
Restriction and Kakeya Phenomena

These are notes from a Cambridge Part III course I gave in Michaelmas 2002. The

notes have sat undisturbed for over 10 years, and so cannot be expected to take any

account of modern developments. For example, Dvir has completely solved the finite

field Kakeya conjecture with a very short argument, rendering one or two of the sections

somewhat pointless. Furthermore, I hadn’t completed my PhD when I gave this course

so certain things which appeared mysterious to me then might seem less so now (and

vice versa). Perhaps one day I will bring the notes up to date. However, I am informed

that the notes have been used now and then over the years. I am making them available

now for the first time in a single file.

Ben Green, Cambridge, February 2013.
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1. Besicovitch Sets

In this set of notes we are going to prove the following celebrated result of Besicovitch.

Theorem 1 (Besicovitch). There is a closed and bounded subset of the plane which has

measure zero, yet contains a unit line segment in every direction.

We will deduce this result by a applying a limiting argument to a discrete analogue of

it. We say that a triangle T ⊆ R2 is decent if its base lies on the x-axis and it has height

1. Let T be the decent triangle bounded by points (0, 0), (1, 0) and (0, 1). For an integer

N consider a subdivision of T into triangles Ti bounded by (i/N, 0), ((i+ 1)/N, 0) and

(0, 1), i = 0, 1, . . . , N − 1.

Proposition 1.1 (Discrete Besicovitch). Let ε > 0, and let V be an open set containing

T . Then there exists N = N(ε) and real numbers e1, . . . , eN such that

(i) The union of the translated triangles Ti + ei has area at most ε and

(ii)
⋃

(Ti + ei) ⊆ V .

Remarks. There is nothing special about the particular triangle T ; by an affine trans-

formation, a similar result holds for any decent triangle.

Now let N = 2k, where k is to be chosen later. Let δ > 0 be a real number, also to

be chosen later. We have a subdivision of T into triangles T1, . . . , T2k , and we wish to

translate the triangles Ti so as to make the total area of the translated copies smaller

than ε. Let us begin by moving T2 a distance δ2−k to the left. The translated copy of

T2 overlaps with T1, and this creates a figure that resembles the one below.

Figure 1. overlapping triangles

The shaded triangle is similar to T1 ∪ T2 but is smaller by a scale factor (1 − δ). The

unshaded part of the figure, B, is called a “bowtie”. We need an estimate for its area.

Lemma 1 (Bowtie Lemma). The area of B is 2δ2|T1 ∪ T2|.
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Proof. We may assume, by subjecting the whole figure to an affine transformation, that

T1∪T2 is an isoceles right triangle with sidelengths 1 as shown in Figure 2. Elementary

trigonometry confirms that |CD| = |BC| = δ. Thus

Area(ABC) = Area(ADB)− Area(ACD) = 1
2
δ2.

Now by comparing angles and the sides BC,CD we see that triangle ACB is congruent

A

B

C

D

E

Figure 2. The bowtie lemma

to ECD. Thus the area of B is exactly δ2, which is 2δ2 times the area of T1 ∪ T2.

Remark. In fact, all we need is that |B| is at most a constant multiple of δ2. We will

not always be so careful as we were in proving this lemma.

We perform analagous translations on the adjacent pairs of triangles (T3, T4), (T5, T6)

and so on as illustrated in Figure 3. The areas of the resulting bowties are all at

most 2δ2|T2i+1 ∪ T2i+2|, because we can always apply an affine transformation so that

T2i+1 ∪ T2i+2 becomes an isoceles right triangle.

One could now shift all these pieces along so that the union of the shaded areas is a

shaded triangle which is similar to T (that is, isoceles and right-angled) but smaller by

a factor (1−δ). See Figure 3. The union of all the unshaded parts is a union of bowties,

and hence has area no more than 2δ2|T | = δ2.

The 2k−1 shaded areas in Figure 2, then, form a subdivision of an isoceles right-triangle

into 2k−1 smaller triangles which is very similar to the partition T =
⋃
Ti that we

started with. We can therefore iterate our construction, making pairs of adjacent shaded

areas overlap as in Figure 4. The bowties from the previous stage get moved around

automatically, and there are now some new bowties like the one shaded dark in Figure

4, and some new triangles like the one shaded light grey. The total area of the new
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Figure 3. translating adjacent pairs (k = 2)

Figure 4. a new shaded triangle

triangles is (1− δ)4|T |, and they fit together as before to form an isoceles right triangle

similar to T but smaller by a factor (1 − δ)2. The total area of the new bowties is no

more than δ2(1− δ)2.

The construction has now got to the stage where drawing pictures is difficult, but it

is clear that we can iterate it k times. This will leave a single shaded triangle of area
1
2
(1− δ)2k plus a union of bowties from each stage having area no more than

δ2
(
1 + (1− δ)2 + · · ·+ (1− δ)2k−2

)
6 δ.

Thus we have a union of translates of the original triangles Ti with total area no more

than
1
2
(1− δ)2k + δ 6 1

2
e−2kδ + δ.

Setting δ = log k/k we see that this is at most 2 log k/k for k > 3. By choosing k

sufficiently large we can certainly ensure that this is no more than ε, thereby satisfying

condition (i) of Proposition B.1. How do we satisfy condition (ii)? Well, since T is

compact there is some neighbourhood Nη(T ) which lies entirely in V . So we can begin
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Figure 5. the second iteration

by splitting T into triangles with height 1 and base at most η, and then applying the

above construction to each of these thin triangles in turn. Note that, by construction,

no point in T then gets translated by more than η and so all the points of our union⋃
(Ti + ei) lie in V . This completes the proof of Proposition B.1.

Proof of Theorem 11. A rather obvious observation concerning Proposition B.1 is

that the set
⋃

(Ti + ei) contains a unit line segment in every direction dθ making an

angle θ ∈ [0, π/4] with the y-axis. Such sets can, therefore, have arbitrarily small area.

We will now produce a limiting argument which shows that they can have zero area.

Putting 8 rotated copies of such a set next to one another gives a set of the form found

by Besicovitch.

Start with the triangle T , and let V0 be an open set containing T with |V0| = 1.

Construct a new set T1 using Proposition B.1, so that T1 is a union of N1 decent

triangles, |T1| 6 1/4 and T1 ⊆ V0. Let V1 be an open set containing T1, such that

V1 ⊆ V0 and |V1| = 1/2. For each of the triangles comprising T1 apply Proposition B.1

to get a new union of decent triangles which lies in V1 and has area at most 1/8N1.

Putting all N1 of these together gives a set T2 with |T2| 6 1/8, T2 ⊆ V1 and T2 a union

of N2 decent triangles. By construction, of course, T2 contains a line segment for every

direction with θ ∈ [0, π/4].

Continuing in this vein gives a nested sequence

V0 ⊃ V1 ⊃ V2 ⊃ . . .
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of open sets such that |Vi| → 0. Furthermore each Vi contains Ti, and so has a line

segment in every direction dθ ∈ [0, π/4]. Set F =
⋂∞

i=1 Vi. Then F is closed and bounded

and has measure zero. We claim that F contains a line segment in every direction dθ,

θ ∈ [0, π/4]. Indeed, for fixed θ the set Vi contains a unit line segment xi + [0, 1]dθ. The

sequence {xi}∞i=1 is bounded and hence has a convergent subsequence x′i → x. Suppose

that x /∈ F . Since F is closed, this means that there is some ball B = Nδ(x) whose

closure is disjoint from F . Since x′i → x, B meets each Vi. The sequence B ∩ Vi consists

of nested, non-empty closed sets whose intersection is therefore non-empty. But this

intersection lies in
⋂
Vi and hence in F , a contradiction. A similar argument shows

that, in fact, the whole line segment x+ [0, 1]dθ lies in F , and this completes the proof

of Theorem 11.

2. The Kakeya Problem I

We begin with a word on notation. In this set of notes the parameter δ will be a real

number smaller than 1, and n will be a fixed positive integer, regarded as the dimension

of the problem we are considering. We use the symbols ¿ and À in what might seem

a rather cavalier manner. A statement such as

|A| ¿ δn−1 (2.1)

means that there is some constant c such that

|A| 6 cδn−1 (2.2)

for all δ ∈ [0, 1). The constant c might depend on n, but we do not indicate such depen-

dence explicitly. An even more convenient notation, which seems even more confusing

at first sight, is something like

|A| ¿ δn−1−ε. (2.3)

The letter ε will generally be reserved for such an expression, which means that for any

choice of ε > 0 there is a constant cε (which might also depend on n) such that

|A| 6 cεδ
n−1−ε.

In words, this means that |A| grows more slowly than any power of δ with exponent

smaller than n− 1 (remember that, as δ < 1, δ3 is bigger than δ5, and so on).

Minkowski dimension. Let E ⊆ Rn, and for δ > 0 let Nδ(E) be the δ-neighbourhood

of E. How does the volume |Nδ(E)| vary as δ → 0? If E is a line then |Nδ(E)| is

comparable to δn−1, whilst if E is the unit ball in Rn then |Nδ(E)| is of the order of 1.

The line and the unit ball differ in that one would expect the line to have “dimension” 1
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whereas the ball should have “dimension” n. These considerations lead to the following

precise definition of dimension.

Definition 2.1. Let E ⊆ Rn. Define the lower Minkowski dimension d(E) by

d(E) = inf
{
d : lim inf

δ→0
|Nδ(E)|δd−n = 0

}
,

and the upper Minkowski dimension d(E) by

d(E) = inf

{
d : lim sup

δ→0
|Nδ(E)|δd−n = 0

}
.

