
OP2: an open-source library for
unstructured grid applications

Mike Giles, Gihan Mudalige

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Oxford e-Research Centre

Stanford University, November 17, 2010

NVIDIA, November 22, 2010

OP2 – p. 1

Outline

opportunity, challenges, context

user perspective (i.e. application developer)
API
build process

implementation issues
hierarchical parallelism on GPUs
data dependency
code generation

current status

lessons learned so far

OP2 – p. 2

New heterogeneous hardware

For 10 years, 1995-2005, HPC was relatively simple:

large clusters, with each node having 2 scalar CPUs

MPI programming with FORTRAN / C / C++

Now things have become much more complicated:

multi-core CPUs – up to 12 cores / 24 threads per CPU

each core also has a vector unit – doubling in size to
AVX very soon (and doubling again in near future)

GPUs have up to 512 cores

Best programming approach unclear:
MPI + OpenMP, or MPI + Ct for CPUs
CUDA for GPUs (and CPUs?)

OP2 – p. 3

Software Challenges

HPC application developers want the benefits of the
latest hardware but are very worried about the software
development costs, and the level of expertise required

status quo is not an option – running 24 MPI processes
on a single CPU would give very poor performance,
plus we need to exploit the vector units

For GPUs, I’m happy with CUDA, but like MPI it’s too
low-level for many people

For CPUs, MPI + OpenMP may be a good starting
point, and PGI/CRAY are proposing OpenMP
extensions which would support GPUs and vector units

However, hardware is likely to change rapidly in next
few years, and developers can not afford to keep
changing their software implementation

OP2 – p. 4

Software Abstraction

To address these challenges, need to move to a suitable
level of abstraction:

separate the user’s specification of the application from
the details of the parallel implementation

aim to achieve application level longevity with the
top-level specification not changing for perhaps 10
years

aim to achieve near-optimal performance through
re-targetting the back-end implementation to different
hardware and low-level software platforms

OP2 – p. 5

Context

Unstructured grid methods are one of Phil Colella’s seven
dwarfs (Parallel Computing: A View from Berkeley)

dense linear algebra

sparse linear algebra

spectral methods

N-body methods

structured grids

unstructured grids

Monte Carlo

Extensive GPU work for the other dwarfs, except perhaps
for direct sparse linear algebra.

OP2 – p. 6

Context

Part of a larger project led by Paul Kelly at Imperial College

FE applications

?

?

FD/FV applications

mathematical abstraction (UFL)

computational abstraction (OP2)

MPI MPI MPI MPI MPI MPI MPI MPI MPI

CUDA OpenCL OpenMP/AVX

? ?

H
H
H

H
HHj

�
�

�
�

��� ?

NVIDIA AMD Intel
OP2 – p. 7

History

OPlus (Oxford Parallel Library for Unstructured Solvers)

developed for Rolls-Royce 10 years ago

MPI-based library for HYDRA CFD code on clusters
with up to 200 nodes

OP2:

open source project

keeps OPlus abstraction, but slightly modifies API

an “active library” approach with code transformation to
generate CUDA, OpenCL and OpenMP/AVX code
for GPUs and CPUs

OP2 – p. 8

OP2 Abstraction

sets (e.g. nodes, edges, faces)

datasets (e.g. flow variables)

pointers (e.g. from edges to nodes)

parallel loops
operate over all members of one set
datasets have at most one level of indirection
user specifies how data is used
(e.g. read-only, write-only, increment)

OP2 – p. 9

OP2 Restrictions

set elements can be processed in any order, doesn’t
affect result to machine precision

explicit time-marching, or multigrid with an explicit
smoother is OK
Gauss-Seidel or ILU preconditioning in not

static sets and pointers (no dynamic grid adaptation)

OP2 – p. 10

OP2 API

op init(int argc, char **argv)

op decl set(int size, op set *set, char *name)

op decl ptr(op set from, op set to, int dim,
int *iptr, op ptr *ptr, char *name)

op decl const(int dim, char *type,
T *dat, char *name)

op decl dat(op set set, int dim, char *type,
T *dat, op dat *data, char *name)

op exit()

OP2 – p. 11

OP2 API

Parallel loop for user kernel with 3 arguments:
op par loop 3(void (*kernel)(T0*, T1*, T2*),

char *name, op set set,
op dat arg0, int idx0, op ptr ptr0,
int dim0, char *typ0, op access acc0,
op dat arg1, int idx1, op ptr ptr1,
int dim1, char *typ1, op access acc1,
op dat arg2, int idx2, op ptr ptr2,
int dim2, char *typ2, op access acc2)

Example for sparse matrix-vector product:
op par loop 3(res,"res", edges,

p A, -1,OP ID, 1,"float",OP READ,
p u, 0,pedge2,1,"float",OP READ,
p du, 0,pedge1,1,"float",OP INC);

OP2 – p. 12

User build processes

Using the same source code, the user can build different
executables for different target platforms:

sequential single-thread CPU execution
purely for program development and debugging
very poor performance

CUDA / OpenCL for single GPU

OpenMP/AVX for multicore CPU systems

MPI plus any of the above for clusters

OP2 – p. 13

Sequential build process

Traditional build process, linking to a conventional library
in which many of the routines do little but error-checking:

op seq.h jac.cpp- op seq.c

? ?'

