A framework for parallel unstructured grid applications on GPUs

Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Oxford eResearch Centre

SIAM Conference on Parallel Processing for Scientific Computing 2010

SIAM PP10 – p. 1/23

Outline

- opportunity, challenges, context
- user perspective (i.e. application developer)
 - API
 - build process
- implementation issues
 - hierarchical parallelism on GPUs
 - data dependency
 - code generation
- current status
- conclusions

Opportunity and Challenge

- PDE applications are of major importance in both academia and industry
- new HPC hardware (GPUs, AVX, etc.) offers 10× improvement in performance of affordable HPC but greatly increased programming complexity
- want a suitable level of abstraction to separate the user's specification of the application from the details of the parallel implementation
- aim to achieve code longevity and near-optimal performance through re-targetting the back-end to different hardware

Context

Unstructured grid methods are one of Phil Colella's seven dwarfs (*Parallel Computing: A View from Berkeley*)

- dense linear algebra
- sparse linear algebra
- spectral methods
- N-body methods
- structured grids
- unstructured grids
- Monte Carlo

Extensive GPU work for the other dwarfs, except perhaps for direct sparse linear algebra.

Context

Part of a larger project led by Paul Kelly at Imperial College

SIAM PP10 – p. 5/23

History

OPlus (Oxford Parallel Library for Unstructured Solvers)

- developed for Rolls-Royce 10 years ago
- MPI-based library for HYDRA CFD code on clusters with up to 200 nodes

OP2

- open source project
- keeps OPlus abstraction, but slightly modifies API
- an "active library" approach with code transformation generates CUDA, OpenCL and OpenMP/AVX code for GPUs and CPUs

OP2 Abstraction

- sets (e.g. nodes, edges, faces)
- datasets (e.g. flow variables)
- pointers (e.g. from edges to nodes)
- parallel loops
 - operate over all members of one set
 - datasets have at most one level of indirection
 - user specifies how data is used (e.g. read-only, write-only, increment)

OP2 Restrictions

- set elements can be processed in any order, doesn't affect result to machine precision
 - explicit time-marching, or multigrid with an explicit smoother is OK
 - Gauss-Seidel or ILU preconditioning in not
- static sets and pointers (no dynamic grid adaptation)

OP2 API

op_init(int argc, char **argv)

op_exit()

OP2 API

Parallel loop for user kernel with 3 arguments:

Example for sparse matrix-vector product:

op_par_loop_3(res,"res", edges,

- p_A, -1, edges_id, 1, OP_FLOAT, OP_READ,
- p_u, 0,pedge2, 1,OP_FLOAT,OP_READ,
- p_du, 0,pedge1, 1,OP_FLOAT,OP_INC);

User build processes

Using the same source code, the user can build different executables for different target platforms:

- sequential single-thread CPU execution
 - purely for program development and debugging
 - very poor performance
- CUDA / OpenCL for single GPU
- OpenMP/AVX for multicore CPU systems
- MPI plus any of the above for clusters

Sequential build process

Traditional build process, linking to a conventional library in which many of the routines do little but error-checking:

CUDA build process

Preprocessor parses user code and generates new code:

GPU Parallelisation

Could have up to 10^6 threads in 3 levels of parallelism:

- MPI distributed-memory parallelism (1-100)
 - one MPI process for each GPU
 - all sets partitioned across MPI processes, so each MPI process only holds its data (and halo)
- block parallelism (50-1000)
 - on each GPU, data is broken into mini-partitions, worked on separately and in parallel by different functional units in the GPU
- thread parallelism (32-128)
 - each mini-partition is worked on by a block of threads in parallel

GPU Parallelisation

The 16 functional units in an NVIDIA Fermi GPU each have

- 32 cores
- 48kB of shared memory
- 16kB of L1 cache

Mini-partitions are sized so that all of the indirect data can be held in shared memory and re-used as needed

- reduces data transfer from/to main graphics memory
- very similar to maximising cache hits on a CPU to minimise data transfer from/to main system memory
- implementation requires re-numbering from global indices to local indices tedious but not difficult

GPU Parallelisation

One important difference from MPI parallelisation

- when using one GPU, all data is held in graphics memory in between each parallel loop
- each loop can use a different set of mini-partitions
- current implementation constructs an "execution plan" the first time the loop is encountered
- auto-tuning will be used in the future to optimise the plan, either statically based on profiling data, or dynamically based on run-time timing

Key technical issue is data dependency when incrementing indirectly-referenced arrays.

e.g. potential problem when two edges update same node

Method 1: "owner" of nodal data does edge computation

drawback is redundant computation when the two nodes have different "owners"

Method 2: "color" edges so no two edges of the same color update the same node

- parallel execution for each color, then synchronize
- possible loss of data reuse and some parallelism

Method 3: use "atomic" add which combines read/add/write into a single operation

- avoids the problem but needs hardware support
- drawback is slow hardware implementation

1	without atomics		with atomics
	thread 0	thread 1	thread 0 thread 1
	read		atomic add
time	add	read	atomic add
	write	add	
	,	write	

Which is best for each level?

- MPI level: method 1
 - each MPI process does calculation needed to update its data
 - partitions are large, so relatively little redundant computation
- GPU level: method 2
 - plenty of blocks of each color so still good parallelism
 - data reuse within each block, not between blocks
- block level: method 2 or 3
 - indirect data in local shared memory, so get reuse
 - which costs more, local synchronization or atomic updates?

Current status

- working CUDA prototype for single GPU, with preprocessor written in MATLAB
- plan to look at OpenCL and PGI FORTRAN CUDA
- waiting for new NVIDIA Fermi hardware to assess performance – expanded shared memory and L1/L2 caches will help a lot
- Iooking for collaborators, either as users or co-developers

Conclusions

- have defined a high-level framework for parallel execution of algorithms on unstructured grids
- Iooks encouraging for providing ease-of-use, high performance, and longevity through new back-ends

Acknowledgements:

- Tobias Brandvik, Graham Pullan (Cambridge), Paul Kelly (Imperial College)
- Jamil Appa, Pierre Moinier (BAE Systems), Leigh Lapworth (Rolls-Royce)
- Tom Bradley, Jonathan Cohen, Massimiliano Fatica, Patrick LeGresley, Gernot Ziegler (NVIDIA)
- EPSRC, NVIDIA and Rolls-Royce for financial support