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Abstract

We prove that if A ⊆ {1, . . . , N} has density at least (log logN)−c, where c is an absolute
constant, then A contains a triple (a, a + d, a + 2d) with d = x2 + y2 for some integers
x, y, not both zero. We combine methods of Gowers and Sárkőzy with an application
of Selberg’s Sieve. The result may be regarded as a step towards establishing a fully
quantitative version of the polynomial Szemerédi Theorem of Bergelson and Leibman.

1. Introduction. If one believes that mathematics is the study of patterns then it is of no
surprise that the following result of Szemerédi [16] is often regarded as one of the highlights
of all combinatorics.

Theorem 1 (Szemerédi) Let α > 0 be a real number and let k be a positive integer. Then
there is N0 = N0(k, α) such that any subset A ⊆ {1, . . . , N} of size at least αN contains an
arithmetic progression of length k, provided that N ≥ N0(k, α).

Szemerédi’s proof was long and combinatorial but just two years later Furstenburg provided
a completely different proof of Theorem 1 using ergodic theory. Furstenburg’s methods have
proved extremely amenable to generalisation, and Furstenburg himself proved the following
result.

Theorem 2 Fix α > 0 and let A ⊆ {1, . . . , N} have size αN . Then provided N > N1(α)
is sufficiently large one can find two distinct elements x, x′ ∈ A whose difference x− x′ is a
perfect square.

As with all such applications of ergodic theory Furstenburg’s approach gave no bound on
N1(α). At about the same time Sárkőzy [12] proved the same result in a completely different
manner. Sárkőzy’s argument took inspiration from a much earlier paper of Roth [10] in which
Szemerédi’s Theorem was proved for progressions of length 3. The method used is analytic
in spirit and does lead to an effective bound on N1(α), albeit one which is a great distance
from the conjectured truth.

The paper [12] was the first in a series of three, and in the final paper [13] of this series an
analytic proof of a generalisation of Theorem 2 was outlined. This generalisation says that
the squares may, in the formulation of that theorem, be replaced by the set {p(d) : d ∈ N}
where p is any polynomial which maps N to itself and has an integer root. To see that some
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restriction on the polynomial is necessary for such a result to hold, we invite the reader to
construct a set with density 1

3
containing no difference of the form x2 + 1.

Since the late 1970s there have been several significant advances in our understanding of
these and related questions. Firstly we mention the result of Bergelson and Leibman from
1996 [1], which is an example of how far Furstenburg’s ergodic-theoretic methods have been
able to take us.

Theorem 3 (Bergelson-Leibman) Fix α > 0 and let A ⊆ {1, . . . , N} have size αN . Let
p1, . . . , pr be polynomials with p(N) ⊆ N and p(0) = 0. Then provided N > N2(α) is large
enough (exactly how large will depend on the polynomials pi as well as on α) we can find
a, d ∈ N for which all r of the numbers a+ pi(d) lie in A.

This extends both Theorem 1 and Theorem 2 and implies, amongst other things, that dense
subsets of the integers contain arbitrarily long arithmetic progressions whose common dif-
ference is a non-zero square. Secondly there is a result of Gowers [4], which gives the first
bounds for Szemerédi’s Theorem.

Theorem 4 (Gowers) Let k > 0 be an integer. Then there is an effectively computable
constant c(k) such that any subset of {1, . . . , N} of density at least (log logN)−c(k) contains
a k-term arithmetic progression.

Gowers’ argument takes inspiration from Roth’s paper [10]. As we have already remarked,
Sárkőzy’s methods also bear some resemblance to those of Roth. It is therefore natural to
ask whether Gowers’ techniques can be adapted to give bounds for questions related to the
polynomial Szemerédi Theorem.

In §3 we give a new variant on Sárkőzy’s proof of Theorem 2 which we believe to be sub-
stantially easier to understand than the original (though it gives a worse bound for N1(α)).
Perhaps more importantly we demonstrate that this argument can be made to fit almost en-
tirely into the general methodology of [4], which we shall outline below. It should be pointed
out that in 1985 Srinivasan [15] gave a still different argument which seems to be rather
simpler than that of Sárkőzy, but more complex than the one we shall give here. The rest of
the paper is devoted to a proof of the following result.

Theorem 5 There is a constant c such that any subset of {1, . . . , N} of density at least
(log logN)−c contains a 3-term arithmetic progression whose common difference is positive
and of the form x2 + y2.

The proof of this result involves finding a mutual generalisation of the methods of Gowers
and Sárkőzy, together with a slightly surprising use of the Selberg Sieve.

The reader will find it hard to understand this section unless she has a working knowledge of
the methods of Gowers, such as can be obtained by reading [3] or, even better, parts of [4].
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It would be a sizeable undertaking to summarise those papers in any detail here, and indeed
there seems little point in doing so.

What we will do is offer a crude outline of the top-level structure of Gowers’ proof of Sze-
merédi’s Theorem. All our arguments in this paper will have this broad structure at their
heart. Suppose then that we have a set A ⊆ {1, . . . , N} of size δN which contains no arith-
metic progression of length k. Set A0 = A, δ0 = δ and N0 = N .

• At the ith stage of our argument we will have a set Ai ⊆ {1, . . . , Ni} with density δi
which contains no arithmetic progression of length k.

• The fact that Ai contains no progressions of length k implies that Ai is non-random
in a certain rather precise sense involving certain Fourier coefficients being large. This
means that Ai does not satisfy a property which is possessed by almost all sets of
density δi. In Gowers’ proof this property is known as (k − 2)-uniformity.

• If a set is not (k− 2)-uniform then, by a long and complicated argument, it is possible
to show that Ai has density at least δi + η(δi) on a fairly long progression P , where η
is an increasing function of δi.

