
CHAPTER 4

Additive Energy and Balog-Szemerédi-Gowers

4.1. Introduction

Suppose that A and B are two finite sets in some ambient abelian group. We
define the normalised additive energy ω+(A, B) to be the number of quadruples
(a1, b1.a2, b2) ∈ A × B × A × B with a1 + b1 = a2 + b2 divided by |A|3/2|B|3/2.
We will often speak of the additive energy ω+(A) of a single set A, by which we
mean ω+(A, A). Additive energy is intimately related to the sumset operation. One
aspect of this relation is very easy to describe, and it asserts that small doubling
implies large additive energy. More generally one has a “bilinear” version involving
two different sets A and B.

Lemma 4.1 (Small sumset implies large additive energy). Suppose that σ[A, B] !
K. Then ω+(A, B) " 1/K. In particular if σ[A] ! K then ω+(A) " 1/K.

Proof. For x ∈ A + B write r(x) for the number of pairs (a, b) ∈ A × B with
a + b = x. The simplest of double-counting arguments gives

∑
r(x) = |A||B|, and

on the other hand
∑

r(x)2 is precisely the number of solutions to a1 + b1 = a2 + b2.
It follows from the Cauchy-Schwarz inequality that

|A|3/2|B|3/2ω+(A, B) =
∑

r(x)2 =
∑

x∈A+B

r(x)2

" 1
|A + B|

( ∑
r(x)

)2 =
|A|2|B|2

|A + B| " 1
K

|A|3/2|B|3/2,

as required.

The most obvious converse to this fails: a set may have large additive energy
without having large doubling. If A1 = {1, . . . , n} and A2 ⊆ {n + 1, . . . } is an
arbitrary set of size n , and if A = A1 ∪A2, then ω+(A) is certainly at least 1/100,
yet σ[A] could well have size ∼ cn if A2 has no particular additive structure.

In the preceding example a large piece of the set A, namely A1, had considerable
structure. One of the most useful results in additive combinatorics is the Balog-
Szemerédi-Gowers theorem, which asserts that this situation is typical.

Theorem 4.1 (Balog-Szemerédi-Gowers). Suppose that ω+(A, B) " 1/K. Then
there are sets A′ ⊆ A and B′ ⊆ B with |A′|/|A|, |B′|/|B| " cK−C such that
σ[A′, B′] ! CKC .
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It follows from Ruzsa calculus that both σ[A′] and σ[B′] are at most CKC as
well. An immediate corollary of the theorem is the following assertion about one
set rather than two, which was the version stated by both Balog-Szemerédi and
Gowers.

Corollary 4.1 (Balog-Szemerédi-Gowers). Suppose that ω+(A) " 1/K. Then
there is a set A′ ⊆ A with |A′|/|A| " cK−C such that σ[A′] ! CKC .

Though it is a more general statement, the proof of Theorem 4.1 is actually con-
ceptually a little easier than a direct proof of Corollary 4.1. Our treatment follows
Sudakov-Szemerédi-Vu [?], as written up in Tao and Vu’s book.

4.2. A lemma about paths of length three

The heart of the proof of Theorem 4.1 is a lemma about bipartite graphs which is
of interest in its own right.

Lemma 4.2. Suppose that G is a bipartite graph on vertex set V ∪W , where |V | =
|W | = n, and with αn2 edges all of which join a vertex in V to one in W . Then
there are subsets V ′ ⊆ V and W ′ ⊆ W with |V ′|, |W ′| " cαCn such that between
every pair v′ ∈ V ′ and w′ ∈ W ′ there are at least cαCn2 paths of length 3 in G.

To prove this we must first establish a similar (but slightly weaker) lemma about
paths of length two.

Lemma 4.3. Suppose that G is a bipartite graph on vertex set V ∪W , where |V | =
|W | = n, and with αn2 edges all of which join a vertex in V to one in W . Let
η > 0 be a further parameter. Then there is a subset V ′ ⊆ V with |V ′| " αn/2 such
that between (1− η)|V ′|2 of the ordered pairs of points (v1, v2) ∈ V ′ × V ′ there are
at least ηα2n/2 paths of length 2.

