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THEOREM

BEN GREEN

Abstract. Lecture notes on the asymmetric Balog-Szemerédi-
Gowers theorem.

1. Introduction

This note arose from a lecture course on the work of Bateman and
Katz [1] on capsets. The asymmetric Balog-Szemerédi-Gowers theo-
rem, which we will state below, is an important ingredient of their
work. Midway through giving the course, the breakthrough work of
Croot-Lev-Pach [3] and Ellenberg-Gijswijt [4] became available. I im-
mediately abandoned the discussion of the work of Bateman and Katz,
which was, in any case, reaching a particularly unpleasant point in the
argument. I am making this portion of the notes available since the
result is of independent interest. I thank Aled Walker and Freddie
Manners for helpful remarks.

If A,B are two finite subsets of an abelian group then we write
E(A,B) for the number of solutions to a1 +b1 = a2 +b2 with a1, a2 ∈ A
and b1, b2 ∈ B.

Theorem 1.1 (Asymmetric BSG). Let C > 1 > η > 0 be real con-
stants, and suppose that N > N0(C, η). Suppose that A,B are sub-
sets of an abelian group with |B| = N and |A| 6 NC. Suppose that
E(A,B) > N−η|A||B|2. Then there are sets H,Λ such that

(1) We have |B ∩H| > N−η̃|B|;
(2) We have |A ∩ (H + Λ)| > N−η̃|A|;
(3) |H||Λ| 6 N η̃|A|;
(4) |H +H| 6 N η̃|H|.

Here, η̃ � C
log(1/η)

, with the implied constant being absolute.
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Thus if E(A,B) is close to the maximum possible size of |A||B2|
then, roughly, B is close to a set H with small doubling and A is close
to a union of translates of H.

This theorem appears in [5, Theorem 2.35]. Tao and Vu remark that
the method of proof was inspired by arguments of Bourgain [2], but
there is certainly no proposition in [2] which could be said to resemble
Theorem 1.1. The argument we give here is the same as the one in
Tao and Vu, but we have endeavoured to make the presentation self-
contained and hence a little easier to follow and to keep track of the
exponents.

2. A lemma on symmetry sets

It is convenient to introduce a piece of notation. If S is a subset of
an abelian group, write Symδ(S) for the set of all d ∈ S − S with at
least δ|S| representations as s1 − s2.

Lemma 2.1. Suppose that S ⊂ Symδ(A). Then there are at least
1
2
δ2|S|2 pairs (s1, s2) ∈ S × S with s1 − s2 ∈ Symδ2/2(A).

Proof. We have ∑
a∈A

∑
s∈S

1A(a+ s) > δ|A||S|.

By Cauchy-Schwarz,∑
a∈A

∑
s1,s2∈S

1A(a+ s1)1A(a+ s2) > δ2|A||S|2.

Swapping the order of summation, we have∑
(s1,s2)∈S×S

∑
a∈A

1A(a+ s1)1A(a+ s2) > δ2|A||S|2,

and so ∑
a∈A

1A(a+ s1)1A(a+ s2) >
1

2
δ2|A|

for at least 1
2
δ2|S|2 pairs (s1, s2) ∈ S × S. But for such a pair (s1, s2),

there are > 1
2
δ2|A| pairs (a1, a2) ∈ A × A such that a + s1 = a1,

a+ s2 = a2, and hence certainly s1 − s2 = a1 − a2. �
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3. Proof of asymmetric Balog-Szemerédi-Gowers

Set J := b 1
10

log(1/η)c; this will be fixed throughout the proof. Set

δ1 := 1
2
N−η and define δj inductively by δj+1 := 1

2
δ2
j , and note that by

the choice of J we have

δ1 > δ2 > . . . > δJ+1 > N−
√
η

provided that N > N0(η) is large enough (since δj behaves like N−2jη).
For the first part of the proof, we write X ' Y to mean that X >
N−O(

√
η)Y . Different instances of the notation may entail different

constants O() in this notation.

We are going to construct a sequence B = B0, B1, B2, . . . , BJ of sets
having the following two properties, for all j = 1, 2, . . . , J :

(1) Every x ∈ Bj is a difference of two elements of A in at least
δj|A| (and hence ' |A|) ways;

(2) Bj ⊂ Bj−1−Bj−1, and moreover every x ∈ Bj is a difference of

two elements of Bj−1 in ' |Bj−1|2
|Bj | ways.

Regarding point (2), note that the lower bound
|Bj−1|2
|Bj | is what one

would expect if Bj = Bj−1 − Bj−1, each difference being represented
the same number of times. Thus (2), which we think of as a fairly
routine kind of “regularisation”, is expressing that fact that Bj is most
of Bj−1 −Bj−1, and in a uniform way.

The construction will be inductive. Suppose that Bj has been con-

structed. Then we will first construct a set Bprelim
j+1 satisfying (1), then

refine it to a set Bj+1 which additionally satisfies the regularisation

property (2). The construction of Bprelim
1 from B0 = B is special (and

is the only place we use the assumption that E(A,B) > N−η|A||B|2),
so we handle that first. Writing rA(x) for the number of ways in which
x is a difference of two elements of A, the assumption implies that∑

b,b′∈B0

rA(b− b′) > N−η|B0|2|A|.

Since rA(x) 6 |A| for all x, it follows immediately that there are at

least δ1|B0|2 pairs (b, b′) for which rA(b− b′) > δ1|A|. Define Bprelim
1 to

be the set of all b− b′, over all such pairs (b, b′). Then (1) is satisfied.

For j > 1, the construction of Bprelim
j+1 from Bj goes via Lemma 2.1.