• Define Ai+1 to be Ai ∩ P and rescale so that P has common difference 1. Set δi+1 =
δi + η(δi) and Ni+1 = |P |.

Iterating this argument leads to an effective version of Szemerédi’s Theorem since after a
finite number of steps the density δi will exceed 1, a contradiction.

2. Notation and Basic Concepts. We shall make substantial use of Fourier analysis
on finite cyclic groups, so we would like to take this opportunity to give the reader a swift
introduction. If nothing else this will serve to clarify notation.

Let N be a fixed positive integer, and write ZN for the cyclic group with N elements. Let ω
denote the complex number e2πi/N . Although ω clearly depends on N , we shall not indicate
this dependence in the rest of the paper, trusting that the value of N is clear from context.
Let f : ZN → C be any function. Then for r ∈ ZN we define the Fourier transform

f̂(r) =
∑
x∈ZN

f(x)ωrx.

We shall repeatedly use two important properties of the Fourier transform. The first is
Parseval’s identity, which states that if f : ZN → C and g : ZN → C are two functions then

N
∑
x∈ZN

f(x)g(x) =
∑
r∈ZN

f̂(r)ĝ(r).
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The second is the interaction of convolutions with the Fourier transform. If f, g : G→ C are
two functions on an abelian group G we define the convolution

(f ∗ g)(x) =
∑
y∈G

f(y)g(x− y).

It is easy to check that
(f ∗ g)̂ (r) = f̂(r)ĝ(r).

One more piece of notation: we will often use the same letter to denote both a set and its
characteristic function.

It is now possible to formally introduce the concepts of uniformity and quadratic uniformity,
the only types of uniformity that will feature in this paper. These correspond to what we
called 1-uniformity and 2-uniformity in our earlier outline.

Let A ⊆ ZN be a set of size αN and let f = A− α be its balanced function. We say that A
is η-uniform if ‖f̂‖∞ ≤ ηN . To define quadratic uniformity we need some extra notation. If
f : G→ C is any function on an abelian group we write

∆(f ;h)(x) = f(x)f(x− h).

Let f be the balanced function of A. Then A is said to be quadratically η-uniform if∑
h

‖∆(f ;h)ˆ‖2∞ ≤ ηN3. (1)

These definitions are very similar, though not completely identical, to those in [4]. For a
detailed discussion of the basic properties of uniformity and quadratic uniformity the reader
should consult [4]. It turns out that being quadratically uniform is a stronger requirement
than being uniform (and so knowing a set fails to be quadratically uniform gives less informa-
tion than knowing it fails to be uniform). We will need the following quantitative statement
of this fact later on.

Proposition 6 If A is quadratically η-uniform then it is η1/4-uniform.

Proof By (1) we have ∑
h

|∆(f ;h)̂ (0)|2 ≤ ηN3.

Writing this statement out in full gives∑
a+b=c+d

f(a)f(b)f(c)f(d) ≤ ηN3
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which implies, by Parseval’s theorem, that∑
r

|f̂(r)|4 ≤ ηN4.

It follows immediately that ‖f̂‖4∞ ≤ ηN4, which implies the proposition. �

3. A Short Proof of Sárkőzy’s Theorem for Squares. In this section we prove Theorem
2 using an iterative argument of the type outlined above. For obvious reasons we say that A
has a square difference if there are distinct elements x and x′ in A with x− x′ a square. Let
us recall Theorem 2.

Theorem 2 Fix α > 0 and let A ⊆ {1, . . . , N} have size αN . Then provided N > N1(α) is
sufficiently large A has a square difference.

As the first part of our argument we shall show that a set A ⊆ {1, . . . , N} with size αN
which contains no square difference fails to be η-uniform for some reasonably large η. In
proving this statement we shall use just one fact about the squares, an elementary proof of
which may be found in [8].

Lemma 7 Let r6(n) denote the number of ordered sextuples (a1, . . . , a6) with a21+· · ·+a26 = n.
Then

n2 ≤ r6(n) ≤ 40n2.

In fact we shall have no use for the lower bound in the lemma, but have included it to
emphasise that r6 is comparable to n2. �

Now let S be the set of non-zero squares less than N/2, and let B = A ∩ [0, N/2]. Regard
S, A and B as subsets of ZN . Assume without loss of generality that |B| ≥ αN/2. If A−A
contains no square then certainly∑

x,d

B(x)A(x+ d)S(d) = 0,

where the sums are over ZN . It follows easily from Parseval’s Theorem and the triangle
inequality that ∑

r 6=0

|Ŝ(r)||B̂(r)||Â(r)| ≥ |Ŝ(0)||B̂(0)||Â(0)| ≥ 1
4
α2N5/2. (2)

The left-hand side here is at most

sup
r 6=0
|Â(r)|1/6

∑
r

|Ŝ(r)||B̂(r)||Â(r)|5/6
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which, by Hölder’s inequality, is at most

sup
r 6=0
|Â(r)|1/6

(∑
r

|Ŝ(r)|12
)1/12(∑

r

|B̂(r)|2
)1/2(∑

r

|Â(r)|2
)5/12

. (3)

Now (by Parseval again)
∑

r |Ŝ(r)|12 is equal to N
∑

xR6(x)2, where R6(x) is the number of
solutions to a21 + · · · + a26 ≡ x(modN) with a2i ∈ (0, N/2]. An easy exercise using Lemma 7
shows that R6(x) ≤ 600N2 for all x, which gives the bound∑

r

|Ŝ(r)|12 ≤ 219N6. (4)

Parseval also gives
∑

r |Â(r)|2 ≤ N2 and
∑

r |B̂(r)|2 ≤ N2. Substituting these and (4) into
(3) gives that there is r 6= 0 for which

|Â(r)| ≥ 2−30α11/2|A|. (5)

In other words, A is non-uniform.