These definitions take some unravelling. Observe that if d > d(E) then there is a

sequence of δi’s tending to 0 for which |Nδi
(E)| is eventually smaller than any constant

multiple of δn−d
i . If d > d(E) then |Nδi

(E)| is smaller than Cδn−d for all sufficiently

small δ and any fixed C.

In this course we will not use these notions of dimension a huge amount. The reader

eager to know more may consult Mattila’s Geometry of sets and measures in Euclidean

spaces, CUP.

Example. Define C, the Cantor middle thirds set, to be the set of all real numbers

in [0, 1] whose base 3 expansion consists entirely of 0s and 1s. We will show that

d(C) = d(C) = log 2
log 3

. Take some δ > 0, and consider the neighbourhood Nδ(C). Let

k = blog3(1/δ)c, and set η = 3−k. It is not hard to give an upper bound for |Nη(C)|,
because if x ∈ Nη(C) then x is at distance at most 2.3−k from some y = 0.a1a2 . . . ak,

where ai ∈ {0, 1}. Thus |Nη(C)| 6 4(2/3)k, and

|Nδ(C)| 6 |Nη(C)| 6 4

(
2

3

)log3(1/δ)−1

6 6.δ1− log 2
log 3 . (2.4)

To get a lower bound, set κ = 3−k−1 and consider Nκ(C). This certainly contains an

interval of length κ about each point of the form z = 0.a1a2 . . . ak+1, and for different

choices of z these intervals are disjoint. Thus

|Nδ(C)| > |Nκ(C)| > (2/3)k+1 > 2
3
· δ1− log 2

log 3 . (2.5)

It is clear from inequalities (5.3) and (2.5), together with the definitions of upper and

lower Minkowski dimension, that indeed d(C) = d(C) = log 2
log 3

.

We now state the Kakeya problem.

Problem 2.2. What is d(n), the infimum over all Besicovitch sets B ⊆ Rn of d(B)?
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It is conjectured that d(n) = n, which is as large as it possibly could be. This is

known as the Kakeya conjecture; it is true (and we will prove it) for n = 2. For higher

dimensions only partial results have been established. We will prove some of those too.

Conjecture 2.3 (Kakeya conjecture). If B ⊆ Rn is Besicovitch then d(B) = n.

Kakeya in 2 dimensions. In this section we will show that d(2) = 2. Roughly

speaking, the main peculiarity of two dimensions that makes this possible is the fact

that just about any pair of lines in the plane intersect. Sadly, such a principle fails

rather dramatically in higher dimensions.

Theorem 2. d(2) = 2, that is all Besicovitch sets in the plane R2 have Minkowski

dimension 2.

Proof. Let δ ∈ (0, 1], and let k = b1/δc. Let B ⊆ R2 be a Besicovitch set, and consider

the neighbourhood Nδ(B). We wish to prove an estimate of the form |Nδ(B)| À δε.

Observe that for each i = 1, . . . , k the neighbourhood Nδ(B) contains a δ × 1 rectangle

whose long axis makes an angle πi/2k with the positive x-axis. Let these rectangles be

R1, . . . , Rk; we will show that ∣∣∣∣∣
k⋃

i=1

Ri

∣∣∣∣∣ À δε, (2.6)

which clearly suffices to prove Theorem 11. Write χi for the characteristic function of

Ri, and let A =
⋃
Ri. We use Cauchy-Schwarz, which gives

(∫
(χ1 + · · ·+ χk)(x) dx

)2

6 |A|
∫

(χ1 + · · ·+ χk)(x)
2 dx

= |A|
∑
i,j

|Ri ∩Rj|. (2.7)

The left hand side is simply k2|R1|2, which is comparable to 1. To estimate the right-

hand side of (2.7) we need to know something about how rectangles intersect. This

depends on the angle between Ri and Rj. The angle between Ri and Rj is θ = |i−j|π/2k
and their intersection is contained within a rhombus, as shown. Each side of this

rhombus has length δ/ sin θ, so its area is precisely δ2/ sin θ. This is at most 2δ2/θ,

because one has the inequality sin t > 2t/π when t ∈ [0, π/2]. Since k 6 1/δ, this is at

most 2δ/|i− j|. Thus for fixed i we have

∑
j

|Ri ∩Rj| 6 δ + 2
k∑

l=1

2δ

l

¿ δ log

(
1

δ

)
.
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Figure 6. intersecting rectangles

Summing over the k values of i and substituting into (2.7) gives the inequality

|A| À
(

log

(
1

δ

))−1

.

This confirms the Kakeya conjecture in two dimensions (and in fact it gives a rather

strong lower bound on |Nδ(B)|).

The finite field Kakeya problem. The finite field Kakeya problem, which we shall

state presently, may be regarded as a toy version of the Euclidean problem. Although

it lacks some of the features of the Euclidean problem it retains the most important

aspect - trying to understand the incidence and intersection properties of possibly skew

lines.

Let p be a prime and consider the vector space Fn
p . We define a line to be a set of the

form {x0 + tx : t = 0, 1, . . . , p − 1}. The direction of the line is x, and it is uniquely

defined up to projective equivalence (that is, up to multiplication by non-zero elements

of Fp). A Besicovitch set in Fn
p is simply a set which contains a line in every direction.

Problem 2.4 (Finite field Kakeya). What is the minimum cardinality of a Besicovitch

set in Fn
p?

In this problem we think (of course) of n as a fixed dimension and let p become

large. To that end define dF (n) to be the infimum of all d for which there is a constant

C = C(d) and, for all primes p, a Besicovitch subset of Fn
p with cardinality no more

than Cpd.

Conjecture 2.5 (Finite field Kakeya conjecture). We have dF (n) = n.

Although the finite field Kakeya problem is, in many ways, much easier to think about

than the Euclidean version, there are some important respects in which it is different.
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By modifying the proof of Theorem 11, for example, it is possible to show that there is

no proper analogue of the Besicovitch construction we saw in the previous set of notes.

Theorem 3. Any Besicovitch subset of F2
p has cardinality at least 1

2
p(p+ 1) (and so, a

fortiori, dF (2) = 2).

Proof. Consider a collection of p+ 1 lines L1, . . . , Lp+1 in F2
p, one in each direction. Let

A =
⋃
Li, and suppose for a contradiction that A is small. In what follows we write χi

for the characteristic function of the line Li; that is, χi(x) = 1 if x ∈ Li and 0 otherwise.

Using the Cauchy-Schwarz inequality gives

p2(p+ 1)2 =

(∑
x

(χ1 + · · ·+ χp+1)(x)

)2

6 |A|
∑

x

(χ1 + · · ·+ χp+1)(x)
2

= |A|
∑
i,j

|Li ∩ Lj|

= 2|A|p(p+ 1),

where we have used the fact that |Li∩Lj| = 1 unless i = j, when it equals p. The result

follows immediately.

For completeness, we give a construction which shows that the constant 1
2

in this the-

orem is tight. It looks rather different to the “shifting triangles” construction from the

previous set of notes!

Theorem 4. Suppose that p > 2. Then there is a Besicovitch subset B ⊆ F2
p of

cardinality at most p(p+ 3)/2.

Proof. Consider the set of pairs

S =
{
(x, t) ∈ F2

p : x+ t2 is a square in Fp

}
.

For a fixed choice of t there are (p + 1)/2 choices for x, and so |S| = p(p + 1)/2.

Furthermore S contains the line (a2, 0) + λ(2a, 1) for any a, which gives a line in every

direction except the direction (1, 0). Set B = S ∪ {(λ, 0) : λ ∈ Fp}.

3. The Kakeya Problem II

In the last set of notes we acquired a decent understanding of the Kakeya problem

in dimension 2, both in Euclidean space and over finite fields. Our knowledge of the

problems in dimensions 3 and higher is considerably less complete, and this set of notes

is devoted to proving some partial results. We begin with

Theorem 5. d(n) > (n+ 1)/2.
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Proof. Let B ⊆ Rn be a Besicovitch set with lower Minkowski dimension d. Although

B is (by definition) closed and bounded there is nothing to stop it being fairly spread

out. This turns out to be rather inconvenient.

Lemma 2. Let Γ be the “north cap” of the sphere Sn−1, which we define to be the set

of vectors γ with 〈γ, en〉 > 3/4 (where en = (0, 0, . . . , 1)). Then there is a set B′ ⊆ Rn

with Minkowski dimension at most d such that B′ ⊆ Rn−1 × [0, 1], and for every γ ∈ Γ

there is a line segment lγ ∈ B′ in direction γ and meeting both hyperplanes xn = 0 and

xn = 1.

Proof. Chop B into slices

Bi = B ∩ (
Rn−1 × [i/4, (i+ 1)/4)

)
,

i ∈ Z, and translate these slices so that they lie on top of one another to form a set

B∗. If lγ is a line in B with direction γ ∈ Γ then it certainly intersects at least two of

the hyperplanes xn = i/4. (A projection of) this statement is illustrated in the figure.

Thus B∗ contains a line segment in every direction γ ∈ Γ meeting both the hyperplanes

2

1

0

x nB

B

B

Figure 7. a preliminary slicing-up

xn = 0 and xn = 1/4 (and thus having length at least 1/4). Let B′ be the set obtained

by applying a scale factor of 4 to B∗. This set has the properties required by the lemma

(I am not interested in proving that d(B′) 6 d(B) rigorously, but you may care to think

about it).

From now on we drop the dash: that is, we pretend that B had the property of Lemma

29 from the outset. Let δ > 0, and consider the neighbourhood Nδ(B)∩ (Rn−1 × [0, 1]).

This contains a skew tube (an object whose intersection with every hyperplane {xn = λ}
is a δ-ball) in every direction γ ∈ Γ.