Since Bj satisfies (1), that lemma gives us a set of at least δj+1|Bj|2 '
|Bj|2 pairs (b, b′) ∈ Bj × Bj such that b − b′ ∈ Symδj+1

(A). Write

Bprelim
j+1 for the set of all these differences b − b′. For x ∈ Bprelim

j+1 , write
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r(x) = rBj
(x) for the multiplicity with which x occurs as a difference

b− b′ with b, b′ ∈ Bj. Thus∑
x∈Bprelim

j+1

r(x) ' |Bj|2.

Evidently r(x) 6 |Bj|, so we may split this into dyadic ranges:∑
m>0

∑
x∈Bprelim

j+1 :r(x)∼2−m|Bj |

r(x) ' |Bj|2. (3.1)

We claim that the number of relevant dyadic ranges is only logarithmic
in N , and in particular / 1 (provided N0(C, η) is big enough). For this,
very crude bounds suffice. Indeed, since Bj ⊂ Symδj

(A) we have

|Bj| · δj|A| 6 |A|2,

whence

|Bj| 6
|A|
δj
/ NC . (3.2)

Thus the contribution from the mth dyadic range is crudely bounded
by 2−m|Bprelim

j+1 ||Bj| 6 2−m|Bj|3, which is a small fraction of the right
hand side of (3.1) for some m = O(C logN), which is / 1 provided N
is large enough. It follows that there is an m such that∑

x∈Bprelim
j+1 :r(x)∼2−m|Bj |

r(x) ' |Bj|2. (3.3)

Let Bj+1 be the set of such x. Since Bj+1 ⊂ Bprelim
j+1 , (1) is satisfied.

Furthermore we have

|Bj+1| · 2−m|Bj| ' |Bj|2,

and so for x ∈ Bj+1 we have

r(x) ∼ 2−m|Bj| '
|Bj|2

|Bj+1|
,

which is property (2). This completes the inductive construction of the
sets B1, B2, B3, . . . and we now move on to the rest of the proof.

Now comes the key idea: since |Bj| / NC (by (3.2)), it follows from
the pigeonhole principle that there is some j 6 J such that |Bj+1| /
NO(C/J)|Bj|. It is now convenient to introduce the notation X & Y
to mean X > N−O(C/J)Y , where again the O() notation is allowed to
change from line to line. Note that if N0(C, η) is large enough then
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X ' Y implies that X & Y , so this new notion is even rougher than
the old, as the notation might suggest. In particular,

|Bj+1| . |Bj|.

If x ∈ Bj+1, we once again write r(x) for the number of ways to
write x = b − b′ with b, b′ ∈ Bj. Then by (2) above we have r(x) '
|Bj|2/|Bj+1|, and therefore

E(Bj, Bj) >
∑
x

r(x)2 '
|Bj|4

|Bj+1|
& |Bj|3.

By the usual Balog-Szemerédi-Gowers theorem, there is a set H0 ⊂
Bj with

|2H0| . |H0|
and |H0| & |Bj|. Set H := H0 −H0. Then, by Plünnecke’s inequality,
|2H| . |H|. Taking xj to be any element of −H0, so that H0 ⊂ H+xj,
we have

|Bj ∩ (H + xj)| > N−O(C/J)|Bj|. (3.4)

To control B in terms of H, we work backwards down the sequence
Bj, Bj−1, . . . , B0.

The number of pairs (b, b′) ∈ Bj−1 × Bj−1 with b − b′ ∈ H + xj is∑
x∈H+xj

r(x). By (2) and (3.4), this is

'
|Bj−1|2

|Bj|
· |Bj ∩ (H + xj)| ' N−O(C/J)|Bj−1|2.

By pigeonhole, there is some xj−1 := xj + b′ such that

|Bj−1 ∩ (H + xj−1)| ' N−O(C/J)|Bj−1|.
We proceed inductively in this manner, obtaining at the end some x0

such that
|B0 ∩ (H + x0)| ' N−O(C/J)|B0| (3.5)

or, in shorthand (and recalling that B0 = B),

|B ∩ (H + x0)| & |B|.
An important point must be made here: in the course of this induc-
tive process, the implicit constant in the ' notation is modified J
times. Thus the N−O(

√
η) concealed by this notation must be replaced

by N−O(J
√
η). However we do have J

√
η = O(C/J) and so (3.5) is

valid.

We now have items (1) and (4) of Theorem 1.1. It remains to relate
A to H + Λ, and thus establish (2) and (3).
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To this end, note that if h ∈ H0 then, since H0 ⊂ Bj, h is a difference
of two elements of A in at least δj|A| & |A| ways. Thus∑

h∈H0

∑
a∈A

1A(a+ h) & |A||H0|.

Extending the sum over all h ∈ H (and using the fact that |H0| & |H|),
we have ∑

h∈H

∑
a∈A

1A(a+ h) & |A||H|,

or in other words ∑
a∈A

|A ∩ (H + a)| & |A||H|.

Therefore there is a set A′ ⊂ A, |A′| & |A|, with |A ∩ (H + a)| & |H|
for all a ∈ A′. Let Λprelim be a maximal subset of A′ with the property
that the translates H + λ are pairwise disjoint. Then on the one hand
we have

|A| >
∑

λ∈Λprelim

|A ∩ (H + λ)| & |Λprelim||H|. (3.6)

On the other hand, if a ∈ A′ then, by maximality, there is some λ with
(H + a) ∩ (H + λ) 6= ∅. This means that A′ ⊂ H −H + Λprelim. Now
by the Ruzsa covering lemma, H −H = 2H0 − 2H0 is covered by . 1
translates of H = H0 −H0, and so there is some translate Λ of Λprelim

such that
|A ∩ (H + Λ)| > |A′ ∩ (H + Λ)| & |A|. (3.7)

Items (2) and (3) of Theorem 1.1 follow from (3.7) and (3.6) respec-
tively. This concludes the proof.
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