To complete our proof of Theorem 2 by the iteration method we are going to use (5) to show
that A has increased density on a square-difference AP. If we pass to such a subprogression
and then rescale this subprogression to have common difference 1, the resulting set A′ will
still not contain a square difference. To find a subprogression of the desired type requires a
further standard fact about the squares, which is a quantitative version of the fact that the
squares are a Heilbronn Set (see [7]). As noted in [4] it is rather difficult to find a precise
statement of this result in the literature. Fortunately however we can use Lemma 5.5 of [4]
to simply write down the next lemma.

Lemma 8 Let a ∈ ZN , let t ≤ N , and suppose that t ≥ 22128. Then there is p ≤ t such that
|p2a| ≤ t−1/16N .

Now let r be such that |Â(r)| is large. Put t = N1/4 in Lemma 8 and let p ≤ N1/4 be such that
|p2r| ≤ N127/128. Let B be the arithmetic progression p2, 2p2, . . . , Lp2 where L = 1

20
N1/128.

One calculates

|B̂(r)| ≥ L sup
x=1,...,L

(
1−

∣∣∣1− ωrp2x∣∣∣)
≥ L

(
1− 2π|rp2|L

N

)
≥ L/2.

From this and the fact that |Â(r)| ≥ 2−30α11/2|A| we get that

N
∑
x

|A ∩ (B + x)|2 =
∑
r

|Â(r)|2|B̂(r)|2

≥
(
1 + 2−62α11

)
|A|2L2. (6)
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Now certain of the translates B+x have the rather unfortunate property of splitting into two
smaller progressions when we “unravel” ZN to recover {1, . . . , N}. We shall call these values
of x bad, and denote the set of good values by G. Now p ≤ N1/4 and so B has diameter
less than N2/3. It follows that there are at most N2/3 bad values of x, and so their total
contribution to N

∑
x |A ∩ (B + x)|2 does not exceed L2N5/3. Assuming that α ≥ 32N−1/39

(which it certainly will be) one sees from (6) that

N
∑
x∈G

|A ∩ (B + x)|2 ≥
(
1 + 2−63α11

)
|A|2L2.

The left hand side here is at most

N sup
x∈G
|A ∩ (B + x)| · |A|L,

from which we deduce that there is x ∈ G for which

|A ∩ (B + x)| ≥
(
α + 2−63α12

)
|B|.

We have deduced, from the assumption that A − A does not contain a square and that
N ≥ 22130 , that A has density at least α + 2−63α12 on a subprogression with length at least
1
20
N1/128 and square common difference. Iterating this argument leads to the following result.

Proposition 9 There is a constant C such that, if A is a subset of {1, . . . , N} with density
at least C(log logN)−1/11, then A contains two elements a, a′ with a− a′ a non-zero square.

In order to prove Sárkőzy’s result in the simplest possible manner we have not worried too
much about sacrificing the quality of the bound obtained. There is a variation of the above
argument in which one shows that A is what I call arithmetically non-uniform, which means
that some |Â(r)| is large with r approximately equal to a rational with small denominator.
This allows one to perform the iteration more efficiently, and doing this gives a bound of
form (logN)−c in Proposition 9. I intend to discuss this and related matters in a future
paper. The current best known bound of (logN)−c log log log logN for this problem is due to
Pintz, Steiger and Szemerédi [9] and makes use of some rather involved Fourier arguments.
There is still a massive gap in our knowledge, and I cannot resist closing this section with
the following open problem.

Problem 10 Let ε > 0 and let N > N0(ε) be sufficiently large. Does there exist a set
A ⊆ {1, . . . , N} with |A| ≥ N1−ε, such that A does not contain two elements that differ by a
square?

The best that is known is that one can take ε = 0.267, a result due to Ruzsa [11].

4. APs with Common Difference x2 + y2. In this section we turn our attentions to the
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main business of this paper, a proof of Theorem 5.

Theorem 5 There is a constant c such that any subset of {1, . . . , N} of density at least
(log logN)−c contains a 3-term arithmetic progression whose common difference is non-zero
and of the form x2 + y2.

Our proof of Theorem 5 will be by the iteration method, and as such will fall into two
parts. In the first part, containing most of our original work on the problem, we show that
a quadratically uniform set contains roughly the expected number of progressions (a, a +
d, a + 2d) with d = x2 + y2. The second part of the proof follows [4] extremely closely. Our
objective there is to show that a set which fails to be quadratically uniform has increased
density on a long subprogression with square common difference.

We shall start our treatment in quite a general setting. Let D be a subset of N, and for
N ∈ N regard DN = D ∩ {1, . . . , N} as a subset of ZN in the natural way. Suppose that for
some k ∈ N we have ∑

r

∣∣∣D̂N(r)
∣∣∣2k ≤ C|DN |2k

and
|D2N | ≤ C|DN |,

where C is independent of N . Then we shall say that D is uniformly k-dense. The obvious
non-trivial example in view of our earlier discussions is the set S of squares, which is uniformly
6-dense by (4). Our nomenclature is non-standard, but quite convenient.

Much of our later work depends on another instance of this phenomenon.

Proposition 11 The set E of primes of form 4k + 1 is uniformly 2-dense.

