
1. Roth’s theorem on progressions of length 3

In this chapter our aim is to prove the following theorem of Roth from 1953.

Theorem 1 (Roth’s theorem). There is an absolute constant C such that any subset
A ⊆ {1, . . . , N} with cardinality at least CN/(log logN)1/5 contains a nontrivial
three-term arithmetic progression (that is to say, a triple x, x+d, x+2d with d 6= 0).

Note, in particular, that 1/(log logN)1/5 is eventually smaller than any fixed pos-
itive constant. Thus, for example, if N is large enough then every subset of
{1, . . . , N} of cardinality at least N/100 contains a three-term progression. Roth
actually proved his theorem with log logN in place of (log logN)1/5, a stronger re-
sult. We will present the weaker bound stated because it ties in with generalisations
to longer progressions in a more obvious fashion. On the example sheet you will
find some pointers to a proof of Roth’s original bound.

1. The density increment strategy

Roth’s theorem proceeds via the so-called density increment strategy, and the key
proposition which drives this is the following.

Proposition 1. Suppose that 0 < α < 1 and that N > Cα−C . Suppose that P ⊆ Z
is an arithmetic progression of length N and that A ⊆ P is a set with cardinality
at αN . Then one of the following two alternatives holds:

(i) A contains at least 1
10α

3N2 nontrivial three-term progressions and in par-
ticular at least one;

(ii) There is an arithmetic progression P ′ of length N > N1/3 such that, writ-
ing A′ := A ∩ P ′ and α′ := |A′|/|P ′|, we have α′ > α+ Cα6.

Theorem 1 follows by iterating this proposition. Set P0 := {1, . . . , N} and let us
suppose that we have a set A ⊆ P0 with |A| = αN and containing no nontrivial
3-term progression. Then we attempt to use Proposition 1 repeatedly to obtain
a sequence P0, P1, P2, . . . of progressions together with sets Ai := A ∩ Pi. The
length of Pi will be Ni > N (1/3)i and the densities αi := |Ai|/|Pi| will satisfy
αi+1 > αi + Cα6

i .

Now this iteration cannot last too long: after C/α5 steps the density has already
doubled, after a further C/32α5 steps it has doubled again, and so on. Since no
set can have density greater than one, there can be more more than C ′/α5 steps in
total. We conclude that our applications of Proposition 1 must have been invalid,
which can only mean that the condition Ni > Cα−Ci was violated. Since

Ni > N (1/3)i > N (1/3)C/α
5

and (very crudely)
αi > α,
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we infer the bound
N (1/3)C/δ

5

6 Cα−C .

Rearranging gives

log logN 6 log log(Cα−C) +
C

α5
6
C ′

α5
,

which immediately gives the claimed bound.

Remark. The most important parameter by far is the number of times we performed
the iteration, which was roughly C/α5.

2. A dichotomy involving the Gowers U2-norm

It remains, of course, to establish Proposition 1. Suppose that P is a progression
of length N and that A ⊆ P is a set of size αN . By linearly rescaling (which does
not affect either the density α or the number of 3-term progressions in A) we may
assume that P = {1, . . . , N}. We shall now employ a technical device which is
convenient but, in my opinion, a little ugly and unnatural: set N ′ := 2N + 1, write
G = Z/N ′Z and regard A as a subset of (half of) G in the “obvious” way. Write
Ã for this set, just for now: we shall shortly drop the tilde. The key point to note
is that the number of three-term progressions in Ã is precisely the same as that in
A, because the size of N ′ ensures that there are no wraparound issues.

Let us, then, identify Ã with A. In order to count 3-term progressions, we introduce
the 3-term progressions operator AP3. Given functions f1, f2, f3 : Z/N ′Z→ R, set

AP3(f1, f2, f3) := Ex,d∈Z/N ′Zf1(x)f2(x+ d)f3(x+ 2d).

The quantity
AP3(1A, 1A, 1A)

counts progressions in A; in fact it is 1/N ′2 times the number of such progressions,
including the trivial ones x, x, x. We shall compare this with

AP3(α1[N ], α1[N ], α1[N ]).

