
Financial computing
on NVIDIA GPUs

Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Oxford-Man Institute for Quantative Finance

Oxford eResearch Centre

Acknowledgments: Gerd Heber, Abinash Pati, Vignesh Sundaresh, Xiaoke Su

and funding from Microsoft, EPSRC, TCS/CRL

Finance on GPUs – p. 1/30



Overview

trends in mainstream HPC

the co-processor alternatives

NVIDIA graphics cards

CUDA programming

LIBOR Monte Carlo application

finite difference PDE applications

Finance on GPUs – p. 2/30



Computing – Recent Past

driven by the cost benefits of massive economies of
scale, specialised chips (e.g. CRAY vector chips)
died out, leaving Intel/AMD dominant

Intel/AMD chips designed for office/domestic use,
not for high performance computing

increased speed through higher clock frequencies,
and complex parallelism within each CPU

PC clusters provided the high-end compute power,
initially in universities and then in industry

at same time, NVIDIA and ATI grew big on graphics
chip sales driven by computer games

Finance on GPUs – p. 3/30



Computing – Present/Future

move to faster clock frequencies stopped due to high
power consumption (proportional to f2?)

big push now is to multicore (multiple processing units
within a single chip) at (slightly) reduced clock
frequencies

graphics chips have even more cores (up to 240 on
NVIDIA GPUs)
– big new development here is a more general
purpose programming environment

Why? At least partly because computer games do
increasing amounts of “physics” simulation

Finance on GPUs – p. 4/30



CPUs and GPUs

Copyright NVIDIA 2006/7

Finance on GPUs – p. 5/30



Mainstream CPUs

currently up to 6 cores – 16 cores likely within 5 years?

intended for general applications

MIMD (Multiple Instruction / Multiple Data)
– each core works independently of the others,
executing different instructions, often for different
processes

specialised vector capabilities (SSE2/SSE3) for vectors
of length 4 (s.p.) or 2 (d.p.) – motivated by graphics
requirements but sometimes used for scientific
applications?

Finance on GPUs – p. 6/30



Mainstream CPUs

How does one exploit all of these cores?

OpenMP multithreading for shared-memory parallelism
easy to get parallel code running
can be harder to get good parallel performance
degree of difficulty: 2/10

MPI message-passing for distributed-memory
parallelism

hard to get started, need to partition data and
programming is low-level and tedious
generally easier to get good parallel performance
degree of difficulty: 6/10

Finance on GPUs – p. 7/30



Mainstream CPUs

Importance of standards:

makes it possible to write portable code to run on any
hardware

encourages developers to work on code optimisation

encourages academic/commercial development of tools
and libraries to assist application developers

Finance on GPUs – p. 8/30



Co-processor alternatives

GPUs:

Cell processor, developed by IBM/Sony/Toshiba for
Sony Playstation 3

NVIDIA GeForce 8 and 9 series GPUs, developed
primarily for high-end computer games market

AMD Firestream 9250

Intel “Larrabee” GPU due in 2010

FPGAs:

Xilinx

Altera

Finance on GPUs – p. 9/30



Chip Comparison

chip / type cores Gflops GB/s watts cost (£)

MIMD

Intel Xeon 2-6 10-40 5-20 60-120 100-250

SUN T2 8 11 60 100 1000?

IBM Cell 1+8 250∗, 100 25 100 2000?

SIMD

NVIDIA 112-240 250-1000∗, 125 60-140 100-250 100-400

AMD/ATI similar

FPGA

Xilinx N/A 50-500∗? 5-20? 50-100? 200-2000?

Does single precision∗ matter?
Finance on GPUs – p. 10/30



Chip Comparison

Intel Core 2 / Xeon:

2-6 MIMD cores

few registers, multilevel caches

5-20 GB/s bandwidth to main memory

double precision floating point arithmetic

NVIDIA GPUs:

up to 240 SIMD cores

lots of registers, no caches

5 GB/s bandwidth to host processor (PCIe x16 gen 2)

60-140 GB/s bandwidth to graphics memory

only single precision on older GPUs
Finance on GPUs – p. 11/30



Why GPUs will stay ahead

Technical reasons:

SIMD cores (instead of MIMD cores) means larger
proportion of chip devoted to floating point performance

tightly-coupled fast graphics means much higher
bandwidth

Commercial reasons:

CPUs driven by cost-sensitive office/home computing:
not clear these need vastly more speed

CPU direction may be towards low cost, low power
chips for mobile and embedded applications

GPUs driven by high-end applications – prepared to
pay a premium for high performance