&

$

%
make / g++

OP2 – p. 14

CUDA build process

Preprocessor parses user code and generates new code:

jac.cpp

?�
�

�
�op2.m preprocessor

? ? ?

jac op.cpp jac kernels.cu res kernel.cu
update kernel.cu

op lib.cu

? ? ?

�

�
�

�
�make / nvcc / g++

OP2 – p. 15

GPU Parallelisation

Could have up to 10
6 threads in 3 levels of parallelism:

MPI distributed-memory parallelism (1-100)
one MPI process for each GPU
all sets partitioned across MPI processes, so each
MPI process only holds its data (and halo)

block parallelism (50-1000)
on each GPU, data is broken into mini-partitions,
worked on separately and in parallel by different
functional units in the GPU

thread parallelism (32-128)
each mini-partition is worked on by a block of
threads in parallel

OP2 – p. 16

GPU Parallelisation

The 16 functional units in an NVIDIA Fermi GPU each have

32 cores

48kB of shared memory

16kB of L1 cache

Mini-partitions are sized so that all of the indirect data
can be held in shared memory and re-used as needed

reduces data transfer from/to main graphics memory

very similar to maximising cache hits on a CPU to
minimise data transfer from/to main system memory

implementation requires re-numbering from global
indices to local indices – tedious but not difficult

OP2 – p. 17

GPU Parallelisation

One important difference from MPI parallelisation

when using one GPU, all data is held in graphics
memory in between each parallel loop

each loop can use a different set of mini-partitions

current implementation constructs an “execution plan”
the first time the loop is encountered

auto-tuning will be used in the future to optimise the
plan, either statically based on profiling data, or
dynamically based on run-time timing

OP2 – p. 18

Data dependencies

Key technical issue is data dependency when incrementing
indirectly-referenced arrays.

e.g. potential problem when two edges update same node

���������

A
A
A
A
A
A

�
�
�
�
�
�
�
�
�

���������

@
@
@
@

@
@
A
A
A
A
A
A

�
�
�
�
�
�
PPPPPPPPP

A
A
A
A
A
A

�
�
�
�
�
�A
A
A
A
A
A

������

�
�
�
�
�
�
�
�
�

u

u

u

u

u

u

u

u

u

OP2 – p. 19

Data dependencies

Method 1: “owner” of nodal data does edge computation

drawback is redundant computation when the two
nodes have different “owners”

���������

A
A
A
A
A
A

�
�
�
�
�
�
�
�
�

���������

@
@
@
@

@
@
A
A
A
A
A
A

�
�
�

�
�
�

u

u

u

u

u

�
�
�

�
�
�

PPPPPPPPP

A
A
A
A
A
A
A
A
A
A
A
A

������

�
�
�
�
�
�
�
�
�

u

u

u

u

OP2 – p. 20

Data dependencies

Method 2: “color” edges so no two edges of the same color
update the same node

parallel execution for each color, then synchronize

possible loss of data reuse and some parallelism

u

u

u

u

u

u

u

u

u

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

PPPPPPPPP

A
A
A
A
A
A

@
@
@
@

@
@

A
A
A
A
A
A

�
�
�
�
�
�
�
�
�

���������

���������

A
A
A
A
A
A

A
A
A
A
A
A

������

�
�
�
�
�
�

OP2 – p. 21

Data dependencies

Method 3: use “atomic” add which combines read/add/write
into a single operation

avoids the problem but needs hardware support

drawback is slow hardware implementation

?

time

without atomics with atomics
thread 0 thread 1

read

add

write

read

add

write

thread 0 thread 1

atomic add

atomic add

OP2 – p. 22

Data dependencies

Which is best for each level?

MPI level: method 1
each MPI process does calculation needed to
update its data
partitions are large, so relatively little redundant
computation

GPU level: method 2
plenty of blocks of each color so still good parallelism
data reuse within each block, not between blocks

block level: method 2 or 3
indirect data in local shared memory, so get reuse
which costs more, local synchronization or atomic
updates?

