
Runners and riders
in GPU steeplechase

Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Oxford e-Research Centre

NAG Technical Forum

24/06/2010

GPUs – p. 1/26



Overview

Hardware:

NVIDIA (Fermi)

AMD

IBM

Intel (Knights Ferry)

CRAY and other systems vendors

GPUs – p. 2/26



Overview

Software:

CUDA

OpenCL

Microsoft

Intel (Ct & F32vec4)

PGI

MATLAB

GPUs – p. 3/26



NVIDIA

New Fermi GPU:

added L1 / L2 caches to give improved programmability

added ECC memory for reliability

much greater double precision speed (roughly 500
GFlops)

448 SP cores (can function as 224 DP cores) arranged
as 14 groups (SMs) of 32 cores

each SM has 64KB to be split between L1 cache and
local shared memory

has all hardware features needed for full C++ support

GPUs – p. 4/26



NVIDIA

Assessment:

not a huge improvement in SP speed (25%?)

big improvement in DP (factor 2-4×?)

big improvement in programmability, especially for finite
difference applications

are they putting too much emphasis on HPC market,
rather than money-making games market?
(but they are also doing very well on the low-end)

however, it is helping them make big strides in HPC
Nebulae (#2 in Top 500)
Tsubame 2, planned at TITech
Jaguar follow-on from CRAY, planned at ORNL

GPUs – p. 5/26



AMD

still no major push on HPC

very focussed on games market – doing well there at
NVIDIA’s expense

also Fusion chip for integrated CPU/GPU – good for
netbooks / laptops

conversation with AMD person at conference suggests
they won’t enter the race until maybe 2012/3

plan to use memory stacking for big increase in
memory bandwidth to motherboard slot, instead of
using a separate PCIe graphics card?

GPUs – p. 6/26



IBM

an early runner with the Cell processor

could argue it never really had a rider – hobbled by poor
software development system

now dropped out of the race – no further development
of Cell for HPC

instead building systems and blades using NVIDIA
GPUs

GPUs – p. 7/26



Intel

has been developing a GPU chip code-named Larrabee

hit major development problems and has now formally
abandoned plans to compete in discrete graphics

however, out of the ashes has come the Knights Ferry
processor which is essentially an HPC GPU without
graphics

announced as a research platform, being made
available to a few select groups – no indication if / when
it may become a commercial product

not clear if the market is big enough to sustain Intel’s
interest

GPUs – p. 8/26



Intel

Knights Ferry:

(town in CA where Little House on the Prairie filmed)

300W chip on PCIe card with 2GB GDDR5 memory

32 cores, each with a scalar unit and a vector unit
(512-bit == 16 SP or 8 DP, compared to 128-bit SSE
and 256-bit AVX vectors)

simple cores (in-order execution, no branch prediction?)
like Fermi

2MB coherent cache, compared to 0.8MB on Fermi

only 4 threads per core (but this may just be minimum?)
compared to 16 – 32 typically on Fermi

unknown memory bandwidth, similar to Fermi?

GPUs – p. 9/26



Intel

Knights Ferry – my assessment:

hardware design similar in many ways to Fermi
(more similar than different)

I’m told that performance on my LIBOR Monte Carlo
application is similar to Fermi, and 10× better than
quad-core Nehalem

certainly looks interesting, my main reservations
concern software and commercial intent

GPUs – p. 10/26



CRAY

building supercomputers based on Fermi GPUs

first contract is with ORNL for Jaguar successor

take Fermi chips from NVIDIA but re-design everything
else around it, and possibly also driver software for
GPU<–>GPU transfers

also developing their own compiler to produce PTX
code (low-level code, almost at GPU machine level)

GPUs – p. 11/26



Other systems vendors

HP, Dell, IBM, Supermicro:

building blades and systems using complete cards and
software from NVIDIA

SGI:

has NVIDIA offering but teaming up more with AMD?

SUN:

who are they?

James Coomer now at Dell

GPUs – p. 12/26



Software

clearly no point in good hardware without good software

feels like back-to-the-future – essentially vector
computing at the hardware level, except that they all
function as attached co-processors with explicit data
exchange with host processor

key algorithms, difficulties, solutions well established
– interesting to see how each company responds

GPUs – p. 13/26



CUDA

a “grid” of independent “blocks”, each consisting of lots
of threads grouped in “warps” of length 32

each block maps to a single SM (streaming
multiprocessor); each warp is effectively a vector, with
all threads in a warp executing the same instruction at
the same time

explicit use of local shared memory to communicate
between threads within a block

massive multithreading is key to good performance

big challenge in implementation can be limiting number
of registers used

GPUs – p. 14/26



CUDA

code is written from the point of view of a single thread
– the compiler generates the appropriate vector
instructions for each warp.