In two dimensions, it was very convenient to pass to a subset of directions. On the circle

we looked at the explicit directions πi/2k, i = 1, . . . , k, where k = b1/δc, but there is

no obvious explicit set of directions in Γ.
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2

Figure 8. a skew tube

We say that a (finite) set Ω ⊆ Sn−1 is η-separated if |ω − ω′| > η whenever ω, ω′ are

distinct elements of Ω.

Lemma 3. There is a 200δ-separated subset of Γ with cardinality À δ1−n.

Proof. Let Ω be a 200δ-separated subset of Γ which is maximal with respect to inclusion.

Then the balls N400δ(ω), ω ∈ Ω, cover the whole of Γ, as if they did not a point in their

complement could be added to Ω. Now the area of N400δ(ω) is proportional to δn−1,

whereas the area of Γ is a constant depending only on n. It follows that |Ω| À δ1−n.

Pick such a set Ω, and let A be the union of the skew tubes Tω ∈ Nδ(B) in directions

ω ∈ Ω. To prove Theorem 11, it suffices to prove a lower bound |A| > Cεδ
(n−1)/2+ε.

Now for any λ ∈ [0, 1] we may consider the slice Sλ = {x ∈ A|xn = λ}. If |A| is small

then most of the slices must be small too. Indeed if Λ is the set of fat slices, that is

slices with |Sλ| > 100|A|, then |Λ| 6 1/100. For if not then we would have

|A| =

∫ 1

0

|Sλ| dλ
> 100|Λ||A|
> |A|,

a contradiction. Because there are so few fat slices there must be two thin slices Sλ1

and Sλ2 with |λ1 − λ2| > 1/2.

Our next job is to combinatorialise our slices. To do this, set κ = δ/
√
n and define Dλ

to be set of all lattice vectors v ∈ Zn−1 for which (κv, λ) ∈ Sλ. To relate the size of Dλ

to that of Sλ, we need a lemma concerning balls.
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Lemma 4. Let {xi}i∈I be an arbitrary collection of points in Rn, let κ > 0 and let

t > 1. Then we have ∣∣∣∣∣
⋃
i∈I

B(xi, tκ)

∣∣∣∣∣ 6 (t+ 2)n

∣∣∣∣∣
⋃
i∈I

B(xi, κ)

∣∣∣∣∣ .

Proof. This lemma would, of course, be trivial (with t + 2 replaced by t) if the balls

B(xi, κ) did not overlap. To this end let J ⊆ I be maximal so that the balls B(xj, κ),

j ∈ J , are disjoint. Then the balls B(xj, 2κ) must between them contain all the xi, as

otherwise the set J would not be maximal. Thus
⋃
i∈I

B(xi, tκ) ⊆
⋃
j∈J

B(xj, (t+ 2)κ),

leading to the chain of inequalities
∣∣∣∣∣
⋃
i∈I

B(xi, tκ)

∣∣∣∣∣ 6
∣∣∣∣∣
⋃
j∈J

B(xj, (t+ 2)κ)

∣∣∣∣∣

6 (t+ 2)n

∣∣∣∣∣
⋃
j∈J

B(xj, κ)

∣∣∣∣∣

6 (t+ 2)n

∣∣∣∣∣
⋃
i∈I

B(xi, κ)

∣∣∣∣∣ ,

as required.

Lemma 5. For any λ we have |Dλ| 6 (4n)nδ1−n|Sλ|.

Proof. Sλ, being a union of δ-balls, is a union
⋃

i∈I B(xi, κ) of (uncountably many)

κ-balls. The set of κ-cubes with lower corners in Dλ, which has volume κn−1|Dλ|, is

contained in
⋃

i∈I B(xi, (1+
√
n− 1)κ). The result now follows from the previous lemma

and a short calculation.

Now to each tube Tω we may associate a pair Pω = (vω, v
′
ω) ∈ Dλ1 × Dλ2 such that

vω ∈ Tω ∩ Sλ1 and v′ω ∈ Tω ∩ Sλ2 . Indeed by definition the intersection of Tω with Sλ is

a δ-ball, and such a ball must contain a point of the lattice κZn−1.

(This is where I erred in the lecture. It is not true that any δ-ball in Rm intersects the

lattice δZm. This is true in dimesnions 2,3 and 4 but not in dimensions 5 and higher.

That is what confused me! )

Lemma 6. The vectors vω − v′ω, ω ∈ Ω, are all distinct.

Proof. The reason this is true is that the vector vω − v′ω is “roughly parallel” to the

direction ω of Tω, but ω and ω′ are far apart for different ω, ω′ (in fact, 200δ-separated).
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X

Y

v

v’

Figure 9. 10δ-separated tubes

Actually proving this statement is rather painful, but we have to do it. The picture

shows a tube T intersected with the two hyperplanesH1 : {xn = λ1} andH2 : {xn = λ2}.
The line XY is the axis of symmetry of the tube, so XY is in direcion ω. A vector

v−v′ of the relevant form is also illustrated. Now v ∈ B(X, δ) and v′ ∈ B(Y, δ), so that

|Xv| and |Y v′| are at most δ. We may therefore, by translating so that X = v, draw

the following figure in the plane. Write |XY | = a, |vv′| = a + ε1 and |Y v′| = ε2. Thus

X = v Y

 v’

a

Figure 10. Euclidean geometry

ε2 6 2δ and, since we chose λ1, λ2 so that |λ1 − λ2| > 1/2, we have a > 1/2.

The cosine rule applies to show that

cos θ =
a2 + (a+ ε1)

2 − ε22
2a(a+ ε1)

> 1− ε22
2a(a+ ε1)

> 1− 100δ2

provided that δ is smaller than some absolute consant (which we can assume it is).
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Now by considering Taylor series expansions, or by elementary calculus, one can check

that cos t 6 1− 1
4
t2 for t sufficiently small. Thus

1− 1
4
θ2 > 1− 100δ2,

which implies that θ 6 20δ. We have shown, then, that v − v′ makes an angle at most

20δ with ω. Lemma 6 follows immediately from the fact that the different directions ω

are 200δ-separated.

We may now complete the argument. We chose the slices Sλ1 and Sλ2 to be thin, that

is |Sλ1| and |Sλ2| are both at most 100|A|. It follows from Lemma 5 that both |Dλ1| and

|Dλ2| are ¿ δ1−n|A|. Lemma 6, however, implies that |Dλ1||Dλ2| > |Ω|. Recalling that

|Ω| À δ1−n, a short calculation confirms that |A| À δ(n−1)/2. By our earlier remarks,

this is enough to imply Theorem 11.

As you can see, technical issues get in the way of even the simplest arguments concerning

the Euclidean Kakeya problem. For that reason in all of our subsequent arguments

pertaining to the Kakeya problem we think only about the finite field problem. The

truly conscientious reader can go through the arguments adapting them to the Euclidean

setting, using the argument of Theorem 11 as a model. In what follows we suppose that

p is a sufficiently large prime (where “sufficiently large” might depend on the dimension

n).

Slice-free arguments. An exercise on the first example sheet asks you to write out

the argument of Theorem 11 in the finite field case. You will see that it boils down to

something very simple. Here is another very simple way of seeing that dF (n) > (n+1)/2.

Theorem 6. Besicovitch sets in Fn
p have cardinality at least 1

4
p(n+1)/2.

Proof. Suppose not, and let A ⊆ Fn
p be a set containing a line in each of the (pn−1)/p−

1 > pn−1/2 possible directions. The number of point-line pairs (p, l) with p ∈ l is at

least pn/2, and so some point x must lie on L > p(n−1)/2/2 lines. These lines are disjoint

away from x, and so the union of this point and the L lines through it has cardinality

1 + L(p− 1), which is at least p(n+1)/2/4.

Wolff’s hairbrush argument. The argument of Theorem 6 was incredibly crude, and

what is more it fails to recover what we already know in the case n = 2. In this section

we give an argument, due to Tom Wolff, which proves dF (n) > (n + 2)/2. Amazingly

the case n = 3 of this result, namely that dF (3) > 5/2, is the best result currently

known in 3 dimensions, at least for the finite field version of the Kakeya problem.

Theorem 7 (Wolff). Besicovitch sets in Fn
p have cardinality at least 1

8
p(n+2)/2.
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We start with a lemma, which is a kind of 2-dimensional finite field Kakeya problem

in which there need not be very many lines.

Lemma 7. Suppose that a set A ⊆ F2
p is a union of l lines L1, . . . , Ll, all pointing in

different directions. Then |A| > pl/2.

Proof. We adapt the proof of Theorem 7 from the previous notes. Write χ1, . . . , χl for

the characteristic functions of L1, . . . , Ll. Then we have

p2l2 =

(∑
x

(χ1 + · · ·+ χl)(x)

)2

6 |A|
∑

x

(χ1 + · · ·+ χl)(x)
2

= |A|
∑
i,j

|Li ∩ Lj|

= |A| (lp+ l(l − 1))

6 2lp|A|.
The lemma follows immediately.

Now let A ⊆ Fn
p be Besicovitch, being a union of lines L1, . . . , Lk with pn−1 6 k 6 2pn−1,

and suppose that |A| 6 p(n+2)/2. We can use a Cauchy-Schwarz type argument to prove

that some line intersects at least 1
4
pn/2 others. Indeed, we have

p2k2 =

(∑
x

(χ1 + · · ·+ χk)(x)

)2

6 |A|
∑

x

(χ1 + · · ·+ χk)(x)
2

= |A|
∑
i,j

|Li ∩ Lj|,

so that ∑
i,j

|Li ∩ Lj| > p(3n−2)/2.