The function α1[N ](x) featuring here is defined to be α if 1 6 x 6 N and zero if
x ∈ Z/N ′Z \ {1, . . . , N}.

To compute the difference between the two we introduce the balanced function
f := 1A − α1[N ]. Since AP3 is multilinear, we may expand AP3(1A, 1A, 1A) as a
“main term” AP3(α1[N ], α1[N ], α1[N ]) = α3 AP3(1[N ], 1[N ], 1[N ]) plus seven other
terms AP3(g1, g2, g3) with at least one of the gi being equal to f .

Lemma 1. Suppose that N > Cα−C and that A contains fewer than 1
10α

3N2

nontrivial 3-term progressions. Then there are 1-bounded functions g1, g2, g3, at
least one of which is equal to the balanced function f , such that |T (g1, g2, g3)| > cα3.

Proof. We proceed as suggested in the preceding paragraph. The “main term”
α3 AP3(1[N ], 1[N ], 1[N ]) can be calculated quite explicitly (see the example sheet)
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but it is fairly clearly at least 1
9α

3(N/N ′)2 since whenever one chooses x, d 6 N/3
the progression x, x+d, x+2d is wholly contained within {1, . . . , N}, giving at least
N2/9 progressions in total. Taking account of the αN trivial progressions x, x, x
we have, on the other hand, the bound

AP3(1A, 1A, 1A) 6
1
10
α3(

N

N ′
)2 +

αN

N ′2
.

If N satisfies the condition N > Cα−C for appropriately large C then the second
term is negligible and this is at most 2

19α
3(N/N ′)2. Comparing these two pieces

of information, it follows that the sum of the seven terms involving f must have
magnitude at least ( 1

9 −
2
19 )α3(N/N ′)2. Since N ′ 6 3N , one of these terms must

be larger than cα3, where c > 0 is some absolute constant, as claimed.

The balanced function f has average value 0 by construction, and so it is surprising
that AP3(f, ∗, ∗) (say) is large. To handle this information we introduce the Gowers
U2-norm.

Definition 1 (Gowers U2-norm). Suppose that f : Z/N ′Z → C is a function.
Then we define

‖f‖U2 :=
(
Ex,h1,h2∈Gf(x)f(x+ h1)f(x+ h2)f(x+ h1 + h2)

)1/4
.

Remarks. At this point it is not particularly important to know that ‖f‖U2 is
indeed a norm: we have indicated the proof on the example sheet. It is not, in fact,
immediately obvious that the quantity whose fourth root is to be taken is real and
non-negative, but this will follow from the proof of the next lemma. The U2-norm
belongs to a whole family of norms, the Uk-norms, and we will study them later.
For now let us remark that the Uk-norm plays much the same role in the theory of
(k − 1)-term progressions as the U2-norm does here.

The relationship between the progression operator AP3 and the Gowers U2-norm
is provided by Lemma 3 below, known as a “generalized von Neumann theorem”.
The proof of it involves two applications of the Cauchy-Schwarz inequality in the
following guise.

Lemma 2 (Cauchy-Schwarz inequality). Let X,Y be any finite sets. Suppose that
b : X → C is a 1-bounded function, and let F : X × Y → C be any function. Then

|Ex∈X,y∈Y b(x)F (x, y)|2 6 Ex∈XEy,y′∈Y F (x, y)F (x, y′).

Proof. The usual Cauchy-Schwarz inequality may be rephrased using expectation
notation in the form

|Ex∈Xα(x)β(x)|2 6
(
Ex∈X |α(x)|2

)(
Ex∈X |β(x)|2

)
,

this being valid for any functions α, β : X → C. To obtain the lemma, apply this
with α(x) = b(x) and β(x) = Ey∈Y F (x, y).

Lemma 3 (Generalized von Neumann theorem). Suppose that f1, f2, f3 are 1-
bounded complex-valued functions. Then

|AP3(f1, f2, f3)| 6 ‖fi‖U2
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for i = 1, 2, 3.

Proof. We indicate the proof for i = 1; the other proofs are extremely similar. All
expectations are over G. We begin by observing that

AP3(f1, f2, f3) = Ex,yf1(2x− y)f2(x)f3(y).