OP2 – p. 23

Current status

initial prototype (with code parser/generator written in
MATLAB!) can generate:

CUDA code for a single GPU
OpenMP code for multiple CPUs

Imperial College have re-implemented CUDA generator
in Rose

airfoil test case shows:
28× speedup on a single GPU
7× speedup for 2 quad-core CPUs

relative to a single CPU thread

new postdoc will work on MPI implementation, using
Parmetis or Chaco for domain decomposition

OP2 – p. 24

Airfoil test code

2D Euler equations, cell-centred finite volume with
scalar dissipation (miminal compute per memory
reference – should consider switching to characteristic
smoothing)

roughly 1.5M edges, 0.75M cells

5 parallel loops:
save soln (direct over cells)
adt calc (indirect over cells)
res calc (indirect over edges)
bres calc (indirect over boundary edges)
update (direct over cells with RMS reduction)

OP2 – p. 25

Airfoil test code

factor 2-4 data reuse in indirect access, but cache
efficiency not known (need extra coding for this, or
hardware monitoring)

some routines seem close to bandwidth-limited;
all have at least 30% bandwidth utilisation

only factor 7 speedup on 16 CPU threads (2×4 cores,
but hyperthreaded) – we think due to memory
bandwidth limits

single precision CUDA limited to 32 registers;
double precision needs up to 63 (but no spillage into
“local” memory)

OP2 – p. 26

Lessons learned so far

1) Code generation works, and it’s not too difficult!

in the past I’ve been scared of code generation since I
have no computer science background

key is the routine arguments have all of the information
required, so no need to parse the entire user code

now helping a maths student develop a code generator
for stochastic simulations in computational biology

a generic solver is inefficient – a “hand-coded”
specialised implementation for one specific model is
much faster
code generator takes in model specification and tries
to produce “hand-coded” custom implementation

I think this is an important trend for the future

OP2 – p. 27

Lessons learned so far

2) The thing which is now causing me most difficulty /
concern is the limited number of registers per thread

limited to about 50 32-bit registers per thread

above this the data is spilled to L1 cache, but only 16kB
of this so when using 256 threads only an extra 16
32-bit variables

above this the data is spilled to L2 cache, which is
384kB but shared between all of the units in the GPU,
so only an extra 48 32-bit variables

the compiler can maybe be improved, but also there are
tricks an expert programmer can use

points to the benefits of an expert framework which
does this for novice programmers

OP2 – p. 28

Lessons learned so far

3) Auto-tuning is going to be important

there are various places in the CUDA code where I
have a choice of parameter values (e.g. number of
threads, number of blocks, size of mini-partitions)

there are also places where I have a choice of
implementation strategy (e.g. thread coloring or atomic
updates?)

what I would like is a generic auto-tuning framework
which will optimise these choices for me, given a
reasonably small set of possible values

as a first step, a undergraduate CS student is working
with me on a 3rd year project on this

OP2 – p. 29

Lessons learned so far

4) Unstructured grids lead to lots of integer pointer
arithmetic

“free” on CPUs due to integer pipelines

costs almost as much as floating point operations on
GPU, at least in single precision

reduces maximum benefits from GPUs?

5) Open source development leads to great collaboration

others test code and find bugs – even better, they figure
out how to fix them

will share code development in the future

project webpage at
http://people.maths.ox.ac.uk/gilesm/op2/

OP2 – p. 30

Conclusions

have defined a high-level framework for parallel
execution of algorithms on unstructured grids

looks encouraging for providing ease-of-use, high
performance, and longevity through new back-ends

Acknowledgements:

Tobias Brandvik, Graham Pullan (Cambridge),
Paul Kelly, Graham Markall (Imperial College),
Nick Hills (Surrey)

Jamil Appa, Pierre Moinier (BAE Systems),
Leigh Lapworth, Yoon Ho, David Radford (Rolls-Royce)

Tom Bradley, Jon Cohen and others (NVIDIA)

EPSRC, NVIDIA and Rolls-Royce for financial support

Oxford Supercomputing Centre OP2 – p. 31

Liszt: discussion points?

different parallel strategies (MPI-level and GPU-level)

hybrid approach at GPU-level (re-order threads by color
to reduce warp divergence)

performance assessment – which tools are best for
identifying bottlenecks?

Joe performance analysis – bandwidth-limited or
compute-bound?

comparative assessment, Liszt vs. OP2, using Joe and
Airfoil test codes?

OP2 – p. 32

Liszt: discussion points?

lessons learned from multi-GPU computation? is
communication overlapped with computation?

register usage – concerns? remedies?

pros and cons of Rose vs. Scala (but I have very limited
understanding in this area)

any interest in auto-tuning?

any plans for automatic mesh refinement? does this
spoil the purity of the programming model?

AVX code generation? experience with vectorisation
using Intel’s icc?

OP2 – p. 33

NVIDIA: discussion points?

register usage
how to minimize (use of shared memory)
compiler optimizations
spillage to L1 cache

assessing cache misses

future bandwidth developments

various CUDA questions

OP2 – p. 34

	Outline
	New heterogeneous hardware
	Software Challenges
	Software Abstraction
	Context
	Context
	History
	OP2 Abstraction
	OP2 Restrictions
	OP2 API
	OP2 API
	User build processes
	Sequential build process
	CUDA build process
	GPU Parallelisation
	GPU Parallelisation
	GPU Parallelisation
	Data dependencies
	Data dependencies
	Data dependencies
	Data dependencies
	Data dependencies
	Current status
	Airfoil test code
	Airfoil test code
	Lessons learned so far
	Lessons learned so far
	Lessons learned so far
	Lessons learned so far
	Conclusions
	Liszt: discussion points?
	Liszt: discussion points?
	NVIDIA: discussion points?