Proof. If x ∈ G, write N(x) for the neighbourhood of x in G, or in other words
the set of vertices in G which are joined to x by an edge. Note that, since G is
bipartite, N(v) ⊆ W whenever v ∈ V and N(w) ⊆ V whenever w ∈ W .

Now by a double-counting argument, we have
∑

w∈W

∑

v∈V

1vw∈E(G) = αn2,

where E(G) is of course the set of edges of G. Applying Cauchy-Schwarz to this
gives ∑

w∈W

∑

v,v′∈V

1vw∈E(G)1v′w∈E(G) " α2n3,

or in other words

(4.1) Ev,v′∈V |N(v) ∩N(v′)| " α2n.

This constitutes the rather basic observation that, on average, pairs (v, v′) have
many common neighbours. Now say that two vertices v and v′ are extremely un-
friendly if |N(v)∩N(v′)| < ηα2n/2, or in other words if there are fewer than ηα2n/2
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paths of length two between v and v′. Write S ⊆ V × V for the set of extremely
unfriendly pairs. Manifestly, from (4.1), we have

Ev,v′∈V (η − 1(v,v′)∈S)|N(v) ∩N(v′)| " ηα2n/2.

This may be rewritten as

Ev,v′∈V (η − 1(v,v′)∈S)
∑

w∈W

1vw∈E(G)1v′w∈E(G) " ηα2n/2.

Turning the sum over W into an expectation (by dividing by |W | = n) and swapping
the order of summation, this implies that

Ew∈W Ev,v′∈V (η − 1(v,v′)∈S)1v,v′∈N(w) " ηα2/2.

In particular there is a choice of w such that

Ev,v′∈V (η − 1(v,v′)∈S)1v,v′∈N(w) " ηα2/2.

Simply the fact that this expectation is greater than zero tells us that at most
a proportion η of the pairs v, v′ ∈ N(w) are extremely unfriendly. Furthermore
(ignoring the term involving S completely) we have

Ev,v′∈V 1v,v′∈N(w) " α2/2,

which implies that |N(w)| " α/
√

2. Taking V ′ := N(w), this proves the result.

Remarks. This proof looks extremely slick at first sight. However when faced with
the task of proving Lemm a4.3 it is not hard to develop the feeling that one must
somehow select a very “connected” subset of V . The way we have done this is essen-
tially by picking a random vertex w ∈ W , and taking V ′ to be the neighbourhood
N(w) of w in V , though this was easier to manage by using expectations rather
than starting with “pick w ∈ W uniformly at random and consider N(w)”. This
kind of technique seems to have been pioneered in this context by Gowers, and it
is called “dependent random selection”: one chooses something random (w in this
case), then makes a deterministic choice based on it (N(w)).

It is not possible to guarantee that all pairs v, v′ ∈ V have many paths of length two
between them; on the second example sheet you are asked to construct an example
where this is not possible.

Let us turn now to the proof of Lemma 4.2. This is actually nowhere near as
“clever” as the proof of the preceding lemma, but it is a little tedious.

Proof of Lemma 4.2. Delete all edges emanating from vertices in V with degree
less than αn/2; this causes the deletion of at most αn2/2 edges in total, so at least
αn2/2 remain. From now on if we speak of an edge we mean one of these edges.
Let η > 0 be a parameter to be chosen later. Using the preceding lemma, we may
select a set V ′ ⊆ V with |V ′| " αn/4 such that a proportion 1 − η of the pairs of
vertices in V ′ have at least ηα2n/8 common neighbours in W .

All vertices in V ′ have degree 0 or else degree at least αn/2, but it is conceivably
the case that some do have degree 0. However if η < 1/4 then clearly no more than
half of them do. Thus we may pass to a set V ′′ ⊆ V ′, |V ′′| " αn/8, such that every
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vertex in V ′′ has degree at least αn/2 and still such that a proportion 1− η of the
pairs of vertices in V ′′ have at least ηα2n/8 common neighbours in W .

Now let us focus on W . Look at all the edges from V ′′ into W : since each vertex in
V ′′ has degree at least αn/2, and |V ′′| " αn/8, there are at least α2n2/16 of these.
It follows that there is some set W ′ ⊆ W , |W ′| " α2n/32, such that each w ∈ W ′

has at least α2n/32 neighbours in V ′′.