CUDA 3.0 a big advance on CUDA 2.3 – added support
for a lot of C++ features, and new Fermi hardware
features

still a bit buggy, but 3.1 due out soon

overall, I find CUDA easy to work with – code often
looks quite similar to original C/C++ code

at SIAM Conference on Parallel Processing in January,
everyone in this area was using CUDA – lack of
competitive hardware from AMD meant no incentive to
move to OpenCL

GPUs – p. 15/26



OpenCL

open standard pushed by Apple and agreed with
NVIDIA, AMD, Intel, IBM

based on early release of CUDA’s lower-level device
API, so not as full-featured as CUDA 3.0

ARM and Imagination Technologies both have OpenCL
compiler teams, so OpenCL can/will run on iPhones,
iPads and other smart mobile devices

OpenCL applications developed for
HD video codecs
image processing (Adobe)

GPUs – p. 16/26



OpenCL

makes a lot of sense for low-end consumer applications
where platform-independence is essential – but hasn’t
taken off for HPC

could change if Intel adopts OpenCL for Knights Ferry,
or AMD introduces good high-end hardware

for now, I’m ignoring it for HPC, but keeping an eye open

OpenCL 1.1 spec just released by Khronos (same
organisation that manages OpenGL and a variety of
other standards)

GPUs – p. 17/26



Microsoft

the one big player not on the OpenCL working group

working well with NVIDIA and AMD to ensure Windows
is OK for CUDA and OpenCL?

I still wouldn’t recommend it in a multi-user environment

their preferred solution is DX Compute, part of DX11
– could be a serious competitor to OpenCL in the
games market, but not in HPC

GPUs – p. 18/26



Intel

Software is so important they give you lots of choices:

icc + OpenMP

low-level vector instructions (F32vec4)

TBB (thread building blocks)

Cilk++

Ct

OpenCL (under development?)
www.khronos.org/developers/library/2009-hotchips/Intel OpenCL-and-CPUs.pdf

as a developer I find this confusing – no guidance on
which is best under what circumstances

only Intel has the size to do this

GPUs – p. 19/26



F32vec4

This is the low-level way to get maximum performance out
of Intel vector units:

explicit datatype, a vector of 4 floats to match the size
of the SSE vectors

corresponding F64vec2 datatype for doubles

could use a typedef or templates to generalise to
F32vec8 for AVX and F32vec16 for Knights Ferry

user has to pack original data into the vectors, and
unpack afterwards

MKL now has math functions for this datatype

GPUs – p. 20/26



F32vec4

current chips support conditional assignment

b[i] = (a[i]>0) ? c[i] : d[i];

I think future chips may have predicated operations for
conditional execution

if (a[i]>0) b[i] = c[i]*d[i];

vector code ought to be produced by current Intel
compiler for appropriate flags, but in practice it seldom
manages to generate it – why?

code produced by Intel for LIBOR test case looks ugly,
horribly verbose and unreadable

I don’t want to code at this low level, but Intel compiler
ought to be able to do much better?

GPUs – p. 21/26



Ct

now on beta release

full release sometime next year?

I think this is Intel’s preferred approach, and executes
almost as fast as F32vec4 code

I think it is comparable to CUDA in terms of readability
– uses its own C/C++ language extensions

will be interesting to see how quickly it is adopted,
and how good a job Intel do in “selling” it

GPUs – p. 22/26



PGI

one version of PGI compiler uses pragmas to generate
CUDA executables from plain C / FORTRAN

another version defines a FORTRAN equivalent of
CUDA – I’m going to use this for a CFD project with
Rolls-Royce

hopefully, they might also develop a CUDA compiler to
generate vector code for Intel chips – ought to be quite
straightforward once you have a CUDA parser

GPUs – p. 23/26



MATLAB

CUDA support coming in next release of Parallel
Computing toolbox :

special CUDA vector/matrix datatype

dense linear algebra operations using CUDA BLAS

alternatively, user can define a scalar function to be
applied to corresponding elements of vector arguments

will be interesting to see how well it is taken up

team of about 20 working on it in Mathworks, half in
Cambridge UK

no plan yet to write RNGs

GPUs – p. 24/26



Conclusions

on the hardware side, NVIDIA is the only game in town
at present for HPC, and so CUDA is the software choice

Intel’s Knights Ferry is worth watching – it could be
good, but right now I wouldn’t bet on it coming to market

I’m maybe too dismissive of AMD – I don’t have the time
to properly investigate their hardware/software

I’m hoping PGI will be the solution to code portability

MATLAB could also be the solution for many people?

GPUs – p. 25/26



What does it mean for NAG?

GPU computing taking off at low-end and high-end

software picture is a bit confusing – CUDA is best for
now, but the future is unclear

hardware picture is much clearer – return of vector
computing

look at compute-intensive algorithms / routines and
think about vectorisation

distinguish between routines where users just want the
right answer, and those where they want performance

need to be nimble – others like Mathworks jumping in

also good opportunities in HPC training – over 60
signed up for my CUDA course in July

GPUs – p. 26/26


	Overview
	Overview
	NVIDIA
	NVIDIA
	AMD
	IBM
	Intel
	Intel
	Intel
	CRAY
	Other systems vendors
	Software
	CUDA
	CUDA
	OpenCL
	OpenCL
	Microsoft
	Intel
	F32vec4
	F32vec4
	Ct
	PGI
	MATLAB
	Conclusions
	What does it mean for NAG?