This is because the triple 2x − y, x, y ranges over all 3-term progressions as x, y
range over G: here we have used the fact that 2 - N ′.

Applying the Cauchy-Schwarz inequality together with the bound |f2(x)| 6 1 we
obtain

|AP3(f1, f2, f3)|2 6 ExEy,y′f1(2x− y)f1(2x− y′)f3(y)f3(y′).

Applying the same inequality once more, this time together with the bound |f3(y)f3(y′)| 6
1, we obtain

|AP3(f1, f2, f3)|4 6 Ex,x′Ey,y′f1(2x− y)f1(2x− y′)f1(2x′ − y)f1(2x′ − y′).

The right-hand side here, however, is simply a rewriting of ‖f1‖4U2 .

Remark. Note, incidentally, that we have confirmed the positivity of the quantity
whose fourth root was required to be taken in the definition of the U2-norm.

It is a very simple matter to combine Lemma 1 with Lemma 3 to obtain the following
corollary, which is a significant staging post en route to Proposition 1.

Corollary 1 (Gowers norm dichotomy). Let α, 0 < α < 1, be a real number.
Suppose that N > Cα−C and that A is a subset of {1, . . . , N} with cardinality αN
and fewer than 1

10α
3N2 nontrivial 3-term progressions. Let f : G → R be the

balanced function of A. Then ‖f‖U2 > cα3.

3. Inverse results for the Gowers U2-norm

To conclude the proof of Proposition 1 and hence of Roth’s theorem itself, we must
study 1-bounded functions f for which ‖f‖U2 > δ. The tool used to do this is the
(discrete) Fourier transform.

For r ∈ Z/N ′Z we write

f̂(r) := Ex∈Gf(x)e(−rx/N ′).

Recall that e(θ) is the same thing as e2πiθ. The following lemma encodes the
properties of the Fourier transform that we need here. There is more to the theory
– for example we are not mentioning the inversion formula at this stage. We shall
develop the theory further in Chapter ??.

Lemma 4 (Some properties of the Fourier transform). Suppose that f, g : G→ C
are two functions.
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(i) Write ‖f‖2 :=
(
Ex∈G|f(x)|2

)1/2 and ‖f̂‖2 :=
(∑

r |f̂(r)|2
)1/2. Then

‖f‖2 = ‖f̂‖2.
(ii) Define the convolution of f and g, f ∗ g, by

f ∗ g(x) := Ey∈Gf(y)g(x− y).

Then (f ∗ g)∧(r) = f̂(r)ĝ(r) for all r.
(iii) We have ‖f‖U2 = ‖f̂‖4, where ‖f̂‖4 :=

(∑
r |f̂(r)|4

)1/4.

Proof. All three parts of this lemma may be verified by straightforward calculation.
Parts (i) and (iii) require the orthogonality relation

Ex∈Ge((r − s)x/N) = δr,s,

which may be verified using the formula for the sum of a geometric series. Though
it can be proved by direct computation, the most natural way to prove (iii) is to
note that, in view of (i) and (ii), it suffices to prove that ‖f‖4U2 = ‖f ∗ f‖22. To see
this, expand the right hand side as

ExEy,y′f(y)f(x− y)f(y′)f(x− y′)

and note that the quadruple (y, y′, x − y′, x − y) ranges uniformly over the 2-
dimensional parallelepipeds in the definition of the U2-norm as x, y, y′ range over
G.

Comment for those interested. Our definition of the norms ‖ · ‖2 and ‖ · ‖4 looks
rather haphazard, sometimes involving E and other times

∑
. This reflects the

fact that the function f is defined on the group G = Z/N ′Z, whereas its Fourier
transform f̂ is defined on the dual Ĝ, defined abstractly as the group of characters
or homomorphisms from G to C×. Though this dual group Ĝ is isomorphic to G,
it turns out that the normalised counting measure on G is dual to the counting
measure on Ĝ. Thus integration with respect to the normalised counting measure,
for which we have been using the symbol E, is dual to

∑
. We tend to use this

notation in the subject not because we are purists, but rather to avoid the necessity
to take account of normalising factors of N ′ throughout the proofs.