Before concluding, let us jump back over to the other side and effect one final
refinement of V ′′. Say that a vertex v ∈ V ′′ is sociable if there is a proportion at
least 1−2η of the other vertices v′ ∈ V ′′ are such that v and v′ have at least ηα2n/8
common neighbours. Then at least half the vertices of V ′′ are sociable: call this
set V ′′′, so that |V ′′′| " αn/16.

We now claim that for any x ∈ V ′′′ and y ∈ W ′ there are many paths of length
three between x and y (in the original graph G). Indeed by the choice of W ′ there
must be at least α2n/32 elements of V ′′ adjacent to y. There must also be at least
(1 − 2η)|V ′′| vertices of V ′′ which have at least ηα2n/8 common neighbours with
x. Provided that α2n/32 " 3η|V ′′|, which will be the case if η ! α2/96, these two
sets intersect in a set Ṽ ⊆ V ′′ of size at least η|V ′′|. Thus each element z of Ṽ is
adjacent to y, and has ηα2n/8 common neighbours with x. This clearly leads to at
least η2α2|V ′′|n/8 paths of length three between x and y.

The only constraints on η were that η ! 1/4 and that η ! α2/96. The latter is
clearly the more severe constraint, so set η := α2/96. The lemma is then proved.

4.3. Proof of the Balog-Szemerédi-Gowers theorem

In this section we deduce Theorem 4.1 from the graph-theoretic lemma of the
previous section.

Suppose then that A, B are two sets in some abelian group G and that ω+(A, B) !
1/K. This means, of course, that there are at least |A|3/2|B|3/2/K solutions to
a1 − b1 = a2 − b2. Note that the number of solutions to this equation is at most
|A|2|B|, since once a1, b1 and a2 are specified b2 is uniquely determined. Therefore
|B| ! K2|A|, and similarly |A| ! K2|B|.

By an argument almost identical to the one used in the proof of Theorem 2.3 there
are many “popular differences” in A−B. Specifically, writing s(x) for the number
of pairs (a, b) ∈ A×B with a− b = x, there are at least |A|1/2|B|1/2/2K values of
x for which s(x) " |A|1/2|B|1/2/2K.

Define a bipartite graph G on vertex set A∪B by joining a ∈ A to b ∈ B by an edge
if a− b is a popular difference in the above sense. Then G has at least |A||B|/4K2

edges. Let n = max(|A|, |B|), and “pad out” the smaller vertex class of G to obtain
a new graph having n vertices in each class. Recalling that K−2 ! |A|/|B| ! K2,
this graph has at least αn2 edges where α := 1/4K4.
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Applying Lemma ??, we may locate sets A′ ⊆ A and B′ ⊆ B with |A′|/|A|, |B′|/|B| "
cK−C and such that for every a′ ∈ A′ and b′ ∈ B′ there are at least cαCn2 paths of
length 3 in G between a′ and b′. This, of course, means that there at least cαCn2

choices of a′′ ∈ A and b′′ ∈ B such that all three of a′ − b′′, a′′ − b′′ and a′′ − b′ are
popular.

Noting that (a′− b′) = (a′− b′′)− (a′′− b′′)+ (a′′− b′), it follows that a′− b′ can be
written in at least cαCn2 ways as x−y+z, where x, y and z are popular differences.
These are genuinely distinct representations, since it is easy to recover a′′ and b′′

from knowledge of a′, b′, x, y and z. However the number of popular differences is
bounded above by 2K|A|1/2|B|1/2 ! Cα−Cn, as can be seen by simply double-
counting pairs (a, b) ∈ A×B. It follows that

|A′ −B′| · cαCn2 ! (Cα−Cn)3,

which of course implies that |A′ − B′| ! Cα−Cn ! C ′KC′
n. In view of the lower

bounds for |A′| and |B′| already obtained, this clearly implies that |A′ − B′| !
CKC |A′|1/2|B′|1/2 and hence by Ruzsa calculus that σ[A′, B′] ! CKC , as claimed.