We will prove this proposition in a number of stages. We begin with a brief resumé of
the results from Sieve Theory we will need both here and later on. The standard reference
for this subject is [6] but in our unbiased opinion a good way to understand the necessary
background is to read [5], which has been specially updated for this purpose. We will only be
concerned with sieving polynomial sequences, which is the simplest situation covered by the
Selberg Sieve. Let h be a polynomial with integer coefficients, and let A denote the sequence
{h(1), . . . , h(N)}. Let P denote the set of primes. Then the Selberg Sieve gives upper bounds
for S(A,P , z), which is defined to be the number of x ∈ A which are not divisible by any
prime p ≤ z. This upper bound is given in terms of a function ω defined at primes p to be
the number of elements in {h(1), . . . , h(p)} which are divisible by p. To put it another way,
the proportion of elements of A which are divisible by p is roughly ω(p)/p. The key result
we shall require is the following, which is Theorem 11 in [5] (we should also note that it can
be read out of [6]).
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Theorem 12 Suppose that ω(p) ≤ C for all primes p. Then

S(A,P , N1/16C) � N
∏

p≤N1/16C

(
1− ω(p)

p

)
,

where the implied constant depends only on C.

Proposition 13 Let n ∈ N. Then the number of representations of n as the sum of two
elements of E, r2(E, n) satisfies

r2(E, n) � n

(log n)2

∏
p|n

(
1 +

1

p

)
.

Proof Clearly r2(E, n) ≤ r2(P , n). Consider the polynomial h(x) = x(n − x) and let
A = {h(1), . . . , h(n)}. We wish to count the number of x ≤ n for which x and n−x are both
prime. For such x we either have x ≤ n1/2, x ≥ n− n1/2 or else h(x) has no prime factor less
than n1/2. It follows that r2(P , n) is bounded above by 2n1/2 + S(A,P , n1/2).

It is easy to see that, in the notation of our potted introduction to sieve theory, one has
ω(p) = 2 for all p except when p|n, in which case ω(p) = 1. Thus by Theorem 12 one has

r2(E, n) � n1/2 + n
∏

p≤n1/32

(
1− 2

p

) ∏
p≤n1/32

p|n

(
1− 2

p

)−1(
1− 1

p

)
. (7)

Now recall that
∏

p≤m

(
1− 1

p

)−1
� logm and that

∏
p

(
1− λ

p2

)
converges for any real λ.

Armed with these two facts one sees from (7) that

r2(E, n) � n

(log n)2

∏
p|n

(
1 +

1

p

)
as claimed. �

This is of course a very standard deduction from the Selberg Sieve, but we have included it
to ensure that the reader is happy with our notation. It turns out to be extremely convenient

to write ξ(n) for the quantity
∏

p|n

(
1 + 1

p

)
appearing here. In a short while we will use

Proposition 13 to show that E is uniformly 2-dense. Before doing this however it is necessary
to give a crude estimate for the moments

∑
u≤N ξ(u)s of ξ.

Lemma 14 Let s ≥ 1 be real. Then∑
u≤N

ξ(u)s ≤ 22s22sN.
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Proof First observe that for any x ≤ 1 one has

(1 + x)s ≤ 1 + 2sx.

Secondly, if p1, . . . , pr are distinct primes then for any C one has

r∏
i=1

C

pi
=

∏
pi≤C2

C

pi

∏
pi>C2

C

pi
≤ CC2

∏
pi>C2

1
√
pi
≤ CC2

r∏
i=1

1
√
pi
.

Thus ∑
u≤N

ξ(u)s =
∑
u≤N

∏
p|u

(
1 +

1

p

)s
≤

∑
u≤N

∏
p|u

(
1 +

2s

p

)
≤ 2s2

2s
∑
u≤N

∑
d|u

1√
d
,

which is at most 2s2
2s
N
∑

d≤N d
−3/2. This implies the result. �

Proof of Proposition 11 Regard EN = E ∩ {1, . . . , N} as a subset of ZN , as we must do
to even make sense of what it means to be uniformly 2-dense. It is easy to see that∑

r

|ÊN(r)|4 = N
∑

a+b=c+d

E(a)E(b)E(c)E(d),

where the equation a+ b = c+ d is taken in ZN . This is clearly at most

N
∑
n≤N

(r2(E, n) + r2(E,N + n))2 ,

which by Proposition 13 is at most a constant times

N3

(logN)4

∑
n≤N

(ξ(n) + ξ(N + n))2 .

The sum, by the Cauchy-Schwarz inequality, is at most 4
∑

n≤2N ξ(n)2, a quantity which we
know to be O(N) by Lemma 14. Thus

∑
r

|ÊN(r)|4 �
(

N

logN

)4

.

Since |EN | ∼ N/2 logN it follows that E is indeed uniformly 2-dense. �

If A ⊆ {1, . . . , N} is a set of density α then we write f = A − α for its balanced function.
Write B = A ∩ {1, . . . , N/3}, let β be the density of B and let g = B − β be its balanced
function. Finally if D is any set then we say that an arithmetic progression (x, x+ d, x+ 2d)
with d ∈ D is a D-progression.
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Proposition 15 Suppose that A does not contain a D-progression, where D is uniformly
k-dense. Then either

sup
r 6=0
|Â(r)| � α2kN (8)

or else we have ∑
x

∑
d∈U

g(x)f(x+ d)f(x+ 2d) � α3N |U |. (9)

where the sum is over ZN and U = D ∩ {1, . . . , N/3}.

Proof To begin with we show that the conclusion holds with room to spare if β is much
smaller than expected. Suppose that β ≤ α/12, and let I be the characteristic function of
{−N/12, . . . , N/12} ⊆ ZN . Then

6

N

∑
x

A(x)(I ∗ I)(x+N/6) ≤ βN ≤ αN/12.

Taking Fourier transforms gives∑
r

ω−rN/6Â(r)|Î(r)|2 ≤ αN3/72,

which implies by the triangle inequality that∑
r 6=0

|Â(r)||Î(r)|2 ≥ αN3/72.