It follows that for some i, say i = k, we indeed have
∑

j 6=i

|Li ∩ Lj| > 1
2
pn/2 − p > 1

4
pn/2.

We now restrict attention to the line Lk and the lines L1, . . . , Lm intersecting it, where

m > 1
4
pn/2. We call this collection of lines a hairbrush H. Each of these lines lies in

a unique 2-plane containing Lk. Let Π1, . . . ,Πt be the complete collection of 2-planes

containing Lk and some other Lj, and suppose that Πi contains ni > 1 of the lines
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Figure 11. a rather schematic depiction of a hairbrush

L1, . . . , Lm. Since Πi also contains Lk we have, by Lemma 37, that

|Πi ∩H| > 1
2
(ni + 1)p >

(
1
4
ni + 1

)
p

provided that ni > 2. This inequality clearly also holds when ni = 1. In particular,

Πi contains at least 1
4
nip points of H which do not lie on Lk, and these collections of

points are disjoint as i varies. Thus we have the estimate

|A| > |H|

> 1
4
p

t∑
i=1

ni

= 1
4
pm

> 1
8
p(n+2)/2.

This completes the proof of Theorem 7.

Adapting the above argument to the Euclidean case is quite a challenge, and Wolff’s

original paper contained a number of important technical innovations which we do not

have time to describe in this course.

More elaborate slicing arguments. Recall that in the previous set of notes we

proved that dF (n) > (n + 1)/2 using what we called a slicing argument. By adapting

this argument we can get a better bound. Such techniques were introduced to the study

of the Kakeya problem by Bourgain, and elaborated by Katz and Tao.

Suppose that (Z,+) is an abelian group and that G ⊆ Z × Z. If r is an integer we

write πr(G) for the set of all a+ rb, where (a, b) ∈ G. We also write π∞(G) for the set

{b : (a, b) ∈ G}. The notation is supposed to be suggestive of the fact that the πi are

projections. The next proposition shows that if there is a small Besicovitch set in Fn
p

then we can find a group Z and a set G with very strange projection properties.
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Proposition 3.1. Suppose that A ⊆ Fn
p is a Besicovich set. Then there is an abelian

group (Z,+) and a subset G ⊆ Z×Z so that |π−1(G)| > 1
2
pn−1, but |π0(G)|,|π1(G)|,|π2(G)|

and |π∞(G)| are all at most 8|A|/p.

Proof. Let us look at slices Ai = A∩ {xn = i}, i = 0, 1, . . . , p− 1. At most p/8 of these

slices can have cardinality bigger than 8|A|/p. Of the other “thin” slices, of which there

are at least 7p/8, we can find some seven consecutive ones Ai, Ai+1, . . . , Ai+6. Now let

Z = Fn−1
p , and define subsets B0, . . . , B6 ⊆ Z by

B0 = {b : (b, i) ∈ Ai},
B1 = {b′ : (b′, i+ 1) ∈ Ai+1}

and so on. Now the Besicovitch set A contains lines L1, . . . , Lk in different directions,

where k > pn−1. At least 1
2
pn−1 of these lines intersect both Ai and Ai+6, and they do so

in pairs of points (x, x′). Each such pair gives rise to a pair in B0×B6, and we call the

set of all such pairs G. Clearly G is a subset of Z × Z, and both |π0(G)| and |π∞(G)|
are at most 8|A|/p. Furthermore for any pair (x, x′) the midpoint (x+ x′)/2 lies on the

same line as x and x′, and also has xn = i + 3. Therefore it lies in the slice Ai+3, and

this means that π1(G) lies in B3. Hence |π1(G)| 6 8|A|/p too. Similarly (x + 2x′)/3

lies in Ai+4, so that π2(G) ⊆ B4 and |π2(G)| 6 8|A|/p. However (as all the lines of

A point in different directions) the differences x− x′ are all different, and so all of the

projections of G in the −1 direction are distinct. Thus |π−1(G)| = |G| > 1
2
pn−1.

It is all very well finding a set with “strange projection properties”, but we have to

actually do something with it.

Proposition 3.2. Let (Z,+) be an abelian group and let G ⊆ Z × Z. Then we have

an inequality

|π−1(G)| 6 max
r∈{0,1,2,∞}

|πr(G)|7/4.

Proof. We may clearly suppose that π−1 is 1-1 on G, so that π−1(G) = |G|. Suppose that

maxr∈{0,1,2,∞} |πr(G)| = N . Let Q be the set of all suitable quadrilaterals (g1, g2, g3, g4),

where g1, g2, g3, g4 ∈ G and π0(g1) = π0(g2), π0(g3) = π0(g4), π∞(g1) = π∞(g3) and

π2(g2) = π4(g4). A typical such quadrilateral Q is depicted in Figure 2. We’re going

to give, first of all, a lower bound on the number of such quadrilaterals. First of all we

count vertical line segments (g1, g2) with π0(g1) = π0(g2). For each point x ∈ π0(G)

suppose that there are n(x) points g ∈ G above x, that is with π0(g) = x. Then

the number of vertical line segments is just
∑

x n(x)2 which, by the Cauchy-Schwarz

inequality, is at least |G|2/N .

Now let m(x, y) be the number of vertical line segments (g1, g2) with π∞(g1) = x

and π2(g2) = y. By what we have just shown,
∑

x,y m(x, y) > |G|2/N . The number
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Figure 12. a quadrilateral

of suitable quadrilaterals is precisely
∑

x,y m(x, y)2 which, by another application of

Cauchy-Schwarz, is at least |G|4/N4.

This gives a lower bound for the number of suitable quadrilaterals. To get an upper

bound we show that Q is completely determined by the triple (x, y, z), where x = π1(g1),

y = π1(g2) and z = π∞(g4). Since there are only N3 such triples the required bound

|G|4 6 N7 will follow immediately. The proof rests on the identity

π−1(g3) = −π1(g1) + 2π1(g2)− 2π∞(g4).

To check this, write gi = (ai, bi) and simplify using the relations a1 = a2, a3 = a4,

b1 = b3 and a2 + 2b2 = a4 + 2b4. Thus x, y and z determine π−1(g3) and hence g3, and

therefore a4 and b1. This leaves a1, a2, b2, b4 undetermined, but of these we know that

a1 = a2 plus the three linear relations given by the values of x, y, z. It is a simple matter

of linear algebra to check that this 4× 4 system is invertible and that all the gi can be

recovered.

Theorem 8. dF (n) > (4n+ 3)/7.

Proof. This is just a matter of substituting Proposition 3.1 into Proposition 3.2 and

seeing what comes out after doing the algebra. In fact, every Besicovitch subset of Fn
p

has cardinality at least 1
16
p(4n+3)/7.

The arithmetic Kakeya conjecture. Let us reconsider Proposition 3.2, and in
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particular how it might be improved. Suppose that for some ε > 0 there are numbers

r1, . . . , rk ∈ Q>0 ∪ {∞} (called a slice set) such that we have a bound

|π−1(G)| 6 max
i∈{1,...,k}

|πri
(G)|1+ε.

Then, by adapting the argument used to prove Proposition 3.1 in a straightforward way,

we can show that

dF (n) > (n+ ε)/(1 + ε).

We showed, in Proposition 3.2, that one can find a slice set for ε = 3/4 (namely the

set {0, 1, 2,∞}). By more involved arguments of an iterative nature Katz and Tao have

shown that there are slice sets for all ε > 0.67514.

Conjecture 3.3 (Arithmetic Kakeya). There are slice sets for all ε > 0.

This conjecture implies the finite field Kakeya conjecture, and in fact the Minkowski

dimension Kakeya conjecture in Rn. It seems not to be implied by either of these

though; that is, arithmetic Kakeya is stronger than Kakeya.

We do not intend to prove any more Kakeya bounds in this course. The reader

interested in persuing the matter further should consult Tao’s Edinburgh lecture notes

on the Kakeya problem, available on his website, and the references therein.

4. The circle, I

One of the aims of this course is supposed to be to achieve an understanding of the

Fourier transform, and of how it interacts with geometry. In this set of notes we take our

first steps in this direction. It is clear that any understanding of the Fourier transform

will be difficult without giving the definition, so we start with that.

A very short introduction to the Fourier transform on Euclidean spaces.

We will be dealing with Fourier transforms in various different settings - in Euclidean

space, in finite fields, in abelian groups, on the integers. It is well worth understanding

(though not essential to the course) that the Fourier transform’s natural habitat is a

locally compact abelian group. Depending on how much explanation you would like of

this statement, I refer you to the following:

(i) Tom Körner’s Part III course on topological groups, to be given in the Michael-

mas term;

(ii) Katznelson’s classic (and inexpensive) text Harmonic analysis ;

(iii) Some notes that I wrote entitled “Fourier analysis and the zeta function”, avail-

able at

http://www.dpmms.cam.ac.uk/̃ bjg23/papers/zeta.dvi.

Rather tangential to the things we are discussing in this course.
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Now if f : Rn → C is a sufficiently nice function1 and if ξ ∈ Rn then we define the

Fourier transform by

f̂(ξ) =

∫

Rn

f(x)e−2πiξ·x dx

Lemma 8 (Basic properties of the FT). Let f, g : Rn → C. Then we have:

(i) (Plancherel) ‖f‖2 = ‖f̂‖2.

(ii) (Parseval)
∫
f(x)g(x) dx =

∫
f̂(ξ)ĝ(ξ) dξ;

(iii) (Inversion) f(x) = f̂∨(x), where g∨(x) = ĝ(−x);
(iv) (Convolution) Define the convolution of two functions by

(f ∗ g)(x) =

∫
f(y)g(x− y) dy.