Finance on GPUs – p. 12/30



NVIDIA GPUs

basic building block is a “multiprocessor” with 8 cores,
8192/16384 registers and some shared memory

different chips have different numbers of these:

product multiprocessors bandwidth cost
9800 GT 14 58GB/s £100

9800 GTX 16 70GB/s £140
9800 GX2 2×16 128GB/s £280
GTX280 30 142GB/s £350

each card has fast graphics memory which is used for:
global memory accessible by all multiprocessors
special read-only constant memory
additional local memory for each multiprocessor

Finance on GPUs – p. 13/30



NVIDIA GPUs

For high-end HPC, NVIDIA have Tesla systems:

C1060 card:
PCIe card, plugs into standard PC/workstation
single GPU with 240 cores and 4GB graphics
memory

S1070 server:
4 cards packaged in a 1U server
connect to 2 external servers, one for each pair of
cards
each GPU has 240 cores plus 4GB graphics memory

neither product has any graphics output, intended
purely for scientific computing

Finance on GPUs – p. 14/30



NVIDIA GPUs

Most important hardware feature is that the 8 cores in a
multiprocessor are SIMD (Single Instruction Multiple Data)
cores:

all cores execute the same instructions simultaneously

vector style of programming harks back to CRAY vector
supercomputing

natural for graphics processing and much scientific
computing

SIMD is also a natural choice for massively multicore to
simplify each core

requires specialised programming (no standard)

Finance on GPUs – p. 15/30



CUDA programming

CUDA is NVIDIA’s program development environment:

based on C with some extensions

lots of example code and good documentation
– 2-4 week learning curve for those with experience of
OpenMP and MPI programming

growing user community active on NVIDIA forum

main process runs on host system (Intel/AMD CPU)
and launches multiple copies of “kernel” process on
graphics card

communication is through data transfers to/from
graphics memory

minimum of 4 threads per core, but more is better

Finance on GPUs – p. 16/30



CUDA programming

How hard is it to program?

Needs combination of skills:

splitting the application between the multiple
multiprocessors is similar to MPI programming,
but no need to split data – it all resides in main graphics
memory

SIMD CUDA programming within each multiprocessor
is a bit like OpenMP programming – needs good
understanding of memory operation

difficulty also depends a lot on application

Finance on GPUs – p. 17/30



CUDA programming

One option is to use linear algebra libraries to off-load parts
of a calculation:

libraries for BLAS and FFTs (with LAPACK coming
soon?)

performance restricted by 5GB/s bandwidth of PCIe-2
link between host and graphics card

still, quick easy win for some applications (e.g. solving
10,000 simultaneous linear equations)

spectral CFD testcase from Univ. of Washington gets
20× speedup using MATLAB/CUDA interface

degree of difficulty (2/10)

Finance on GPUs – p. 18/30



CUDA programming

Monte Carlo application:

ideal because it is trivially parallel – each path
calculation is independent of the others

degree of difficulty (4/10)

we obtained excellent results for a LIBOR model

timings in seconds for 96,000 paths, with 40 active
threads per core, each thread doing just one path

remember: CUDA results are for single precision

time
original code (VS C++) 26.9
CUDA code (8800GTX) 0.2

Finance on GPUs – p. 19/30



Original LIBOR code

void path_calc(int N, int Nmat, double delta,

double L[], double lambda[], double z[])

{

int i, n;

double sqez, lam, con1, v, vrat;

for(n=0; n<Nmat; n++) {

sqez = sqrt(delta)*z[n];

v = 0.0;

for (i=n+1; i<N; i++) {

lam = lambda[i-n-1];

con1 = delta*lam;

v += (con1*L[i])/(1.0+delta*L[i]);

vrat = exp(con1*v + lam*(sqez-0.5*con1));

L[i] = L[i]*vrat;

}

}

}

Finance on GPUs – p. 20/30



CUDA LIBOR code

__constant__ int N, Nmat, Nopt, maturities[NOPT];

__constant__ float delta, swaprates[NOPT], lambda[NN];

__device__ void path_calc(float *L, float *z)

{

int i, n;

float sqez, lam, con1, v, vrat;

for(n=0; n<Nmat; n++) {

sqez = sqrtf(delta)*z[n];

v = 0.0;

for (i=n+1; i<N; i++) {

lam = lambda[i-n-1];

con1 = delta*lam;

v += __fdividef(con1*L[i],1.0+delta*L[i]);

vrat = __expf(con1*v + lam*(sqez-0.5*con1));

L[i] = L[i]*vrat;