However Parseval’s identity gives
∑
|Î(r)|2 = N2/6, from which it follows immediately that

sup
r 6=0
|Â(r)| ≥ αN/12.

Assume now that β ≥ α/12. It is easy to see that there is no modular progression of form
(x, x+ d, x+ 2d), d ∈ U , in B × A× A, and so we have∑

x∈ZN

∑
d∈U

B(x)A(x+ d)A(x+ 2d) = 0.

Writing A = f + α and B = g + β we may expand this as a sum of eight terms. Of these we
have a term T =

∑
x

∑
d∈U g(x)f(x + d)f(x + 2d), a term α2βN |U | and three terms which

are identically zero. If T ≥ α2βN |U |/4 then we are done. Failing this the triangle inequality
implies that one of the other three terms must be at least α2βN |U |/4, which in turn is not
less than α3N |U |/48. These other three terms are very similar to one another, and brushing
a little work under the carpet we suppose without loss of generality that

α
∑
x

∑
d∈U

g(x)f(x+ d) ≥ α3N |U |/48. (10)
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The LHS may be written in terms of Fourier coefficients as αN−1
∑

r ĝ(r)f̂(−r)Û(r). This
sum may be estimated using Hölder’s Inequality exactly as in §3. It is at most

αN−1 sup
r

∣∣∣f̂(r)
∣∣∣1/k(∑

r

∣∣∣Û(r)
∣∣∣2k)1/2k(∑

r

|ĝ(r)|2
)1/2(∑

r

∣∣∣f̂(r)
∣∣∣2)(k−1)/2k

(11)

To deal with this observe that since D is uniformly k-dense we have∑
r

|Û(r)|2k = N
∑

a1+···+ak
=b1+···+bk

U(a1) . . . U(ak)U(b1) . . . U(bk)

≤ N
∑

a1+···+ak
=b1+···+bk

DN(a1) . . . DN(ak)DN(b1) . . . DN(bk)

=
∑
r

|D̂N(r)|2k

� |DN |2k

� |U |2k.

Using Parseval’s identity on the other two factors in (11) we can bound that expression above
by a constant multiple of

sup
r
|f̂(r)|1/k ·N1−1/k|U |.

It follows from (10) that supr |f̂(r)| � α2kN , and we are done. �

Suppose now that we have a set A ⊆ {1, . . . , N} with density α which contains no D-
progressions, where D is the set of sums of two squares. A classical number-theoretic fact
allows us to make the key observation of this paper, namely that A does not contain any E
progressions (where E, as before, is the set of primes of the form 4k+ 1). Using Propositions
11 and 15, we have the following.

Proposition 16 Let A ⊆ {1, . . . , N} have density α, and suppose that A does not contain
a triple (a, a+ d, a+ 2d) with d = x2 + y2. Then either

sup
r 6=0
|Â(r)| � α4N (12)

or ∑
x

∑
d∈V

g(x)f(x+ d)f(x+ 2d) � α3N2

logN
. (13)

where V = E ∩ {1, . . . , N/3}.

12



If (12) holds then further progress is comparitively easy, so we assume for the moment that
(13) is satisfied. The Cauchy-Schwarz inequality together with the fact that ‖g‖∞ ≤ 1 gives
that ∑

x

∣∣∣∣∣∑
d

f(x+ d)f(x+ 2d)V (d)

∣∣∣∣∣
2

� α6N3

(logN)2
.

Multiplying out, rearranging and changing the summation variables, this implies that∑
h

∑
x

∑
d

∆(f ;h)(x)∆(f ; 2h)(x+ d)∆(V ;h)(d) � α6N3

(logN)2
(14)

We are going to use this to show that, for many h, ∆(f ;h) has a large Fourier coefficient. We
will do this by applying the Selberg Sieve again to show that ∆(V ;h) is uniformly 2-dense
on average, a concept we shall not define precisely.

Proposition 17 Let rh(n) denote the number of ways of expressing n as a difference of 2
elements of ∆(V ;h). Then

rh(n) � N

(logN)4
ξ(h)2ξ(n)2ξ(n+ h)ξ(n− h)

ξ((n, h))3
.

Proof We bring the Selberg Sieve to bear on this by observing that rh(n) is at most the
number of x ≤ N for which x, x− n, x− h and x− n− h are all prime. With the exception
of at most 8N1/2 of these x the polynomial

h(x) = x(x− n)(x− h)(x− n− h)

has no prime factor less than N1/2. Writing A = {h(1), . . . , h(N)} this implies that

rh(n) � 8N1/2 + S(A,P , N1/2).

We would clearly like to apply Theorem 12, but first we must think about ω(p). Suppose
that p ≥ 3. Then it is reasonably easy to see that ω(p) = 4 unless one of the following four
possibilities occurs: (i) p|n; (ii) p|h; (iii) p|(n + h) and (iv) p|(n − h). Furthermore these
possibilities are mutually exclusive unless p divides both n and h, in which case they all
occur. If they do all occur then ω(p) = 1. If (i) or (ii) occurs then ω(p) = 2, and if (iii) or
(iv) occurs then ω(p) = 3. If p = 2 the behaviour is more subtle, but we will not concern
ourselves with this as each individual prime only contributes a bounded multiplicative factor
to the sieve estimate of Theorem 12.

