal compute per memory
reference – should consider switching to more
compute-intensive “characteristic” smoothing more
representative of real applications)

roughly 1.5M edges, 0.75M cells

5 parallel loops:
save soln (direct over cells)
adt calc (indirect over cells)
res calc (indirect over edges)
bres calc (indirect over boundary edges)
update (direct over cells with RMS reduction)

OP2 – p. 18

Airfoil test code

Single precision performance for 1000 iterations on an
NVIDIA C2070 using initial parameter values:

mini-partition size (PS): 256 elements

blocksize (BS): 256 threads

count time GB/s GB/s kernel name
1000 0.23 107.8 save_soln
2000 1.26 61.0 63.1 adt_calc
2000 5.10 32.5 53.4 res_calc
2000 0.11 4.8 18.4 bres_calc
2000 1.07 110.6 update

TOTAL 7.78

Second B/W column includes whole cache line OP2 – p. 19

Airfoil test code

Single precision performance for 1000 iterations on an
NVIDIA C2070 using auto-tuned values:

count time GB/s GB/s kernel name PS BS
1000 0.22 101.8 save_soln 512
2000 1.09 74.1 75.4 adt_calc 256 128
2000 4.95 36.9 60.6 res_calc 128 128
2000 0.10 5.3 20.0 bres_calc 64 128
2000 1.03 94.7 update 64

TOTAL 7.40

This is a 5 % improvement relative to baseline calculation.
Switching from AoS to SoA storage would increase
res calc data transfer by approximately 120%. OP2 – p. 20

Airfoil test code

Double precision performance for 1000 iterations on an
NVIDIA C2070 using auto-tuned values:

count time GB/s GB/s kernel name PS BS
1000 0.44 104.9 save_soln 512
2000 2.62 52.9 53.8 adt_calc 256 128
2000 10.35 30.5 50.8 res_calc 128 128
2000 0.08 11.2 27.9 bres_calc 64 128
2000 1.87 104.5 update 64

TOTAL 15.36

This is a 7.5 % improvement relative to baseline calculation.
Switching from AoS to SoA storage would again increase
res calc data transfer by approximately 120%. OP2 – p. 21

Airfoil test code

Single precision performance on two Intel “Westmere”
6-core 2.67GHz X5650 CPUs using auto-tuned values:

Optimum number of OpenMP threads: 16

count time GB/s GB/s kernel name PS
1000 1.68 13.7 save_soln
2000 11.15 7.3 7.5 adt_calc 128
2000 16.57 10.3 11.2 res_calc 1024
2000 0.16 3.2 11.9 bres_calc 64
2000 4.67 20.9 update

TOTAL 34.25

Minimal gain relative to baseline calculation with 12 threads
and mini-partition sizes of 1024.

OP2 – p. 22

Airfoil test code

Double precision performance on two Intel “Westmere”
6-core 2.67GHz X5650 CPUs using auto-tuned values:

Optimum number of OpenMP threads: 12

count time GB/s GB/s kernel name PS
1000 2.51 18.3 save_soln
2000 11.68 11.8 11.9 adt_calc 1024
2000 20.99 12.8 13.5 res_calc 1024
2000 0.17 5.0 12.4 bres_calc 512
2000 9.29 21.1 update

TOTAL 44.64

Minimal gain relative to baseline calculation with 12 threads
and mini-partition sizes of 1024.

OP2 – p. 23

Conclusions

have created a high-level framework for parallel
execution of unstructured grid algorithms on GPUs
and other many-core architectures

looks encouraging for providing ease-of-use, high
performance and longevity through new back-ends

auto-tuning is useful for code optimisation, and a new
flexible auto-tuning system has been developed

C2070 GPU speedup versus two 6-core Westmere
CPUs is roughly 5× in single precision, 3× in double
precision

currently working on MPI layer in OP2 for computing on
GPU clusters

key challenge then is to build user community

OP2 – p. 24

Acknowledgements

Carlo Bertolli, David Ham, Paul Kelly, Graham Markall,
Florian Rathgeber (Imperial College)

Nick Hills (Surrey) and Paul Crumpton

Leigh Lapworth, Yoon Ho, David Radford (Rolls-Royce)

Tom Bradley, Jon Cohen and others (NVIDIA)

EPSRC, TSB, NVIDIA, Rolls-Royce and Oxford Martin
Institute for financial support

Oxford Supercomputing Centre

OP2 – p. 25

	Outline
	Many-core hardware
	Software Challenges
	Software Abstraction
	OP2
	OP2 API
	GPU Parallelisation
	AoS or SoA?
	AoS or SoA?
	AoS or SoA?
	AoS or SoA?
	AoS or SoA?
	Auto-tuning
	Auto-tuning
	Auto-tuning
	Auto-tuning
	Airfoil test code
	Airfoil test code
	Airfoil test code
	Airfoil test code
	Airfoil test code
	Airfoil test code
	Conclusions
	Acknowledgements

