Application of multilevel Monte Carlo to the simulation of dilute polymers

Mike Giles
Oxford University Mathematical Institute

Joint work with Endre Süli, James Whittle and Shenghan Ye

Workshop on Stochastic and Multiscale Problems

Sept 1-2, 2014
Outline

- mathematical modelling
- properties of the SDE
- numerical approximation
- multilevel Monte Carlo method
- adaptive time-stepping in MLMC
- MLMC for equilibrium distribution
- preliminary results
- conclusions
Modelling

- long-chain molecules in a fluid
- modelled as ball-and-spring systems, subject to random forcing
- K bonds, $K+1$ “balls”, separation q_i will be key variable
Modelling

- FENE (finitely extensible nonlinear elastic) model limits extension of molecular bonds
- motion of “balls” given by force balance:

\[-\nabla V + R - k \left(\dot{r}_i - v(r_i) \right) = 0\]

where \(V \) is the elastic potential, and \(v \) is the velocity of the fluid

- shifting to a moving frame of reference, a local Taylor series expansion gives

\[v(x) \approx \kappa \cdot x\]

where \(\kappa \) is the local rate-of-strain tensor \(\partial v / \partial x \)
Modelling

This modelling leads to the following SDE for i^{th} “ball”:

$$\text{d}r_i = (\kappa r_i - \nabla r_i V(r)) \, \text{d}t + \sqrt{2} \, \text{d}W_i$$

where $\text{d}W_i$ is the Brownian forcing, assumed to be independent of the forcing of the others, and

$$V(r) = \sum_{i=1}^{K} U_i(\|q_i\|^2/2)$$

with U_i being the elastic potential for the i^{th} bond.

Hence,

$$\text{d}r_i = \left(\kappa r_i - \left(U'_{i-1} (\|q_{i-1}\|^2/2) \, q_{i-1} - U'_i (\|q_i\|^2/2) \, q_i\right)\right) \, \text{d}t + \sqrt{2} \, \text{d}W_i$$

if we define $q_0 \equiv q_{K+1} \equiv 0$ to account for non-existent bonds on either end.
Modelling

Hence, the system of coupled SDEs for the bond vectors is

\[dq_i = (\kappa q_i + U'_{i+1}q_{i+1} - 2 U'_iq_i + U'_{i-1}q_{i-1}) \, dt + \sqrt{2} (dW_{i+1} - dW_i) \]

which can be written collectively as

\[dq = (\kappa q - D \nabla V) \, dt + \sqrt{2} \, L \, dW \]

where

\[V(q) \equiv \sum_i U_i(\|q_i\|^2/2), \]

and \(L \) and \(D \) are of the form

\[
L = \begin{pmatrix}
-I & I & & \\
-I & -I & I & \\
& -I & -I & I
\end{pmatrix}, \quad
D = \begin{pmatrix}
2I & -I & \\
-I & 2I & -I & \\
& -I & 2I
\end{pmatrix} = LL^T.
\]
Invariant distribution

The Fokker-Planck PDE for the probability density function $p(q, t)$ is

$$\frac{\partial p}{\partial t} = \nabla \cdot \left((D \nabla V - \kappa q) p + D \nabla p \right),$$

so when $\kappa = 0$ the invariant (or equilibrium) distribution is

$$p_\infty(q) = C \exp(-V(q)).$$

In the particular case of the FENE model, we have

$$U_i(s) = -\beta \log(1 - 2s),$$

and therefore the invariant distribution for $\kappa = 0$ is

$$p_\infty(q) = C \prod_i (1 - \| q_i \|^2)^\beta.$$
Linear perturbation analysis

The nonlinear system of SDEs is

\[dq = (\kappa q - D \nabla V) \, dt + \sqrt{2} L \, dW \]

If \(\kappa \) is small, then we can replace it by \(\varepsilon \kappa \), with \(\kappa = O(1) \) and \(\varepsilon \ll 1 \), and perform an asymptotic expansion

\[q = q^{(0)} + \varepsilon q^{(1)} + O(\varepsilon^2), \]

and match up corresponding powers of \(\varepsilon \).

The \(O(1) \) terms give the nonlinear equation

\[dq^{(0)} = -D \nabla V(q^{(0)}) \, dt + \sqrt{2} L \, dW. \]
Linear perturbation analysis

The $O(\varepsilon)$ terms give the linear perturbation equation

$$
\text{d}q^{(1)} = \left(\kappa q^{(0)} - D A(q^{(0)}) q^{(1)} \right) \text{d}t,
$$

where A is a block-diagonal matrix with the i^{th} block being

$$
A_i(q^{(0)}_i) = U'_i(\|q^{(0)}_i\|^2/2) \ I + U''_i(\|q^{(0)}_i\|^2/2) \ q^{(0)}_i(q^{(0)}_i)^T.
$$

Note that A_i is symmetric, and if we assume that $U'_i \geq 0$ and $U''_i \geq 0$ then for any vector $v \neq 0$ we have

$$
v^T A_i v = U'_i v^T v + U''_i \left((q^{(0)}_i)^T v \right)^2 > 0,
$$

so the A_i, and hence also A, are positive-definite.
Linear perturbation analysis

When $\kappa = 0$, the linearised equation for the perturbation $q^{(1)}$ is

$$d q^{(1)} = - D A(q^{(0)}) q^{(1)} \, dt.$$

If we define the energy as $E = \frac{1}{2} (q^{(1)})^T D^{-1} q^{(1)}$, then

$$d E = (q^{(1)})^T D^{-1} \, dq^{(1)} = - (q^{(1)})^T A(q^{(0)}) \, q^{(1)} \, dt$$

and since A is symmetric positive-definite, it follows that the energy decreases over time, and so $q^{(1)} \to 0$ as $t \to \infty$.