Theorem 12 (with C = 4) certainly applies to this situation, then, and with a modicum of
effort one can verify that the key quantity

N
∏

p≤N1/64

(
1− ω(p)

p

)

13



is equal, up to a product of terms of the form
∏

p(1− λp−2), to the delightful expression

∏
p≤N1/64

(
1− 4

p

)∏
p|n

(
1− 2

p

)−1∏
p|h

(
1− 2

p

)−1
×
∏

p|(n+h)

(
1− 1

p

)−1 ∏
p|(n−h)

(
1− 1

p

)−1 ∏
p|(n,h)

(
1− 1

p

)3

where the final five products are also constrained to be over p ≤ N1/64. Since an integer less
than N cannot have more than 64 prime factors p ≥ N1/64, this restriction can be removed
at the expense of introducing another bounded multiplicative constant. The resulting ex-
pression is easily seen to be bounded above by a constant multiple of the one appearing in
the statement of the proposition. �

Proposition 18 For any h we have∑
n≤N

rh(n)2 � N3

(logN)8
ξ(h)4,

where the implied constant is independent of h.

Proof By Proposition 17 we have∑
n≤N

rh(n)2 � N2

(logN)8
ξ(h)4

∑
n≤N

ξ(n)4ξ(n+ h)2ξ(n− h)2.

By Hölder’s Inequality the sum over n is at most
∑

n ξ(n)8. We are therefore done by Lemma
14. �

The next result clarifies the sense in which ∆(V ;h) is, on average, uniformly 2-dense. In the
following proposition ∆(V ;h) is regarded as a subset of ZN .

Proposition 19 ∑
r

|∆(V ;h)̂ (r)|4 � N4

(logN)8
ξ(h)4. (15)

Proof Immediate from Proposition 18 and the fact that ∆(V, h) is supported in an interval of
size N/3 (so that there is no problem with modular addition not being the same as “ordinary”
addition). �

Now we come to use (14). We shall use it to treat each h separately, which we do by noting
that from (14) follows∑

x

∑
d

∆(f ;h)(x)∆(f ; 2h)(x+ d)∆(V ;h)(d) � γ(h)
α6N2

(logN)2
,

14



where
∑

h γ(h) = N . Taking Fourier Coefficients, this implies that∑
r

∆(f ;h)̂ (r)∆(f ; 2h)̂ (−r)∆(V ;h)̂ (r) � γ(h)
α6N3

(logN)2
. (16)

Applying Hölder gives

sup
r
|∆(f ;h)̂ (r)|1/2

(∑
r

|∆(f ;h)̂ (r)|2
)1/4(∑

r

|∆(f ; 2h)̂ (r)|2
)1/2(∑

r

|∆(V ;h)̂ (r)|4
)1/4

� γ(h)
α6N3

(logN)2
.

The first two bracketed expressions may be bounded above using Parseval, and the third is
subject to the upper bound (15). One gets

sup
r
|∆(f ;h)̂ (r)| � γ(h)2α12N

ξ(h)2
. (17)

Thus there is a function φ : ZN → ZN such that∑
h

|∆(f ;h)̂ (φ(h))|2 � α24N2
∑
h

γ(h)4

ξ(h)4
.

This would imply that A fails to be quadratically uniform if we could show that the sum
here is � N . To do this, we recall that

∑
h γ(h) = N and use Hölder, getting

∑
h

γ(h)4

ξ(h)4
� N4

(∑
h

ξ(h)4/3

)−3
.

This is indeed � N by Lemma 14.

We have now shown that if (14) holds then A is not quadratically Cα24-uniform for some C.
We also know that if A does not contain any E-progressions then either (12) or (14) must
hold. However (12) is just the statement that A is not Cα4-uniform for some C. Thus by
Proposition 6 we may incorporate everything we have done so far into the following.

Proposition 20 Suppose that A ⊆ {1, . . . , N} has density α yet does not contain a progres-
sion (x, x + d, x + 2d) with d a positive sum of two squares. Then A is not quadratically
Cα24-uniform for some C.

To spell it out, the conclusion of this proposition implies that∑
u

|∆(f ;u)̂ (φ(u))|2 � α24N3

15



for some function φ : ZN → ZN .

5. Increasing the Density on a Special Subprogression. Sets that fail to be quadrat-
ically uniform have an interesting structure, as was established by Gowers [4] in the course
of proving Szemerédi’s Theorem for progressions of length 4 (a slightly weaker result was
established in [3]). In that paper a result along the following lines is proved.

Theorem 21 (Gowers’ Inverse Theorem) Suppose that A ⊆ {1, . . . , N} has density α
and that A fails to be quadratically C1α

m1-uniform. Then there is an arithmetic progression
L of length |L| � NC2αm2 on which A has density at least α+C3α

m3, where C2, C3, m2 and
m3 depend only on m1 and C1.

The main result of this section is a version of Theorem 21 in which L has square common
difference. Unfortunately we have found it necessary to go a fair way into the detailed
workings of Gowers’ argument in order to obtain this modification. Therefore in order to
fully understand this section the reader will need to be conversant with Chapters 6, 7 and
8 of [4]. We shall require one additional ingredient, which is a version of the following
simultaneous approximation result of Schmidt [14].

Theorem 22 (Schmidt) Let r1, . . . , rh ∈ ZN and let t ≤ N . Suppose that t ≥ N0(h) is
sufficiently large. Then there is p ≤ t such that |p2ri| ≤ t−1/3h

2
N for all i, 1 ≤ i ≤ h.

Unfortunately there does not seem to be any place in the literature where an explicit value
of N0(h) is derived. It would be possible to work through the proof in [14] and derive
such an explicit value (which would probably not be too large) but we will prove our own,
substantially weaker, version of Theorem 22 with explicit constants.

Proposition 23 Let r1, . . . , rh ∈ ZN and let t ≤ N . Suppose that t ≥ 227h+129
. Then there

is p ≤ t such that |p2ri| ≤ t−2
−(7h+6)

N for all i, 1 ≤ i ≤ h.