Then

f̂ ∗ g(ξ) = f̂(ξ)ĝ(−ξ).
(v) (Scaling) Define fa by fa(x) = f(ax). Then f̂a(ξ) = anf̂(ξ/a).

(vi) (Rotational symmetry) The Fourier transform of a radially symmetric function

is radially symmetric.

**Remarks**. We shall prove the analagous properties in the finite field case later on.

Part (v) and (vi) are straightforward change-of-variables, and (iv) is easy to prove using

Fubini’s Theorem. To prove (i), I would show that it is true for the Hermite polynomials

Hn(x) = pn(x)e−π|x|2 . These functions (pn is a polynomial) are eigenvectors of the

Fourier transform and are dense in L2(Rn). You may care to check that if f(x) = e−πx2

(in one dimension) then f̂ = f , so that (i) is trivial in this case. Property (ii) follows

from (i) using a well-known technique called polarization: apply (i) to various linear

combinations µf + νg and perform a linear elimination to get an expression for
∫
fg.

For more details consult Rudin’s Real and Complex Analysis.

Our main objective in this set of notes is to look at the Fourier transform of the circle

S1 ⊆ R2. The circle is endowed with a natural measure. Parametrize S1 by (cos θ, sin θ) :

θ ∈ [0, 2π), and consider the arc A from (cos θ1, sin θ1) to (cos θ2, sin θ2), where 0 < θ1 <

1I do not wish to address measure-theoretic issues in this course, so I do not intend to say what
sufficiently nice means. Furthermore I shall not even bother qualifying statements with phrases like
“suppose that f and g are sufficiently nice”. If this really bothers you, then I will be happy to give a
non-examinable talk on measure theory and the Fourier transform. You should also bear in mind that
we will be dealing exclusively with discrete phenomenawithin a few lectures.
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θ2 < 2π. We define its measure2 σ(A) to be θ2− θ1. The object of interest to us will be

d̂σ(λ) =

∫

R2

e−2πiλ·x dσ(x)

=

∫ 2π

0

e−2πi(λ1 cos θ+λ2 sin θ) dθ,

defined for any λ ∈ R2. This3 is called the Fourier transform of the (surface) measure

σ.

We will show that the fact that S1 is curved has implications for d̂σ. To set this work in

context, let’s look briefly at the Fourier transform of the archetypal non-curved surface,

the line L = {(x, 0) : 0 6 x 6 1}. This has an obvious measure ν, and we have

d̂ν(λ) =

∫ 1

0

e−2πixλ1 dx.

When λ = (0, λ2), this is identically equal to 1. That is, the Fourier transform d̂ν(λ)

does not decay as λ→∞. We will see that this is not true of the circle.

A closed form evaluation of d̂σ(λ) is not possible, but we can get an asymptotic. This

is an example of the principle of stationary phase which some of you may have met

before. We begin with two lemmas.

Proposition 4.1 (Non-stationary phase). Let a ∈ C∞0 (R). Then â(ξ) = O(|ξ|−N) as

ξ →∞ for any positive integer N .

Proof. We do this by repeated integration by parts. A single such integration, for

example, gives

â(ξ) =
1

2πiξ

∫

R
e−2πiξxa′(x) dx

and from this it is clear that |â(ξ)| ¿ |ξ|−1.

Why give this such a strange name? Well, the integral for â(ξ),
∫
a(x) exp(−2πiξx) dx,

contains a phase function (namely x) which is never stationary. This is what gives â(ξ)

such good decay properties. By contrast one expects substantially less decay with a

phase function that can be stationary, a heuristic that the following proposition makes

precise.

Proposition 4.2 (Stationary phase lemma). Let a ∈ C∞0 (R) and for λ ∈ R let

K(λ) =

∫

R
eiπλx2

a(x) dx.

2For the cognoscenti, this is in fact the measure induced from Lebesgue measure on R2.
3It is, basically, the classical Bessel function J0; in fact, we have d̂σ(|λ|) = J0(−2π|λ|). This is one
reason why Bessel functions are actually important in modern mathematics.



23

Let λ 6= 0 be a real number. Then

K(λ) = 2−1/2|λ|−1/2(1± i)a(0) +O
(
λ−3/2

)
,

where we choose the plus sign if λ > 0 and the minus sign if λ < 0.

Proof. Let z be a positive real number. We begin by working out the Fourier transform

of the function g(x) = e−zx2
. We have

ĝ(ξ) =

∫

R
exp(−zx2 − 2πiξx) dx

= exp(−π2ξ2/z)

∫ ∞

−∞
exp

(−z(x+ πiξ/z)2
)
dx

= exp(−π2ξ2/z)

∫ ∞

−∞
exp

(−zx2
)
dx, (4.1)

the latter step following by integrating e−zx2
(which is an analytic function of x) around a

rectangle with corners±R and±R+πiξ/z and lettingR→∞. The integral in (4.1) can,

however, be easily evaluated as (π/z)1/2 using the Gaussian integral
∫∞
−∞ exp(−t2) dt =√

π. Thus we have

ĝ(ξ) = (π/z)1/2 exp(−π2ξ2/z).

An application of Parseval’s formula yields
∫

R
e−zx2

a(x) dx = (π/z)1/2

∫

R
e−π2ξ2/zâ(ξ) dξ. (4.2)

At the moment we have only proved this for z ∈ (0,∞), but we have not used the latter

z in vain.

Lemma 9. The integral I1(z) =
∫
e−zx2

a(x) dx converges for all z ∈ C, and in fact

defines an analytic function.

Proof. The convergence is obvious, because a is a compactly supported function. To

prove that I1(z) is analytic there is really only one obvious thing to do: guess that

I ′1(z) is what you get by differentiating under the integral, and then prove this. Write

F (z, x) = e−zx2
a(x) and use the inequality

∣∣∣∣F (z + h, x)− F (z, x)− h
∂F

∂z
(z, x)

∣∣∣∣ 6 |h|2 sup
w∈B(z,|h|)

∣∣∣∣
∂2F

∂z2
(w, x)

∣∣∣∣ . (4.3)

The second derivative is uniformly bounded by some constant C1(z, r) on any domain

of the form B(z, r)× R, and so we have
∣∣∣∣I1(z + h)− I1(z)− h

∫
∂F

∂z
(z, x) dx

∣∣∣∣ 6 C1(z, 1)|h|2

for all |h| 6 1. This proves that I1(z) is indeed analytic at z with derivative
∫

∂F
∂z

(z, x) dx.
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Now the right-hand side of (4.2) is more troublesome, particularly at zero. Nonetheless

we can show

Lemma 10. Let S be the set {z : <z > 0, z 6= 0}. Then the integral

I2(z) = (π/z)1/2

∫

R
exp(−π2ξ2/z)â(ξ) dξ,

currently defined for z ∈ (0,∞), is in fact continuous on S and analytic on So, the

interior of S. Here z1/2 is that branch of the square root which sends reiθ to r1/2eiθ/2

when θ ∈ [−π/2, π/2].

Proof. Non-examinable (but see the appendix).

It follows by the identity principle that (4.1) holds for all z ∈ S, and hence in particular

for z = −iπλ, λ 6= 0. This gives the identity
∫

R
eiπλx2

a(x) dx = 2−1/2|λ|−1/2(1± i)

∫

R
â(ξ)eiπξ2/λ dξ, (4.4)

the ± sign depending on the sign of λ. Now observe that
∣∣∣∣
∫

R
â(ξ)eiπξ2/λ dξ −

∫

R
â(ξ) dξ

∣∣∣∣ 6
∫

R
|â(ξ)|

∣∣∣1− eiπξ2/λ
∣∣∣ dξ

6 π

λ

∫

R
|â(ξ)| |ξ2| dξ. (4.5)

This is at most Cλ−1 for some C, because â(ξ) is subject to the bounds |â(ξ)| 6 ‖a‖1

and |â(ξ)| ¿ |ξ|−4 (the latter bound follows from the principle of non-stationary phase

applied with N = 4). Now by the inversion formula
∫

R
â(ξ) dξ = a(0),

and the proposition follows immediately from (10.7) and (10.8).

Proposition 4.3. d̂σ(λ) =
2 cos 2π (|λ| − 1/8)

|λ|1/2
+O(|λ|−3/2).

Proof. Since d̂σ is radially symmetric, it suffices to check this for λ = (λ, 0), λ > 0. In

this case we have

d̂σ(λ) =

∫ 2π

0

e−2πiλ cos θ dθ. (4.6)

Now the function cos θ has zero derivative at θ = kπ, k ∈ Z. That is to say, the integral

in (4.6) has stationary phase at these points. To apply Proposition B.2 we must first

isolate each of the stationary phase points by introducing a partition of unity. This

consists of four C∞ functions ψ1, . . . , ψ4 such that Suppψi ⊆ (iπ/2, (i + 2)π/2) and

ψ1 + · · · + ψ4 = 1 (see Figure 3). The existence of such a partition is not something

we wish to establish here - it is often done in differential geometry courses, for example
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0 2

Figure 13. Partition of unity. ψ4 is highlighted.

Madsen and Tornehave’s excellent From Calculus to Cohomology, CUP.

Now we can evaluate I3 =
∫
ψ3(θ) exp(−2πiλ cos θ) dθ by making the substitution

cos(θ) = 1− t2. This gives, using Proposition B.2,

I3 = exp(−2πiλ)

∫ 1

−1

ψ3(t) exp(2πiλt2)
2dt√
2− t2

= exp(−2πiλ)λ−1/2(1 + i) +O(λ−3/2).

Similarly

I1 = exp(2πiλ)λ−1/2(1− i) +O(λ−3/2).