}

}

}

Finance on GPUs – p. 21/30



CUDA LIBOR code

The main code performs the following steps:

initialises card

allocates memory in host and on device

copies constants from host to device memory

launches multiple copies of execution kernel on device

copies back results from device memory

de-allocates memory and terminates

Finance on GPUs – p. 22/30



CUDA multithreading

Lots of active threads is the key to high performance:

no “context switching”; each thread has its own
registers, which limits the number of active threads

threads execute in “warps” of 32 threads per
multiprocessor (4 per core) – execution alternates
between “active” warps, with warps becoming
temporarily “inactive” when waiting for data

Finance on GPUs – p. 23/30



CUDA multithreading

for each thread, one operation completes long before
the next starts – avoids the complexity of pipeline
overlaps which can limit the performance of modern
processors

-

time1 2 3 4 5-

-
-

1 2 3 4 5-

-
-

1 2 3 4 5-

-
-

memory access from device memory has a delay of
400-600 cycles; with 40 threads this is equivalent to
10-15 operations and can be managed by the compiler

Finance on GPUs – p. 24/30



CUDA programming

Other Monte Carlo considerations:

need RNG routines
which ones?
skip-ahead for multiple threads?

need to generate correlated streams (a bit tricky due to
limited shared-memory in each 8-core multiprocessor)

QMC much trickier because of memory requirements
for BB or PCA construction

working with NAG to develop a generic Monte Carlo
engine

Finance on GPUs – p. 25/30



CUDA programming

Finite difference application:

recently started work on 2D/3D finite difference
applications

Jacobi iteration for discrete Laplace equation
CG iteration for discrete Laplace equation
ADI time-marching

conceptually straightforward for someone who is used
to partitioning grids for MPI implementations

each multiprocessor works on a block of the grid
threads within each block read data into local shared
memory, do the calculations in parallel and write new
data back to main device memory

degree of difficulty: 6/10 for explicit solvers, 8/10 for
ADI solver

Finance on GPUs – p. 26/30



CUDA programming

3D finite difference implementation:

insufficient shared memory to hold whole 3D block,
so hold 3 working planes at a time (halo depth of 1,
just one Jacobi iteration at a time)

key steps in kernel code:
load in k=0 z-plane (inc x and y-halos)
loop over all z-planes

load k+1 z-plane (over-writing k−2 plane)
process k z-plane
store new k z-plane

50× speedup relative to Xeon single core, compared to
5× speedup using OpenMP with 8 cores.

Finance on GPUs – p. 27/30



CUDA programming

Development of PDE demo codes is being funded by
TCS/CRL:

TCS: Tata Consultancy Services – India’s biggest IT
services company

CRL: Computational Research Laboratories – part of
Tata group, with an HP supercomputer ranked at #4 in
Top 500 six months ago (now #8)

demo codes will be made freely available on my website

trying to create generic 3D library/template to enable
easy development of new applications

looking for new test applications

Finance on GPUs – p. 28/30



Will GPUs have real impact?

I think they’re the most exciting development since
initial development of PVM and Beowulf clusters

Have generated a lot of interest/excitement in
academia, being used by application scientists,
not just computer scientists

Potential for 10−100× speedup and improvement in
GFLOPS/£ and GFLOPS/watt

Effectively a personal cluster in a PC under your desk

Needs work on tools and libraries to simplify
development effort

Finance on GPUs – p. 29/30



Webpages

Wikipedia overviews of GeForce cards:
en.wikipedia.org/wiki/GeForce 8 Series
en.wikipedia.org/wiki/GeForce 9 Series

NVIDIA’s CUDA homepage:
www.nvidia.com/object/cuda home.html

Microprocessor Report article:
www.nvidia.com/docs/IO/47906/220401 Reprint.pdf

LIBOR and finite difference test code:
www.maths.ox.ac.uk/∼gilesm/hpc/

Finance on GPUs – p. 30/30


	Overview
	Computing -- Recent Past
	Computing -- Present/Future
	CPUs and GPUs
	Mainstream CPUs
	Mainstream CPUs
	Mainstream CPUs
	Co-processor alternatives
	Chip Comparison
	Chip Comparison
	Why GPUs will stay ahead
	NVIDIA GPUs
	NVIDIA GPUs
	NVIDIA GPUs
	CUDA programming
	CUDA programming
	CUDA programming
	CUDA programming
	Original LIBOR code
	CUDA LIBOR code
	CUDA LIBOR code
	CUDA multithreading
	CUDA multithreading
	CUDA programming
	CUDA programming
	CUDA programming
	CUDA programming
	Will GPUs have real impact?
	Webpages

