### **Financial computing on NVIDIA GPUs**

Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute Oxford-Man Institute for Quantative Finance Oxford eResearch Centre

Acknowledgments: Gerd Heber, Abinash Pati, Vignesh Sundaresh, Xiaoke Su and funding from Microsoft, EPSRC, TCS/CRL

Finance on GPUs – p. 1/30

### Overview

- trends in mainstream HPC
- the co-processor alternatives
- NVIDIA graphics cards
- CUDA programming
- LIBOR Monte Carlo application
- finite difference PDE applications

### **Computing – Recent Past**

- driven by the cost benefits of massive economies of scale, specialised chips (e.g. CRAY vector chips) died out, leaving Intel/AMD dominant
- Intel/AMD chips designed for office/domestic use, not for high performance computing
- increased speed through higher clock frequencies, and complex parallelism within each CPU
- PC clusters provided the high-end compute power, initially in universities and then in industry
- at same time, NVIDIA and ATI grew big on graphics chip sales driven by computer games

### **Computing – Present/Future**

- move to faster clock frequencies stopped due to high power consumption (proportional to  $f^2$ ?)
- big push now is to multicore (multiple processing units within a single chip) at (slightly) reduced clock frequencies
- graphics chips have even more cores (up to 240 on NVIDIA GPUs)

 big new development here is a more general purpose programming environment

Why? At least partly because computer games do increasing amounts of "physics" simulation

#### **CPUs and GPUs**



Copyright NVIDIA 2006/7

#### **Mainstream CPUs**

- currently up to 6 cores 16 cores likely within 5 years?
- intended for general applications
- MIMD (Multiple Instruction / Multiple Data)

   each core works independently of the others, executing different instructions, often for different processes
- specialised vector capabilities (SSE2/SSE3) for vectors of length 4 (s.p.) or 2 (d.p.) – motivated by graphics requirements but sometimes used for scientific applications?

### **Mainstream CPUs**

How does one exploit all of these cores?

- OpenMP multithreading for shared-memory parallelism
  - easy to get parallel code running
  - can be harder to get good parallel performance
  - degree of difficulty: 2/10
- MPI message-passing for distributed-memory parallelism
  - hard to get started, need to partition data and programming is low-level and tedious
  - generally easier to get good parallel performance
  - degree of difficulty: 6/10

#### **Mainstream CPUs**

Importance of standards:

- makes it possible to write portable code to run on any hardware
- encourages developers to work on code optimisation
- encourages academic/commercial development of tools and libraries to assist application developers

### **Co-processor alternatives**

GPUs:

- Cell processor, developed by IBM/Sony/Toshiba for Sony Playstation 3
- NVIDIA GeForce 8 and 9 series GPUs, developed primarily for high-end computer games market
- AMD Firestream 9250
- Intel "Larrabee" GPU due in 2010

FPGAs:

Xilinx



# **Chip Comparison**

| chip / type | cores   | Gflops         | GB/s   | watts   | cost (£)  |
|-------------|---------|----------------|--------|---------|-----------|
| MIMD        |         |                |        |         |           |
| Intel Xeon  | 2-6     | 10-40          | 5-20   | 60-120  | 100-250   |
| SUN T2      | 8       | 11             | 60     | 100     | 1000?     |
| IBM Cell    | 1+8     | 250*, 100      | 25     | 100     | 2000?     |
| <u>SIMD</u> |         |                |        |         |           |
| NVIDIA      | 112-240 | 250-1000*, 125 | 60-140 | 100-250 | 100-400   |
| AMD/ATI     | similar |                |        |         |           |
| <u>FPGA</u> |         |                |        |         |           |
| Xilinx      | N/A     | 50-500*?       | 5-20?  | 50-100? | 200-2000? |

Does single precision\* matter?