Now on the supports of ψ2 and ψ4 the phase cos θ is non-stationary, and we can apply

Proposition B.1. Making the substitution cos θ = t, it is a simple matter to check that

both I2(λ) and I4(λ) are O(λ−2).

The proposition follows since d̂σ(λ) = I1(λ) + · · ·+ I4(λ).

Corollary 4.4. Let χ be the characteristic function of the unit ball B(0, 1) in R2. Then

|χ(λ)| ¿ |λ|−3/2.

Proof. Writing in polar coordinates we have

χ̂(λ) =

∫ 1

0

rd̂σ(rλ) dr

= |λ|−1/2

∫ 1

0

r1/2 cos
(
2π(|λ|r − 1

8
)
)
dr +O

(|λ|−3/2
)
.

To show that the integral here is O(|λ|−1), write it as

<e−iπ/4

∫ 1

0

r1/2e2πi|λ|r dr

and integrate by parts once.

Gauss circle problem. To conclude this set of notes we are going to use Corollary

4.4 to give an estimate for the number n(R) of lattice points of Z2 which lie in the
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ball B(0, R). This is known as Gauss’s circle problem. We begin with an elementary

argument.

Proposition 4.5. We have n(R) = πR2 +O(R).

Proof. For any (i1, i2) ∈ Z2 let S(i1, i2) be the lattice square with (i1, i2) as its bottom

left corner. Write U(R) for the set of all (i1, i2) for which S(i1, i2) is completely contained

in B(0, R +
√

2). Then B(0, R) ∩ Z2 ⊆ U(R), which leads to the bound
∣∣B(0, R) ∩ Z2

∣∣ 6 |U(R)| 6 π(R +
√

2)2 6 πR2 + 10R

for large R. To get a bound in the other direction, let V (R) = B(0, R) ∩ Z2. Then the

set of squares S(i1, i2), (i1, i2) ∈ V (R), completely covers B(0, R−√2). Thus
∣∣B(0, R) ∩ Z2

∣∣ = |V (R)| > π(R−
√

2)2 > πR2 − 10R.

This completes the proof.

If you think carefully about this argument you will realise that pretty much all we have

used about the circle is the fact that its circumference grows linearly in R. Using the

decay of the Fourier transform gives an improvement, the proof of which will be our

main goal for the rest of this set of notes.

Theorem 9. We have n(R) = πR2 +O(R2/3).

To relate counting lattice points to the Fourier transform, we need a beautiful result

called the Poisson Summation Formula. If you want to discover a little more about the

natural setting for this result, and about its relation to the Riemann zeta function, I

have a set of notes called Fourier analysis and the ζ-function on my webpage.

Theorem 10 (Poisson Summation). Let f ∈ C∞0 (Rk) (this is, in fact, a far more

stringent condition on f than is necessary). Then
∑

n∈Zk

f(n) =
∑

n∈Zk

f̂(n). (4.7)

Proof. Definitely non-examinable (but see the second appendix).

Now let ψ be a C∞0 function whose support is in B(0, 1) and whose integral is equal to

1. For any ε > 0 define ψε(x) = ε−2ψ(x/ε), which is then a smooth function supported

on the ball B(0, ε) and having integral 1. Write χR for the cahracteristic function of

the ball B(0, R), and set φ(x) = χR+ε ∗ ψε. What on earth is this function? Well, it is

a kind of “smoothed out” version of χR. In fact we have χR(x) 6 φ(x) for all x ∈ R2,

which allows us to write

n(R) 6
∑

n∈Z2

φ(n). (4.8)
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The reason for introducing the smoothing is so that we can apply the Poisson summation

formula, and so that certain Fourier transforms decay as we would like them to. You

will see what I mean in the course of the proof, but I should add that smoothing in this

manner (that is, convolving with a function having small support) is a vital technical

tool in many harmonic analysis questions. It has analogues in a discrete setting in which

it is not possible to make sense of the word smooth in the classical way.

Returning to (4.8), then, Poisson sum together with simple properties of the Fourier

transform imply that

n(R) 6
∑

ξ

φ̂(ξ)

=
∑

ξ∈Z2

χ̂R+ε(ξ)ψ̂ε(ξ)

= (R + ε)2
∑

ξ∈Z2

χ̂((R + ε)ξ)ψ̂(εξ)

= π(R + ε)2 + E, (4.9)

where

|E| = (R + ε)2
∑

λ∈Z2\{0}
χ̂((R + ε)ξ)ψ(εξ).

We’ll estimate E using Corollary 4.4 together with the non-stationary phase estimate

(cf. Proposition B.1)

ψ̂(ξ) ¿ min
(
1, |ξ|−N

)

for any fixed positive integer N . We get

|E| ¿ R2
∑

ξ∈Z2\{0}
(R|ξ|)−3/2 min

(
1, |εξ|−N

)

6 R1/2
∑

0<|ξ|<ε−1

|ξ|−3/2 +R1/2ε−N
∑

|ξ|>ε−1

|ξ|−N−3/2

¿ R1/2ε−1/2

for any N > 1. Observe that if we had taken N = 0 (corresponding to no smoothing)

then the sum over |ξ| > ε−1 would not converge. Returning to (4.9), we see that choos-

ing ε = R−1/3 gives an upper bound n(R)−πR2 ¿ R2/3. A very similar argument gives

a corresponding lower bound and thus a proof of Theorem 9.

You may like to think about a certain aspect of what is going on here, namely the

appearance of the uncertainty principle. When one tries to localise too much in space

(say by making ε too small in the above argument) one pays the price on the Fourier

side.
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It is conjectured that the R2/3 in Theorem 9 can be replaced by R1/2+δ for any δ > 0.

Hardy and Littlewood proved a result (called an Ω-result) showing that one cannot

hope for more than this. That is, for arbitrarily large R we have |n(R)− πR2| > CR1/2

for every fixed constant C. This problem is one where numerous clever technical and

conceptual improvements have led to rather modest advances. I believe that the best

results currently known are due to Huxley, who can replace the R2/3 by something like

R0.63.

Appendix: Proof of Lemma 10. Since the product of two analytic (continuous)

functions is analytic (continuous) we may safely ignore the factor of (π/z)1/2. Now

observe that when <z > 0 (and z 6= 0) we have
∣∣∣e−π2ξ2/z

∣∣∣ 6 1,

so the integral defining I2(z) certainly converges if â ∈ L1(R) (that is, if
∫ |â(ξ)| dξ <

∞). We in fact need the slightly stronger inequality
∫

max(|ξ|4, 1)|â(ξ)| dξ < ∞.

To prove this note that |â(ξ)| 6 ‖a‖1 for all ξ, and that for large |ξ| Proposition B.1

gives the superior estimate |â(ξ)| ¿ |ξ|−6. Thus
∫ ∞

−∞
max(|ξ|4, 1)|â(ξ)| dξ ¿ ‖a‖1 +

∫

|ξ|>1

|ξ|−2 dξ < ∞.

Now write F (ξ, z) = exp(−π2ξ2/z)â(ξ), and use (4.3) again. Now ∂2F/∂z2(ξ, z) is

something like (
π4ξ4

z4
− 2π2ξ2

z3

)
e−π2ξ2/z,

and on any ball B(z, r) contained in S◦ this is bounded by C2(z, r) max(|ξ|4, 1). Fix

z ∈ S◦ and let δ be so small that B(z, δ) ⊆ S◦. Then if |h| < δ we have
∣∣∣∣
∫
F (ξ, z + h) dξ −

∫
F (ξ, z) dξ − h

∫
∂F

∂z
(ξ, z) dξ

∣∣∣∣ 6 |h|2C2(z, δ)

∫
max(|ξ|4, 1)|â(ξ)| dξ

¿ C3|h|2.
This proves that

∫
F (ξ, z) dξ, and hence I2(z), is analytic on S◦.

To prove that I2(z) is continuous, we can use the dominated convergence theorem.

Fix w, <w = 0, and let (zn)∞n=1 ⊆ S be any sequence converging to w. Write Fn(ξ) =

e−π2ξ2/zn â(ξ) and F (ξ) = e−π2ξ2/wâ(ξ). Clearly Fn → F pointwise. Furthermore |F (ξ)−
Fn(ξ)| is at most 2|â(ξ)|, which is an integrable function. Thus, by DCT,

∫
Fn →

∫
F .
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Appendix: Sketch proof of Poisson summation. We consider two auxilliary

functions F,G : Tk → C, where Tk is the torus [0, 1)k. These are defined by

F (θ) =
∑

n∈Zk

f̂(n)e2πin·θ

and

G(θ) =
∑

n∈Zk

f(n+ θ).

We will show that F and G are equal, whereupon (4.7) will follow immediately on

setting θ = 0. To do this we look at the Fourier coefficients4

F̃ (m) =

∫

Tk

F (θ)e−2πim·θ dθ, G̃(m) =

∫

Tk

G(θ)e−2πim·θ dθ,

defined for m ∈ Zk. Indeed we have

F̃ (m) =

∫

Tk

∑

n∈Zk

f̂(n)e2πin·θe−2πim·θ dθ

=
∑

n∈Zk

f̂(n)

∫

Tk

e2πi(n−m)·θ dθ

= f̂(m),

the interchange of integration and summation being valid because
∑

n∈Zk |f̂(n)| < ∞
(you can prove this using Proposition B.1. Furthermore,

G̃(m) =

∫

Tk

∑

n∈Zk

f(n+ θ)e−2πim·θ dθ

=

∫

Tk

∑

n∈Zk

f(n+ θ)e−2πim·(θ+n) dθ

=
∑

n∈Zk

∫

x∈n+[0,1)k

f(x)e−2πim·x dx

= f̂(m).