Proof We make extensive use of Lemma 8. Choose p1, p2, . . . inductively so that

pi ≤ t2
−(7i+1)

(18)

and ∣∣p2i p2i−1 . . . p21ri∣∣ ≤ t−2
−(7i+5)

N (19)

for each i = 1, . . . , h. Let p = p1p2 . . . ph. It is easy to check that p ≤ t. Furthermore

|p2ri| ≤ |ph|2|p2h−1| . . . |p2i+1|
∣∣p2i . . . p21ri∣∣

≤ t2
−(7i+6) · t−2−(7i+5)

N

≤ t−2
−(7h+6)

N
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as required. The repeated applications of Lemma 8 require certain things to be sufficiently
large. The most difficult condition to satisfy is that arising from the last step in our inductive
construction, where we require

t2
−(7h+1) ≥ 22128 .

This is where the restriction in the proposition comes from. �

Let us assume then that f : ZN → C has ‖f‖∞ ≤ 1 and that∑
k

|∆(f ; k)̂ (φ(k))|2 ≥ 2βN3 (20)

for some function φ : ZN → ZN . We start with a trivial deduction from this, which is proved
by a simple averaging argument: there is a set B ⊆ ZN with |B| ≥ βN and

|∆(f ; r)̂ (φ(r))| ≥ β1/2N (21)

for all k ∈ B. We have then ∑
k∈B

|∆(f ; k)̂ (φ(k))|2 ≥ β2N3. (22)

If K ⊆ ZN and η ∈ (0, 1) write B(K, η) for the set of all n ∈ ZN such that |nk| ≤ ηN
for all k ∈ K. We call such a set a Bohr Neighbourhood. The following may be deduced
from Proposition 6.1, Corollary 7.6, Lemma 7.8 and Corollary 7.9 of [4]. This deduction is
logically extremely straightforward, but just a touch messy when it comes to actually working
out values.

Proposition 24 Let δ = 2−1849β5821. There is a set B′ ⊆ B with |B′| ≥ δN , and a set
K ⊆ ZN with |K| ≤ 16δ−2, such that the following is true. If m is any positive integer and
d ∈ B(K, δ/100m) then there is c such that φ(x) − φ(y) = c(x − y) whenever x, y ∈ B′ and
x− y belongs to the set {jd : −m ≤ j ≤ m}.

Write P0 for the arithmetic progression {d, 2d, . . . ,md}. Choose a translate P = P0 + z
for which |P ∩ B′| ≥ δm, and let H = P ∩ B′. If x and y lie in H then x − y is in
{jd : −m ≤ j ≤ m} and so φ|H is the restriction of a linear function from ZN to itself, by
Proposition 24.

We will soon find ourselves dealing with some reasonably large numbers, and it is convenient
to have a shorthand notation for them. If n � 1 is a parameter then we write C0(n) for
any polynomial in n. C1(n) will mean a function of type 2p(n), where p is a polynomial, and

finally C2(n) will be a function of type 22p(n)
. We will feel at liberty to use these symbols

several times, sometimes in the same formula, to denote different functions.

Proposition 23 allows us, provided |K| and δ/100m satisfy a certain inequality, to conclude
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that d may be taken to be a small square number. Take t = N1/4 in Proposition 23 and
recall that |K| ≤ 16δ−2. Then there is p ≤ N1/4 such that p2 ∈ B(K, δ/100m) provided that

δ

100m
≥ N−1/C1(δ−1)

and that N ≥ C2(δ
−1). For N greater than some C2(δ

−1) we can pick m = N1/C1(δ−1) so that
this is satisfied by a colossal margin.

Putting everything together, and recalling that δ is 2−1849β5821, we have the following.

Proposition 25 Suppose that (22) holds and that N ≥ C2(β
−1). Then there is a progression

P ⊆ ZN with common difference p2, where p ≤ N1/4, and length at least N1/C1(β−1), with the
following property. There is H ⊆ P ∩ B with |H| ≥ 2−1849β5821|P | and λ, µ ∈ ZN such that
φ(s) = λs+ µ for all s ∈ H.

Let us now make a deduction from Proposition 8.1 of [4]. This is done using the previous
proposition and (21).

Proposition 26 Suppose that (20) holds and that N ≥ C2(β
−1). Then there is an arithmetic

progression P with common difference p2, where p ≤ N1/4, and length at least N1/C1(β−1) and
quadratic polynomials ψ0, ψ1, . . . , ψN−1 such that

∑
s

∣∣∣∣∣ ∑
z∈P+s

f(z)ω−ψs(z)

∣∣∣∣∣ ≥ 2−1850β5822N |P |.

Before stating and proving the next Lemma we need a version of Lemma 8 for fourth powers.
Once again we can simply read it from [4].

Lemma 27 Let a ∈ ZN , let t ≤ N and suppose that t ≥ 22512. Then there is p ≤ t such that
|p4a| ≤ t−1/128N .

Proposition 28 Let ψ(x) = ax2 + bx + c be a quadratic polynomial with coefficients in
ZN . Let L ≤ N , and let P ⊆ ZN be an arithmetic progression of length L with square
common difference. Let W ≤ L2−22

. Then there is a partition of P into subprogressions
R1, . . . , Rm, with Ri having length between W and 2W and square common difference, such
that Diam(ψ(Ri)) ≤ L−2

−20
N for all i.