# **Chip Comparison**

Intel Core 2 / Xeon:

- 2-6 MIMD cores
- few registers, multilevel caches
- 5-20 GB/s bandwidth to main memory
- double precision floating point arithmetic

NVIDIA GPUs:

- up to 240 SIMD cores
- Iots of registers, no caches
- 5 GB/s bandwidth to host processor (PCIe x16 gen 2)
- 60-140 GB/s bandwidth to graphics memory
- only single precision on older GPUs

### Why GPUs will stay ahead

Technical reasons:

- SIMD cores (instead of MIMD cores) means larger proportion of chip devoted to floating point performance
- tightly-coupled fast graphics means much higher bandwidth

Commercial reasons:

- CPUs driven by cost-sensitive office/home computing: not clear these need vastly more speed
- CPU direction may be towards low cost, low power chips for mobile and embedded applications
- GPUs driven by high-end applications prepared to pay a premium for high performance

### **NVIDIA GPUs**

- basic building block is a "multiprocessor" with 8 cores, 8192/16384 registers and some shared memory
- different chips have different numbers of these:

| product  | multiprocessors | bandwidth | cost |
|----------|-----------------|-----------|------|
| 9800 GT  | 14              | 58GB/s    | £100 |
| 9800 GTX | 16              | 70GB/s    | £140 |
| 9800 GX2 | 2×16            | 128GB/s   | £280 |
| GTX280   | 30              | 142GB/s   | £350 |

- each card has fast graphics memory which is used for:
  - global memory accessible by all multiprocessors
  - special read-only constant memory
  - additional local memory for each multiprocessor

#### **NVIDIA GPUs**

For high-end HPC, NVIDIA have Tesla systems:

- **•** C1060 card:
  - PCIe card, plugs into standard PC/workstation
  - single GPU with 240 cores and 4GB graphics memory
- S1070 server:
  - 4 cards packaged in a 1U server
  - connect to 2 external servers, one for each pair of cards
  - each GPU has 240 cores plus 4GB graphics memory
- neither product has any graphics output, intended purely for scientific computing

#### **NVIDIA GPUs**

Most important hardware feature is that the 8 cores in a multiprocessor are SIMD (Single Instruction Multiple Data) cores:

- all cores execute the same instructions simultaneously
- vector style of programming harks back to CRAY vector supercomputing
- natural for graphics processing and much scientific computing
- SIMD is also a natural choice for massively multicore to simplify each core
- requires specialised programming (no standard)

CUDA is NVIDIA's program development environment:

- based on C with some extensions
- lots of example code and good documentation
   2-4 week learning curve for those with experience of
   OpenMP and MPI programming
- growing user community active on NVIDIA forum
- main process runs on host system (Intel/AMD CPU) and launches multiple copies of "kernel" process on graphics card
- communication is through data transfers to/from graphics memory
- minimum of 4 threads per core, but more is better

How hard is it to program?

Needs combination of skills:

- splitting the application between the multiple multiprocessors is similar to MPI programming, but no need to split data – it all resides in main graphics memory
- SIMD CUDA programming within each multiprocessor is a bit like OpenMP programming – needs good understanding of memory operation
- difficulty also depends a lot on application

One option is to use linear algebra libraries to off-load parts of a calculation:

- Ibraries for BLAS and FFTs (with LAPACK coming soon?)
- performance restricted by 5GB/s bandwidth of PCIe-2 link between host and graphics card
- still, quick easy win for some applications (e.g. solving 10,000 simultaneous linear equations)
- spectral CFD testcase from Univ. of Washington gets  $20 \times$  speedup using MATLAB/CUDA interface
- degree of difficulty (2/10)

Monte Carlo application:

- ideal because it is trivially parallel each path calculation is independent of the others
- degree of difficulty (4/10)
- we obtained excellent results for a LIBOR model
- timings in seconds for 96,000 paths, with 40 active threads per core, each thread doing just one path
- remember: CUDA results are for single precision

|                        | time |
|------------------------|------|
| original code (VS C++) | 26.9 |
| CUDA code (8800GTX)    | 0.2  |

### **Original LIBOR code**

```
void path calc(int N, int Nmat, double delta,
                 double L[], double lambda[], double z[])
{
       i, n;
  int
  double sqez, lam, con1, v, vrat;
  for(n=0; n<Nmat; n++) {</pre>
    sqez = sqrt(delta)*z[n];
    v = 0.0i
    for (i=n+1; i<N; i++) {</pre>
      lam = lambda[i-n-1];
      con1 = delta*lam;
           += (con1*L[i])/(1.0+delta*L[i]);
      v
      vrat = \exp(\operatorname{con1*v} + \operatorname{lam*(sqez-0.5*con1)});
      L[i] = L[i] * vrat;
```