Now it seems reasonable that two continuous functions whose Fourier coefficients agree,

such as F and G, must in fact be equal. This is a true and famous result, but it is

not trivial to prove. See Theorem 2.7 of Chapter 1 of Katznelson’s excellent book Har-

monic analysis for a proof of this fact (there are numerous other references - another

good source are the lecture notes from Tom Körner’s 1999 Part III course on Fourier

analysis, available from his webpage).

4We use the term “coefficient” hestitantly. Really, F̂ is just another type of Fourier transform, but it
takes values in Zk because that is the dual group of Tk. I suggest going to Dr Körner’s course to find
out more!
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5. The circle, II

The object of this set of notes is to use the information we obtained in The circle I

concerning the Fourier transform of the unit circle to prove a simple example of what

is known as the restriction phenomenon. We will use our result to give another proof

that Kakeya sets in 2 dimensions have Minkowski dimension 2.

An L∞ → L4 local restriction theorem. Let f be a locally measurable function

on the unit circle. We are going to study the Fourier transform of fdσ, where σ is the

uniform measure on the circle. This is defined by

f̂dσ(λ) =

∫

S1

f(x)e−2πix·λ dσ(x)

for any λ ∈ R2. When f = 1, this is simply the Fourier transform d̂σ for which we

derived an asymptotic expression. In particular we know that

|d̂σ(λ)| ¿ min(1, |λ|−1/2).

This means that d̂σ lies in Lp(R2) for any p > 4. Thus it is “almost” in L4, a principle

that we can quantify by noting that

‖d̂σ‖L4((B(0,R)) ¿ (logR)1/4. (5.1)

The point here, of course, is that the logarithm grows rather slowly and in particular

more slowly than any power of R. It turns out that an estimate like (11.3) is valid for

any bounded function f in place of 1. The following theorem to this effect is known as

a local restriction theorem. We’ll explain the terminology later on.

Theorem 11. Let f : S1 → C be measurable. Then ‖f̂dσ‖L4(B(0,R)) ¿ (logR)1/4‖f‖∞.

Proof. The proof of this result, which I got from the thesis of Gerd Mockenhaupt, uses

a rather nice positivity argument of a type important in harmonic analysis. Write χ

for the characteristic function of the unit disc, and set ψ = χ ∗ χ. Then ψ enjoys the

properties described in the following lemma.

Lemma 11. (i) ψ̂(λ) > 0 for all λ ∈ R2;

(ii) ψ(x) > χ(x) for all x ∈ R2;

(iii) ψ(x) 6 π for all x ∈ R2;

(iv) Supp(ψ) ⊆ B(0, 2).

Proof. (i) is immediate, because ψ̂ = |χ̂|2. To see (ii), observe that χ(y) is precisely the

area of the intersection of two unit discs at distance |y| apart. Thus if y ∈ Suppχ, so

that |y| 6 1, then ψ(y) > 2π
3
−

√
3

2
> 1. (iii) and (iv) follow from the same observation.
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Write ψR(x) = ψ(x/R) and χR(x) = χ(x/R). Now we have, using properties (i), (ii)

and (iii),

‖f̂dσ‖4
L4(B(0,R)) =

∫

λ

χR(λ)

∣∣∣∣
∫

S1

f(x)e−2πix·λ dσ(x)

∣∣∣∣
4

dλ

6
∫

λ

ψR(λ)

∣∣∣∣
∫

S1

f(x)e−2πix·λ dσ(x)

∣∣∣∣
4

dλ

=

∫

S1

. . .

∫

S1

(∫

λ

ψR(λ)e−2πiλ·(x1+x2−x3−x4) dλ

)
f(x1)f(x2)f(x3)f(x4)

×dσ(x1)dσ(x2)dσ(x3)dσ(x4)

=

∫

S1

. . .

∫

S1

ψ̂R(x1 + x2 − x3 − x4)f(x1)f(x2)f(x3)f(x4)

= ×dσ(x1)dσ(x2)dσ(x3)dσ(x4)

6 ‖f‖4
∞

∫

S1

. . .

∫

S1

ψ̂R(x1 + x2 − x3 − x4)
4∏

i=1

dσ(xi)

= ‖f‖4
∞

∫

λ

ψR(λ)

∣∣∣∣
∫

S1

e−2πix·λ dx

∣∣∣∣
4

dλ

6 π‖f‖4
∞

∫

λ

χ2R(λ)

∣∣∣∣
∫

S1

e−2πix·λ dx

∣∣∣∣
4

dλ

= π‖f‖4
∞‖d̂σ‖4

L4(B(0,2R)).

The theorem follows immediately from (11.3). Look how important it was to find the

function ψ, whose Fourier transform is positive, and how simply the result follows once

we have thought of this trick.

Local restriction implies Kakeya. In this section we will show that Theorem 11

leads to another proof that Kakeya sets in R2 have Minkowski dimension 2.

Lemma 12 (Knapp Example). Let δ > 0 be a real number, let θ ∈ [0, 2π], and let Aθ be

an arc of the circle of length δ centred on the point eiθ. Write χθ for the characteristic

function of Aθ. Then we have that |χ̂θ(λ)| > δ/2 for all λ ∈ Rθ, where Rθ is a
1
10
δ−2 × 1

10
δ−1 rectangle with long axis in direction θ and centre the origin.

Proof. We suppose that θ = 0, the proof in other cases being virtually identical. Let

e1, e2 be the standard basic vectors for R2, so that e1 is the centre of the arc A.

The basic idea is as follows. Fix λ ∈ R. Then we have

χ̂θ(λ) =

∫

A

e−2πix·λ dσ(x) = e−2πie1·λ
∫

A

e−2πi(x−e1)·λ dσ(x),
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so that

|χ̂θ(λ)| >
∫

A

cos (2π(x− e1) · λ) dσ(x). (5.2)

However for all x ∈ A and λ ∈ R the vectors x − e1 and λ are almost perpendicular,

so that the cosine here is close to 1. It is easy to make this precise – some elementary

geometry gives

O A

B

X

Figure 14. Projections.

|(x− e1) · e1| 6 1− cos δ 6 δ2.

(In the figure, e1 = OX, x− e1 = XB and |(x− e1) · e1| is just the length |AX|.) Thus,

writing λ = λ1e1 + λ2e2 where |λ1| 6 1
20
δ−2 and |λ2| 6 1

20
δ−1, we have

|(x− e1) · λ| 6 |λ1||(x− e1) · e1|+ |λ2||(x− e1) · e2|
6 1/10.

The lemma follows immediately from this and (5.2).

Thus we have a function, namely χθ, whose Fourier transform is large on a rectangle in

direction θ and centred on the origin. By modifying this function we can easily translate

the rectangle. Indeed for any a ∈ R2 we see that

̂e2πiaxχθ(λ) = χ̂θ(λ− a).

Let’s summarise what we have proved.

Proposition 5.1. Let R be a 1
20
δ−2 × 1

20
δ−1 rectangle in direction θ. Then there is a

function fR with the following properties.

(i) ‖fR‖∞ = 1;

(ii) Supp(fR) = Aθ, where Aθ is an arc of length δ centred on eiθ;

(iii) |f̂Rdσ(λ)| > δ/2 for λ ∈ R.
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Now let E ⊆ R2 be a Besicovitch set, that is a compact set containing a line segment

in every direction. Consider the collection of all 2 × 2 squares of the form Σi,j =

[i/2, i/2 + 2]× [j/2, j/2 + 2], (i, j) ∈ Z2. Let E ′ be the subset of Σ0,0 defined by

E ′ =
⋃

(i,j)∈Z2

(E ∩ Σi,j)− ( i
2
, j

2
),

that is the union of all the intersections of E with squares Σi,j, translated to lie one on

top of the other in the square Σ0,0. The set E ′ still contains a unit line segment in every

direction, because all unit line segments are wholly contained in some Σi,j. Furthermore

dim(E ′) 6 dim(E) (exercise). The most important new feature of E is that it lies in

the ball B(0, 4). We have no more need of E, so we’ll write E ′ = E for notational

simplicity.

Now let δ > 0, and consider the δ-neighbourhood Nδ(E). This contains T , a union of

1× δ rectangles, one in each direction θ = jδ, j = 1, . . . , k where k = b1/δc. Subjecting

T to a homothety with scale factor 1/20δ2 gives a collection S of k 1
20
δ−2 × 1

20
δ−1

rectangles. We’ll use Proposition 5.1, together with the local restriction estimate of

Theorem 11, to get a lower bound on the size of S. This will immediately give a bound

for |T |, and hence for the Minkowski dimension of E.

Let R1, . . . , Rk be the rectangles comprising S. Let fi = fRi
be the associated functions

as described by Proposition 5.1. Finally, for any choice of phases εi, |εi| = 1 write

fε(x) =
k∑

i=1

εifi(x).

This introduction of phases εi may seem strange at the moment. In a short while we

will show that a random choice of these phases gives fε the properties we would like.