Similarly, can prove that if $q_a^{(0)}$, $q_b^{(0)}$ are driven by the same Brownian path from different initial data, then $q_a^{(0)} - q_b^{(0)} \to 0$ as $t \to \infty$.
Numerical approximation

The nonlinear SDE is approximated as

\[q_{n+1} = q_n + (\kappa q_n - D \nabla V(q_n)) h_n + \sqrt{2} L \Delta W_n \]

using an adaptive timestep \(h_n \), and independent Brownian increments \(\Delta W_n \) which can be expressed as

\[\Delta W_n = \sqrt{h_n} Z_n \]

where \(Z_n \) are vectors of independent \(N(0, 1) \) random variables.

For the asymptotic analysis, the approximations are:

\[q_{n+1}^{(0)} = q_n^{(0)} - D \nabla V(q_n^{(0)}) h_n + \sqrt{2} L \Delta W_n \]
\[q_{n+1}^{(1)} = q_n^{(1)} + \left(\kappa q_n^{(0)} - D A(q_n^{(0)}) q_n^{(1)} \right) h_n \]
Adaptive timestep

With the FENE model, no bond length can exceed 1 – numerical approximation should share this property.

Try to ensure this through the restrictions:

\[
 h_n U'_i(\|q_{i,n}\|^2/2) \|q_{i,n}\| \leq 1 - \|q_{i,n}\|
\]

\[
 5\sqrt{2} h_n \leq 1 - \|q_{i,n}\|
\]

where \(q_{i,n}\) is the \(i^{th}\) bond vector at timestep \(n\).

They can be combined to give

\[
 h_n = \frac{\min_i (1 - \|q_{i,n}\|)^2}{\max(2\beta, 50)}
\]

This sets an upper bound on the timestep – smaller values need to be chosen for accuracy.
Clamping

Even so, it is possible for the discrete approximation to cross the boundary \(\|q_i\| = 1 \).

This is avoided through “clamping” by setting

\[
q_{i,n+1}^{clamped} := \frac{1 - \delta}{\|q_{i,n+1}\|} q_{i,n+1}
\]

if \(\|q_{i,n+1}\| > 1 - \delta \), where \(\delta \ll 1 \) (typically \(10^{-5} \)).

We believe that the additional weak error due to clamping is negligible.
Objective

Our objective is to numerically estimate \(\lim_{T \to \infty} \mathbb{E}[P(T)] \) where, in the nonlinear analysis,

\[
P(T) \equiv U'(\|q\|^2 / 2) q q^T \bigg|_{t=T}
\]

or, using the linearisation approach,

\[
P(T) \equiv U'(\|q(0)\|^2 / 2) \left(q^{(0)} (q^{(1)})^T + q^{(1)} (q^{(0)})^T \right) \\
+ ((q^{(0)})^T q^{(1)}) U''(\|q^{(0)}\|^2 / 2) q^{(0)} (q^{(0)})^T \bigg|_{t=T}
\]

We’ll start by doing it for a fixed, large \(T \), then address the challenge of letting \(T \to \infty \).
The standard Monte Carlo approach would be to perform N independent path simulations and use the estimate

$$N^{-1} \sum_{n=1}^{N} P^{(n)}$$

However, to get good accuracy we would need to use very small timesteps and lots of paths, so the cost would be high.
Multilevel Monte Carlo simulation

Instead, MLMC uses a sequence of levels with differing accuracies / costs, and relies on the telescoping summation

$$E[P_L] = E[P_0] + \sum_{\ell=1}^{L} E[P_{\ell} - P_{\ell-1}]$$

so we can use the estimator

$$N_0^{-1} \sum_{n=1}^{N_0} P_0^{(n)} + \sum_{\ell=1}^{L} \left\{ N_\ell^{-1} \sum_{n=1}^{N_\ell} \left(P_{\ell}^{(n)} - P_{\ell-1}^{(n)} \right) \right\}$$

with independent estimation for each level
Given a desired RMS accuracy ε, MLMC algorithm/theory tells us

- how many levels to use, to ensure that weak error due to
discretisation is less than $\varepsilon/\sqrt{2}$
- how many samples to use on each level, to ensure that overall the
statistical error is less than $\varepsilon/\sqrt{2}$

In standard SDE applications, use geometric sequence of levels with

$$h_\ell = h_0 \, 2^{-\ell}$$

and for Milstein approximation (as used here) usually achieve ε accuracy at
$O(\varepsilon^{-2})$ total cost, instead of $O(\varepsilon^{-3})$ with standard Monte Carlo method
Multilevel Monte Carlo simulation

Key point is using the same Brownian motion for each sample

\[P^{(n)}_{\ell} - P^{(n)}_{\ell-1} \]

in

\[N_{\ell}^{-1} \sum_{n=1}^{N_{\ell}} \left(P^{(n)}_{\ell} - P^{(n)}_{\ell-1} \right) \]

Strong convergence of the numerical approximation ensures that \(P^{(n)}_{\ell} - P^{(n)}_{\ell-1} \) is small, so has a small variance, \(O(h^2_{\ell}) \), and hence few samples are needed on finest levels.

