BEN GREEN

Proof. Write $\pi_i : \mathbb{C}^d \to V_i$ for the projection induced by the direct sum decomposition $\mathbb{C}^d = \bigoplus_{i=1}^r V_i$, thus $x = \sum_{i=1}^r \pi_i(x)$ for all x. Define a map $\phi : \mathbb{C}^d \to \mathbb{C}^d$ by $\phi(x) = \sum_{i=1}^r \pi_i^* \pi_i(x)$. Note that if $x \in V_i$ and $y \in V_j$ then

$$\langle \phi(x), y \rangle = \langle \pi_i^* \pi_i(x), y \rangle = \langle \pi_i(x), \pi_i(y) \rangle = \mathbb{1}_{i=j} \langle x, y \rangle.$$
(2.6)

In particular, ϕ is not identically zero. We claim that ϕ is *G*-equivariant, that is to say

$$\phi(gx) = g\phi(x). \tag{2.7}$$

To prove this, it suffices by bilinearity to show that

$$\langle \phi(gx), y \rangle = \langle g\phi(x), y \rangle$$
 (2.8)

whenever $x \in V_i, y \in V_j$. Since g permutes the V_i , we have $gx \in V_{\sigma_g(i)}, g^{-1}y \in V_{\sigma_{g^{-1}}(j)}$ for some mutually inverse permutations $\sigma_g, \sigma_{g^{-1}}$. Therefore, by (2.6), we have

$$\langle \phi(gx), y \rangle = 1_{\sigma_g(i)=j} \langle gx, y \rangle,$$

whilst

$$\langle g\phi(x), y \rangle = \langle \phi(x), g^{-1}y \rangle = \mathbb{1}_{i=\sigma_{g^{-1}}(j)} \langle x, g^{-1}y \rangle = \mathbb{1}_{\sigma_g(i)=j} \langle gx, y \rangle.$$

This establishes (2.8) and thus ϕ is indeed *G*-equivariant. By Schur's lemma and the irreducibility of *G*, we must have $\phi(x) = \lambda x$ for some non-zero scalar $\lambda \in \mathbb{C}$. Therefore if $x \in V_i$ and $y \in V_j$ with $i \neq j$ we have, from (2.6),

$$\lambda \langle x, y \rangle = \langle \phi(x), y \rangle = \mathbb{1}_{i=j} \langle x, y \rangle = 0.$$

It follows that V_i is indeed orthogonal to V_j .