Proof We may rescale and assume that P = {1, . . . , L} with no loss of generality. For any
x0, λ, d we have

ψ(x0 + λd2)− ψ(x0) = aλ2d4 + (2ax0 + b)λd2.
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By Proposition 27 we may choose d ≤ L1/8 such that |ad4| ≤ L−2
−10
N . Partition {1, . . . , L}

into progressions P1, . . . , Pl with common difference d2 and lengths lying between L2−13
and

L2−12
. The diameter of ψ on Pi then satisfies

Diam(ψ(Pi)) ≤ L−2
−11

N + Diam(θi(Pi)), (23)

where θi is a linear polynomial depending on i. Fix i, and for ease of notation rescale Pi to
{1, . . . , K} (by the square scaling factor d−2) where K ≥ L2−13

. Suppose that θi(x) = rx+ s
under this rescaling. Clearly

θi(x1 + µe2)− θi(x1) = rµe2.

By Lemma 8 we may choose e ≤ K1/4 so that |re2| ≤ K−1/64N . Divide Pi into further
subprogressions Ej with common difference e2 and lengths lying between K1/256 and K1/128.
On these subprogressions we will have Diam(θi(Ej)) ≤ K−1/128N . Do this for each i, rescale
the resultant progressions by the factor d2, and then perform a further subdivision to satisfy
the technical condition on the lengths of the Ri in the statement. Recalling (23) we get the
result. �

Call an arithmetic progression Q ⊆ ZN nice if it does not wrap in ZN , by which we mean
that the length L(Q) and the common difference d(Q) satisfy L(Q)d(Q) ≤ N . Observe that
the progression P found in Proposition 25 is nice, because we constructed it to have small
common difference. We observe that any translate of a nice progression is nice, as is any
subprogression.

Let us now combine Propositions 26 and 28 in the obvious way.

Proposition 29 Suppose that (20) holds and that N ≥ C2(β
−1). Then there is W =

N1/C1(β−1), nice arithmetic progressions Ri,s, 1 ≤ i ≤ m, 1 ≤ s ≤ N , each having length
between W and 2W and square common difference, and quadratic polynomials ψ0, . . . , ψN−1
such that ∑

i

∑
s

∣∣∣∣∣∣
∑
z∈Ri,s

f(z)ωψs(z)

∣∣∣∣∣∣ ≥ 2−1850β5822
∑
i,s

|Ri,s|. (24)

Furthermore every point of ZN lies in the same number of Ri,s and

Diam(ψs(Ri,s)) ≤ W−2N. (25)

Let us use this proposition immediately. For each i, s choose z0 ∈ Ri,s. Then using (25) and
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the fact that ‖f‖∞ ≤ 1 we have ∣∣∣∣∣∣
∑
z∈Ri,s

f(z)
(
ωψs(z) − ωψs(z0)

)∣∣∣∣∣∣
≤ 2πW−2

∑
z∈Ri,s

|f(z)|

≤ 4πW−1

≤ 2−1851β5822|Ri,s|

provided that W ≥ C0(β
−1). This will be the case if N is at least some suitably large C2(β

−1)
(though N might need to be larger than it had to be before). It now follows from (24) that

∑
i

∑
s

∣∣∣∣∣∣
∑
z∈Ri,s

f(z)

∣∣∣∣∣∣ ≥ 2−1851β5822
∑
i,s

|Ri,s|.

We are now almost home. The fact that every point lies in the same number of Ri,s implies
that ∑

i

∑
s

∑
z∈Ri,s

f(z) = 0,

and so ∑
i

∑
s

∣∣∣∣∣∣
∑
z∈Ri,s

f(z)

∣∣∣∣∣∣+
∑
z∈Ri,s

f(z)

 ≥ 2−1851β5822
∑
i,s

|Ri,s|.

From this it follows immediately that∑
z∈R

f(z) ≥ 2−1852β5822|R|

for some R = Ri,s.

The one remaining obstacle is the fact that whilst R is nice, it might still straddle 0 in ZN .
Thus when ZN is “unwrapped”, R might become two arithmetic progressions R1 and R2.
Both of these will still have square common difference, so we can be hopeful of extricating
ourselves. The following lemma, proved by a simple averaging argument, covers the situation.

Lemma 30 Suppose that ‖f‖∞ ≤ 1 and that
∑

z∈R f(z) ≥ η|R|, where R is a nice arithmetic
progression in ZN . Suppose that R = R1 ∪ R2, where neither R1 nor R2 straddles 0. Then,
for some i ∈ {1, 2}, Ri has length at least η|R|/3 and

∑
z∈Ri

f(z) ≥ η|Ri|/3.

Finally, we can deduce the following variant of Gowers’ Inverse Theorem.
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Theorem 31 Let f : ZN → C have ‖f‖∞ ≤ 1, and suppose that there is a function φ :
ZN → ZN such that ∑

r

|∆(f ; r)̂ (φ(r))|2 ≥ βN3.

Suppose that N ≥ C2(β
−1). Then there is an arithmetic progression S ⊆ Z with square

common difference and length at least N1/C1(β) such that∑
x∈S

f(x) ≥ 2−7677β5822|S|.

The sudden change in the powers of two here comes from the fact that we replaced 2β in
(20) with β.

By the main result of §4 we have shown that if A contains no triples (a, a + d, a + 2d) with
d = x2 + y2 then A has density α + Ω (α139728) on a progression of size N1/C1(α−1) with
square common difference. The new set A′ must have the same property - it cannot contain
an arithmetic progression with sum-of-two-squares common difference. How often can this
argument be iterated?

After O (α−139728) iterations we will have reached density 1, by which time the length of
our subprogression will still be of the form N ′ = N1/C1(α−1). In order for the iteration step
to work we require that N ′ ≥ C2(α

−1) at all times. We therefore have a contradiction
provided that N1/C1(α−1) ≥ C2(α

−1), and it is easy to see that this is implied by some bound
α� (log logN)−c. This concludes the proof of Theorem 5. �

According to my calculations, c = 10−6 is admissible.
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