#### **CUDA LIBOR code**

\_\_\_\_\_constant\_\_\_\_ int N, Nmat, Nopt, maturities[NOPT]; \_\_\_\_constant\_\_\_ float delta, swaprates[NOPT], lambda[NN];

```
___device___ void path_calc(float *L, float *z)
```

```
int i, n;
```

{

```
float sqez, lam, con1, v, vrat;
```

```
for(n=0; n<Nmat; n++) {
  sqez = sqrtf(delta)*z[n];
  v = 0.0;
  for (i=n+1; i<N; i++) {
    lam = lambda[i-n-1];
    con1 = delta*lam;
    v += __fdividef(con1*L[i],1.0+delta*L[i]);
    vrat = __expf(con1*v + lam*(sqez-0.5*con1));
    L[i] = L[i]*vrat;
}</pre>
```

### **CUDA LIBOR code**

The main code performs the following steps:

- initialises card
- allocates memory in host and on device
- copies constants from host to device memory
- Iaunches multiple copies of execution kernel on device
- copies back results from device memory
- de-allocates memory and terminates

### **CUDA multithreading**

Lots of active threads is the key to high performance:

- no "context switching"; each thread has its own registers, which limits the number of active threads
- threads execute in "warps" of 32 threads per multiprocessor (4 per core) – execution alternates between "active" warps, with warps becoming temporarily "inactive" when waiting for data

### **CUDA multithreading**

for each thread, one operation completes long before the next starts – avoids the complexity of pipeline overlaps which can limit the performance of modern processors



memory access from device memory has a delay of 400-600 cycles; with 40 threads this is equivalent to 10-15 operations and can be managed by the compiler

Other Monte Carlo considerations:

- need RNG routines
  - which ones?
  - skip-ahead for multiple threads?
- need to generate correlated streams (a bit tricky due to limited shared-memory in each 8-core multiprocessor)
- QMC much trickier because of memory requirements for BB or PCA construction
- working with NAG to develop a generic Monte Carlo engine

Finite difference application:

- recently started work on 2D/3D finite difference applications
  - Jacobi iteration for discrete Laplace equation
  - CG iteration for discrete Laplace equation
  - ADI time-marching
- conceptually straightforward for someone who is used to partitioning grids for MPI implementations
  - each multiprocessor works on a block of the grid
  - threads within each block read data into local shared memory, do the calculations in parallel and write new data back to main device memory
- degree of difficulty: 6/10 for explicit solvers, 8/10 for ADI solver

3D finite difference implementation:

- insufficient shared memory to hold whole 3D block, so hold 3 working planes at a time (halo depth of 1, just one Jacobi iteration at a time)
- key steps in kernel code:
  - load in k = 0 z-plane (inc x and y-halos)
  - Joop over all z-planes
    - load k+1 z-plane (over-writing k-2 plane)
    - process k z-plane
    - store new k z-plane
- $50 \times$  speedup relative to Xeon single core, compared to  $5 \times$  speedup using OpenMP with 8 cores.

Development of PDE demo codes is being funded by TCS/CRL:

- TCS: Tata Consultancy Services India's biggest IT services company
- CRL: Computational Research Laboratories part of Tata group, with an HP supercomputer ranked at #4 in Top 500 six months ago (now #8)
- demo codes will be made freely available on my website
- trying to create generic 3D library/template to enable easy development of new applications
- Iooking for new test applications

### Will GPUs have real impact?

- I think they're the most exciting development since initial development of PVM and Beowulf clusters
- Have generated a lot of interest/excitement in academia, being used by application scientists, not just computer scientists
- Potential for 10-100× speedup and improvement in GFLOPS/£ and GFLOPS/watt
- Effectively a personal cluster in a PC under your desk
- Needs work on tools and libraries to simplify development effort

### Webpages

Wikipedia overviews of GeForce cards: en.wikipedia.org/wiki/GeForce\_8\_Series en.wikipedia.org/wiki/GeForce\_9\_Series

NVIDIA's CUDA homepage: www.nvidia.com/object/cuda\_home.html

Microprocessor Report article: www.nvidia.com/docs/IO/47906/220401\_Reprint.pdf

LIBOR and finite difference test code: www.maths.ox.ac.uk/~gilesm/hpc/