With uniform timesteps, Brownian increments for coarse path are obtained by summing increments for fine path.

Potential problem: how does it work with adaptive time-stepping?
Multilevel Monte Carlo simulation

Actually, surprisingly easy, based on prior work with Chris Lester, Ruth Baker & Kit Yates (2014) for continuous-time Markov chains.

On level ℓ use

$$h_n = 2^{-\ell} \frac{\min_i (1-\|q_{i,n}\|)^2}{\max(2\beta, 50)}$$

Coarse and fine paths each compute their own adaptive timesteps independently – this ensures the telescoping sum works correctly
As time proceeds, Brownian increments are generated as needed at discretisation times which are a union of coarse and fine path times:

The fact that the timesteps are not nested is not a problem.
Multilevel Monte Carlo simulation

Final challenge: how to obtain expectation as $T \to \infty$?

Key idea here comes from Chang-han Rhee and Peter Glynn (2014) who consider contracting Markov chains:

$$X_0 = x, \quad X_{n+1} = \phi_n(X_n), \quad n \geq 0$$

where $\{\phi_n\}$ is a sequence of iid random functions such that

$$\sup_{x \neq y} \mathbb{E} \left[\left(\frac{d(\phi_n(x), \phi_n(y))}{d(x, y)} \right)^{2\gamma} \right] < 1$$

for some distance metric d, and some $\gamma \in (0, 1)$.
Multilevel Monte Carlo simulation

They are interested in

$$\lim_{M \to \infty} \left\{ \mathbb{E}[f(X_M)] | X_0 = x \right\}$$

which can be re-expressed as

$$\lim_{M \to \infty} \left\{ \mathbb{E}[f(X_0)] | X_{-M} = x \right\}$$

and they use multilevel with $M_\ell \to \infty$ as $\ell \to \infty$ and same random ϕ_n for coarse and fine paths for $-M_{\ell-1} \leq n < 0$.

This works because contraction property leads to effect of difference in values at $-M_{\ell-1}$ decaying exponentially, so

$$\left\| X_0^f - X_0^c \right\| \sim \exp(-cM_{\ell-1})$$
Multilevel Monte Carlo simulation

Back to our polymer application, instead of estimating

$$\lim_{T \to \infty} \left\{ \mathbb{E}[P(q(T))] \mid q(0) = q_0 \right\}$$

we use the same idea and estimate

$$\lim_{T \to \infty} \left\{ \mathbb{E}[P(q(0))] \mid q(-T) = q_0 \right\}$$

and use multilevel with $h_\ell \to 0$, $T_\ell \to \infty$ as $\ell \to \infty$ and the same Brownian motion $W(t)$ for coarse and fine paths for $-T_{\ell-1} < t < 0$.

This again works because of the contraction property which leads to effect of difference in q values at time $-T_{\ell-1}$ decaying exponentially, so

$$\left\| q^f(0) - q^c(0) \right\| = O(h_\ell) + O(\exp(-c T_{\ell-1}))$$
Implementation

Two versions of the MLMC algorithm have been implemented:

- MATLAB for development purposes
- CUDA C for execution on NVIDIA GPUs – offers 100× speedup over MATLAB implementation

The latter handles polymers with up to 32 bonds

When there is a single bond, the code produces the correct value for

$$\lim_{T \to \infty} \mathbb{E} \left[q^{(0)}_T q^{(0)}_0 \bigg| t=T \right]$$

in comparison to the analytic value which can be deduced from the invariant distribution.
Preliminary results
Preliminary results

\[\mathbb{N}_l \]

level \(l \)

Mike Giles (Oxford)
MLMC for polymer dynamics
Sept 1-2, 2014 26 / 28
Conclusions

- Other research by Süli and Ye has used Fokker-Planck approach when there is just 1 bond, but SDE approach is only viable method when the number of bonds is large.

- Multilevel Monte Carlo greatly reduces the computational cost.

- Adaptive timestepping is necessary, and not difficult.

- New idea due to Rhee and Glynn is crucial for estimating quantities associated with invariant distribution.

- More validation required.

- Future research will also investigate nonlinear / linearised treatments (e.g. does linearised provide sufficient accuracy? or is linearised a good control variate for nonlinear?)
References

Chang-han Rhee and Peter W. Glynn. “Exact estimation for the equilibrium of Markov chains”, draft paper, 2014

http://people.maths.ox.ac.uk/gilesm/mlmc.html

http://people.maths.ox.ac.uk/gilesm/mlmc_community.html