We are now in a position to prove an “inverse theorem” for the U2-norm. In words,
this states that a function with large Gowers U2-norm correlates with a linear phase
function. Here is the precise statement.

Theorem 2 (Inverse theorem for the U2-norm). Suppose that f : G → C is a
1-bounded function with ‖f‖U2 > δ. Then there is some r such that

|Ex∈Gf(x)e(−rx/N ′)| > δ2.

Proof. The conclusion is equivalent to the assertion that ‖f̂‖∞ > δ2. To prove this,
we use Lemma 4, obtaining the following chain of equalities and inequalities:

δ4 6 ‖f‖4U2 = ‖f̂‖44 6 ‖f̂‖42 6 ‖f̂‖22‖f̂‖2∞ = ‖f‖22‖f̂‖2∞ 6 ‖f̂‖2∞.
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The middle bound in an instance of the inequality
n∑
i=1

a2
i 6

(
max

i=1,...,n
ai
) n∑
i=1

ai,

valid for nonnegative real numbers ai and applied on this occasion with the ai equal
to the squared Fourier coefficients |f̂(r)|2.

By combining this with Corollary 1 we can show that if a set A ⊆ {1, . . . , N} of
cardinality αN contains fewer than 1

10α
3N2 3-term progressions then

|Ex∈Gf(x)e(−rx/N ′)| > cα6

for some r ∈ G. Since the function f is supported on {1, . . . , N} and N ′ = 2N + 1,
this immediately implies the following proposition in which there is no mention of
the group G, which has now served its purpose.

Proposition 2. Suppose that α is a real number with 0 < α < 1, that N > Cα−C

and that A ⊆ {1, . . . , N} is a set with cardinality αN . Suppose that A contains fewer
than 1

10α
3N2 3-term APs and let f = 1A − α be its balanced function, considered

now as a function on {1, . . . , N}. Then there is some θ ∈ [0, 1] such that

|
∑
x∈N

f(x)e(θx)| > cα6N.

4. An application of Dirichlet’s principle of the pigeons

To complete the proof of Proposition 1, the density increment step, and hence
of Roth’s theorem itself, we must do the following. We are required to take the
conclusion of Proposition 2, viz

(1) |
∑
x∈N

f(x)e(θx)| > cα6N,

and use it to find a progression P ⊆ {1, . . . , N} of length at least N1/3 on which A
has density at least α+ cα6, or in other words

(2)
∑
x∈P

f(x) > cα6|P |.

Our task, then, is to remove a modulus sign and an e(θx).

The latter task is accomplished by partitioning {1, . . . , N} into progressions on
which e(θx) is roughly constant. Let us recall first a lemma of Dirichlet.

Lemma 5 (Dirichlet). Suppose that θ ∈ R and that 0 < δ < 1. Then there is a
positive integer d 6 1/δ such that ‖dθ‖R/Z 6 δ.

Proof. Consider the numbers 0, θ, 2θ, . . . ,mθ where m = b1/δc. By the pigeonhole
principle some pair of these, let us say jθ and j′θ, have fractional parts differing by
at most δ. We may then take d = |j − j′|.
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Lemma 6. Let 0 < η < 1 and suppose that θ ∈ R. Suppose that N > Cη−6

and that θ ∈ R. Then it is possible to subdivide {1, . . . , N} into progressions Pi,
i = 1, . . . , k, each of length at least N1/3, such that supx,x′∈Pi |e(θx) − e(θx′)| 6 η
for each i.

Proof. Take δ = 1
20ηN

−1/3 in the previous lemma and select a d 6 20N1/3/η for
which ‖θd‖R/Z 6 1

20ηN
−1/3. If P is any progression with common difference d and

length at most 2N1/3 then, by the triangle inequality,

sup
x,x′∈P

|e(θx)− e(θx′)| 6 2N1/3|e(θd)− 1|.

Using the inequality |e(t)− 1| = 2| sinπt| 6 2π‖t‖R/Z it follows that

sup
x,x′∈P

|e(θx)− e(θx′)| 6 4πN1/3‖θd‖R/Z 6 η.

