
A framework for
parallel unstructured grid

applications on GPUs
Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Oxford eResearch Centre

SIAM Conference on Parallel Processing for Scientific Computing 2010

SIAM PP10 – p. 1/23



Outline

opportunity, challenges, context

user perspective (i.e. application developer)
API
build process

implementation issues
hierarchical parallelism on GPUs
data dependency
code generation

current status

conclusions

SIAM PP10 – p. 2/23



Opportunity and Challenge

PDE applications are of major importance in both
academia and industry

new HPC hardware (GPUs, AVX, etc.) offers 10×
improvement in performance of affordable HPC
but greatly increased programming complexity

want a suitable level of abstraction to separate the
user’s specification of the application from the details
of the parallel implementation

aim to achieve code longevity and near-optimal
performance through re-targetting the back-end to
different hardware
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Context

Unstructured grid methods are one of Phil Colella’s seven
dwarfs (Parallel Computing: A View from Berkeley)

dense linear algebra

sparse linear algebra

spectral methods

N-body methods

structured grids

unstructured grids

Monte Carlo

Extensive GPU work for the other dwarfs, except perhaps
for direct sparse linear algebra.
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Context

Part of a larger project led by Paul Kelly at Imperial College
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History

OPlus (Oxford Parallel Library for Unstructured Solvers)

developed for Rolls-Royce 10 years ago

MPI-based library for HYDRA CFD code on clusters
with up to 200 nodes

OP2

open source project

keeps OPlus abstraction, but slightly modifies API

an “active library” approach with code transformation
generates CUDA, OpenCL and OpenMP/AVX code
for GPUs and CPUs
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OP2 Abstraction

sets (e.g. nodes, edges, faces)

datasets (e.g. flow variables)

pointers (e.g. from edges to nodes)

parallel loops
operate over all members of one set
datasets have at most one level of indirection
user specifies how data is used
(e.g. read-only, write-only, increment)
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OP2 Restrictions

set elements can be processed in any order, doesn’t
affect result to machine precision

explicit time-marching, or multigrid with an explicit
smoother is OK
Gauss-Seidel or ILU preconditioning in not

static sets and pointers (no dynamic grid adaptation)
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OP2 API

op init(int argc, char **argv)

op decl set(int size, op set *set,
char *name)

op decl ptr(op set from, op set to, int dim,
int *iptr, op ptr *ptr, char *name)

op decl dat(op set set, int dim,
op datatype type, T *dat, op dat *data,
char *name)

op exit()
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OP2 API

Parallel loop for user kernel with 3 arguments:
op par loop 3(void (*kernel)(T0*, T1*, T2*),
char * name, op set set,
op dat arg0, int idx0, op ptr ptr0,
int dim0, op datatype typ0, op access acc0,
op dat arg1, int idx1, op ptr ptr1,
int dim1, op datatype typ1, op access acc1,
op dat arg2, int idx2, op ptr ptr2,
int dim2, op datatype typ2, op access acc2)

Example for sparse matrix-vector product:
op par loop 3(res,"res", edges,

p A, -1,edges id, 1,OP FLOAT,OP READ,
p u, 0,pedge2, 1,OP FLOAT,OP READ,
p du, 0,pedge1, 1,OP FLOAT,OP INC);
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User build processes

Using the same source code, the user can build different
executables for different target platforms:

sequential single-thread CPU execution
purely for program development and debugging
very poor performance

CUDA / OpenCL for single GPU

OpenMP/AVX for multicore CPU systems

MPI plus any of the above for clusters
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Sequential build process

Traditional build process, linking to a conventional library
in which many of the routines do little but error-checking:

op seq.h jac.cpp- op seq.c

? ?'

&

$

%
make / g++
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CUDA build process

Preprocessor parses user code and generates new code:

jac.cpp

?�
�

�
�op2.m preprocessor

? ? ?

jac op.cpp res kernel.cu update kernel.cu op lib.cu

? ? ? ?�
�

�
�make / nvcc / g++
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GPU Parallelisation

Could have up to 10
6 threads in 3 levels of parallelism:

MPI distributed-memory parallelism (1-100)
one MPI process for each GPU
all sets partitioned across MPI processes, so each
MPI process only holds its data (and halo)

block parallelism (50-1000)
on each GPU, data is broken into mini-partitions,
worked on separately and in parallel by different
functional units in the GPU

thread parallelism (32-128)
each mini-partition is worked on by a block of
threads in parallel
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GPU Parallelisation

The 16 functional units in an NVIDIA Fermi GPU each have

32 cores

48kB of shared memory

16kB of L1 cache

Mini-partitions are sized so that all of the indirect data
can be held in shared memory and re-used as needed

reduces data transfer from/to main graphics memory

very similar to maximising cache hits on a CPU to
minimise data transfer from/to main system memory

implementation requires re-numbering from global
indices to local indices – tedious but not difficult

SIAM PP10 – p. 15/23



GPU Parallelisation

One important difference from MPI parallelisation

when using one GPU, all data is held in graphics
memory in between each parallel loop

each loop can use a different set of mini-partitions

current implementation constructs an “execution plan”
the first time the loop is encountered

auto-tuning will be used in the future to optimise the
plan, either statically based on profiling data, or
dynamically based on run-time timing
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Data dependencies

Key technical issue is data dependency when incrementing
indirectly-referenced arrays.

e.g. potential problem when two edges update same node
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Data dependencies

Method 1: “owner” of nodal data does edge computation

drawback is redundant computation when the two
nodes have different “owners”
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Data dependencies

Method 2: “color” edges so no two edges of the same color
update the same node

parallel execution for each color, then synchronize

possible loss of data reuse and some parallelism
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Data dependencies

Method 3: use “atomic” add which combines read/add/write
into a single operation

avoids the problem but needs hardware support

drawback is slow hardware implementation

?

time

without atomics with atomics
thread 0 thread 1

read

add

write

read

add

write

thread 0 thread 1

atomic add

atomic add
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Data dependencies

Which is best for each level?

MPI level: method 1
each MPI process does calculation needed to
update its data
partitions are large, so relatively little redundant
computation

GPU level: method 2
plenty of blocks of each color so still good parallelism
data reuse within each block, not between blocks

block level: method 2 or 3
indirect data in local shared memory, so get reuse
which costs more, local synchronization or atomic
updates?

SIAM PP10 – p. 21/23



Current status

working CUDA prototype for single GPU, with
preprocessor written in MATLAB

plan to look at OpenCL and PGI FORTRAN CUDA

waiting for new NVIDIA Fermi hardware to assess
performance – expanded shared memory and L1/L2
caches will help a lot

looking for collaborators, either as users or
co-developers
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Conclusions

have defined a high-level framework for parallel
execution of algorithms on unstructured grids

looks encouraging for providing ease-of-use, high
performance, and longevity through new back-ends
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