If N > Cη−6 then d is at most
√
N , and it is clear (though ever-so-slightly tedious

to write down properly) that {1, . . . , N} may be partitioned into progressions Pi of
common difference d and length between N1/3 and 2N1/3.

Recall that our task was to go between (1) and (2). For the rest of the argument c
is the same absolute constant as appears in (1). Let us apply the previous lemma
with η = cα6/2; we shall take P to be one of the progressions Pi. Equation (1)
manifestly implies that

k∑
i=1

|
∑
x∈Pi

f(x)e(xθ)| > cα6
k∑
i=1

|Pi|.

By the triangle inequality and the bound |f(x)| 6 1, the left-hand side is at most
k∑
i=1

|
∑
x∈Pi

f(x)|+
k∑
i=1

|Pi| sup
x,x′∈Pi

|e(θx)− e(θx′)|,

and so
k∑
i=1

|
∑
x∈Pi

f(x)| > 1
2cα

6
k∑
i=1

|Pi|.

To get rid of the modulus signs we employ a rather dirty trick, which is to note
that

k∑
i=1

∑
x∈Pi

f(x) = 0.

Adding this to the preceding inequality and applying the pigeonhole principle, we
see that there is some i such that

|
∑
x∈Pi

f(x)|+
∑
x∈Pi

f(x) > 1
2cα

6|Pi|,

which can only mean that ∑
x∈Pi

f(x) > 1
4cα

6|Pi|.
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This is (2), and so the proof of Proposition 1 and hence of Roth’s theorem is now
complete.

5. Further remarks and reading*

One traditionally writes r3(N) for the cardinality of the largest subset of {1, . . . , N}
not containing three distinct elements in arithmetic progression. We have shown
that r3(N) 6 CN(log logN)−1/5; a major open problem in additive combinatorics
is to obtain reasonably close upper and lower bounds for r3(N). As we remarked at
the start of the chapter, Roth originally proved the rather better bound r3(N) 6
CN(log logN)−1. This was subsequently improved to r3(N) 6 CN(logN)−c, for
a small constant c > 0, by Szemerédi [?]. Bourgain [?] showed that any c < 1/2 is
acceptable. Later, in a technical tour de force, he improved this to obtain r3(N) 6
CN(logN)−c for any c < 2/3.

The most obvious nontrivial lower bound is that r3(N) > CN log 2/ log 3, obtained
by noting that the set

S = {
∑
i

εi3i : εi ∈ {0, 1}}

consisting of numbers whose base three expansion contains only zeros and ones is
free of three-term progressions. In particular, contestants at the 1983 International
Mathematical Olympiad were asked whether or not there are 1983 numbers less
than 100000: that the answer is yes may easily be shown using this construction.

A better construction is that of Behrend [?] from 1946, which has not subsequently
been improved in any substantial way. Here is a sketch of the argument, which is a
sketch only in that we have been rather carefree in our use of the ≈ notation. The
reader should have little trouble in filling in the details.

The key observation is that a sphere in Rd does not contain any nontrivial 3-term
progressions, on account of its being convex. We will choose an appropriate d later;
let L > 1 be a further parameter to be chosen later. If a point (x1, . . . , xd) ∈ Rd
lies in the box [1, L]d then the square of its distance from the origin is a positive
integer less than or equal to dL2. It follows by the pigeonhole principle that there
is sphere containing at least Ld−2/d of the integer points in [1, L]d. Let S ⊆ Zd be
the set of points on this sphere, which is of course free of three-term progressions.

To turn this into a subset of Z, consider the map ψ : [1, L]d → Z defined by

ψ(x1, . . . , xd) = x1 + (2L)x2 + · · ·+ (2L)d−1xd.

The set A = ψ(S) is a subset of {1, . . . , N}, where N = (2L)d, and it is also free
of 3-term progressions (since there are no “carries” – we leave the details as an
exercise). Now

|A|
N

=
1

d2dL2
≈ 1

2dL2
.
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The fact that N = (2L)d implies that logN ≈ d logL. Therefore
|A|
N
≈ 2−( logN

logL+logL),

at which point it becomes clear that we should choose logL ≈
√

logN to get a
bound of the shape |A| > Ne−C

√
logN .