Now observe first of all that for any choice of the phases the L∞ norm of fε is at most

1. Indeed fi is supported on the arc Aiδ, and these arcs are disjoint for different i.

What about ‖f̂εdσ‖L4(B(0,R))? Well, Proposition 5.1 tells us that |f̂idσ(λ)| is at least

δ/2 for λ ∈ Ri. If the Ri overlap a lot, which is what we would expect if |S| is small,

then f̂εdσ ought to be very large at many points, which would cause it to have large L4

norm. We will show that this can be made precise, at least for a typical choice of the

phases εi. We have

‖f̂εdσ‖4
L4(B(0,R)) =

∑
i1,i2,i3,i4

εi1εi2εi3εi4

∫

|λ|6R

f̂i1dσ(λ)f̂i2dσ(λ)f̂i3dσ(λ)f̂i4dσ(λ) dλ

(5.3)
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Now suppose that the εi are chosen independently at random. The expected value of

εi1εi2εi3εi4 is zero except when i1 = i3 and i2 = i4, or when i1 = i4 and i2 = i3, in which

case it is 1. In all these cases the integral in (5.3) is non-negative, and so we have

E‖f̂εdσ‖4
L4(B(0,R)) >

∑
i1=i3,i2=i4

∫

|λ|6R

f̂i1dσ(λ)f̂i2dσ(λ)f̂i3dσ(λ)f̂i4dσ(λ) dλ

=

∫

|λ|6R

(
k∑

i=1

|f̂idσ(λ)|2
)2

dλ.

Since S is contained in the ball B(0, δ−2), it is natural to set R = δ−2. It then follows

from the above that there is at least one specific choice of the phases εi for which

‖f̂εdσ‖4
L4(B(0,R)) >

∫

S

(∑
i

|f̂idσ(λ)|2
)2

dλ.

However we have, by Proposition 4(iii) and the Cauchy-Schwarz inequality,

∫

S

(∑
i

|f̂idσ(λ)|2
)2

dλ À δ4

∫

S

(∑
i

χRi
(λ)

)2

dλ

> δ4

|S|

(∫ ∑
i

χRi
(λ) dλ

)2

À δ4k2|Ri|2
|S|

À (δ4|S|)−1

Thus ‖f̂εdσ‖L4(B(0,R)) À δ−1|S|−1/4. Substituting into Theorem 11, and recalling that

‖fε‖∞ 6 1, one gets that |S| À δ−4 (log(1/δ))−1, and hence that |T | À (log(1/δ))−1.

Thus we see once again that Besicovitch sets in R2 have full Minkowski dimension.

The reader may have noticed some similarities between the argument just presented

and that given in The Kakeya Problem I. The Cauchy-Schwarz inequality was used in

essentially the same way in both cases, but the need to estimate the intersection of pairs

of tubes has been replaced by a decay estimate for the Fourier transform of the circle.

It might be argued that the new argument is much longer and less intuitive than the old

one. Our reason for giving it is that it helps in understanding the higher dimensional

situation.

6. Discrete Functional Analysis

In this set of notes we set up the basic languages of harmonic and functional analysis

in a discrete setting. We will do our harmonic analysis on Fn, where F is a finite field

(if you like, F = Z/pZ). In this setting the basic facts of harmonic analysis, such



35

as Parseval’s identity and the inversion formula, become easy formal exercises. This

allows one to understand the combinatorial aspects of the Fourier transform without

the distraction of convergence issues.

Vector spaces over finite fields. Fourier transforms. Given a function f : Fn → C
we define its integral ∫

Fn

f(x) dx =
∑

x∈Fn

f(x).

Fix a non-trivial character e : F → S1 (when F = Z/pZ, for example, we could take

e(x) = e2πix/p = ωx). Then for ξ ∈ Fn we define the Fourier transform

f̂(ξ) =

∫

Fn

f(x)e(−x · ξ) dx,

where the inner product x · ξ is defined by

x · ξ = x1ξ1 + · · ·+ xnξn.

Now in actual fact what we have said is misleading in one important respect. The

Fourier transform is in actual fact defined on the dual space Fn
∗ . This is isomorphic to

Fn
∗ as an abstract group, but the natural measure on it is different. Thus if g : Fn

∗ → C
is a function then we define the integral

∫

Fn∗

g(ξ) dξ = |F|−n
∑

ξ

g(ξ).

This convention, which may appear strange, emphasises that the spacial and Fourier

sides are very different.

Observe that choosing a specific character e amounts to fixing an isomorphism between

Fn and Fn
∗ . All characters ψ : Fn → C are then of the form x 7→ e(x ·ξ) for some ξ ∈ Fn

∗ .

The difference between a group and its dual becomes more pronounced for infinite

groups. The dual of R is R again (which is why Fourier transforms, in the traditional

undergraduate sense of the word, are defined on R). However the dual of Z is the circle

group T = [0, 1), which is why periodic functions are often dicussed in terms of their

so-called Fourier coefficients, which are defined at integers. Fourier coefficients are really

just another type of Fourier transform, but on the group T. Such matters as this are

the topic of a whole Part III course this year by Dr Körner, which may be of interest

to those attending this course.

Proposition 6.1 (Fourier facts). Let f, g : Fn → C be functions. Then we have

(i) (Parseval)
∫
Fn f(x)g(x) dx =

∫
Fn∗
f̂(ξ)ĝ(ξ) dξ.

(ii) (Plancherel) ‖f‖L2(Fn) = ‖f̂‖L2(Fn∗ ).
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(iii) (Convolution) Define (f ∗g)(x) =
∫
Fn f(y)g(x− y) dy. Then f̂ ∗ g(ξ) = f̂(ξ)ĝ(−ξ).

(iv) (Inversion) For g : Fn
∗ → C define

g∨(x) = ĝ(−x) =

∫

Fn∗

g(ξ)e(x · ξ) dξ.

Then f(x) = f̂∨(x).

Proof. We use the orthogonality relations
∫

Fn∗

e(x · ξ) dξ = δ0(x).

These follow from elementary representation theory or, in the case F = Z/pZ, from

summing a geometric series.

(i) We have
∫

Fn∗

f̂(ξ)ĝ(ξ) dξ =

∫ ∫ ∫
f(x)e(−x · ξ)g(y)e(y · ξ) dxdydξ

=

∫ ∫
f(x)g(y)

(∫
e(−(x− y) · ξ) dξ

)
dxdy

=

∫ ∫
f(x)g(y)δ0(x− y) dxdy

=

∫
f(x)g(x) dx.

(ii) is just a special case of (i).

(iii) is no more than an application of Fubini’s theorem, which in the finite situation is

better known as “changing the order of summation”:

f̂ ∗ g(ξ) =

∫ ∫
f(y)g(x− y)e(−x · ξ) dxdy

=

∫
f(y)e(−y · ξ)

∫
g(x− y)e(−(x− y) · ξ) dxdy

= f̂(ξ)ĝ(−ξ).
(iv) Another simple formal exercise.

Norms, operators and operator norms. In this section we wish to work at the

level of a general finite5 measure space X with measure µX . Particular examples are

any finite set X together with either counting measure or normailised counting measure.

Write B(X) for the vector space of all functions f : X → C. If 1 6 p < ∞ then we

5I mean that the underlying set is finite – I’m not sure this is standard terminology
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define the Lp norm

‖f‖p = ‖f‖Lp(X) =

(∫

X

|f(x)|p dµX(x)

)1/p

.

We also define the L∞-norm

‖f‖∞ = ‖f‖L∞(X) = sup
x∈X

|f(x)|.

Proposition 6.2 (Lp facts). (i) ‖ · ‖p and ‖ · ‖∞ are norms.

(ii) (Hölder’s inequality). Define the dual index p′ by the equation 1/p + 1/p′ = 1 if

1 < p < ∞, ∞′ = 1 and 1′ = ∞. Then for any two functions f, g : X → C and any p

we have

|〈f, g〉X | =

∣∣∣∣
∫

X

f(x)g(x) dµX(x)

∣∣∣∣ 6 ‖f‖p‖g‖p′ .

(iii) Suppose that 1 6 p1 6 p2 6 ∞ and that µX is counting measure. Then ‖f‖p2 6
‖f‖p1.

(iv) Suppose that 1 6 p1 6 p2 6 ∞ and that µX is normalised counting measure. Then

‖f‖p1 6 ‖f‖p2.

Proof. (i),(ii) Omitted (see Rudin’s red book if you like).

(iii) Suppose, without loss of generality, that ‖f‖p1 = 1. Then ‖f‖∞ 6 1, and so

‖f‖p2 6 ‖f‖(p2−p1)/p2
∞ ‖f‖p1/p2

p1

6 1.

(iv) This is a consequence of Hölder’s inequality and the fact that the total measure of

X is unity:

‖f‖p1 =

(∫
|f(x)|p1 dµX

)1/p1

6
(∫

1p2/(p2−p1) dµX

)(p2−p1)/p2
(∫

|f(x)|p2 dµX

)1/p2

.

The nesting of Lp norms that we see here is peculiar to the counting and normalised

counting measures. On R, for example, the function f defined by

f(x) =





0 (x = 0)

|x|−1/3 (0 < x < 1)

|x|−1 (x > 1)

lies in L2 but in neither L1 nor L4.

Now we may use any function g ∈ B(X) to define a linear map Tg : B(X) → C via

Tg(f) = 〈f, g〉X =

∫

X

f(x)g(x) dµX(x).
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Let p ∈ (1,∞). Any linear map T : B(X) → C has a p-norm ‖T‖p defined to be the

supremum of |Tf | over all f with ‖f‖p = 1, or equivalently the infimum of all C for

which |Tf | 6 C‖f‖p. It turns out that the p-norm of Tg depends on g in a very natural

way.

Proposition 6.3. ‖Tg‖ = ‖g‖p′. That is, ‖g‖p′ = sup‖f‖p=1〈f, g〉X .

Proof. It is clear from Hölder’s inequality that ‖Tg‖ 6 ‖g‖p′ . For the converse inequality,

apply Tg to the function f(x) = |g(x)|p′−1 · ei arg(g(x)). It can be checked that |Tg(f)| =
‖g‖p′‖f‖p.

Now letX, Y be two finite measure spaces with measures µX , µY . Let T : B(X) → B(Y )

be a linear map. For example, we could take X to be Fn and Y to be Fn
∗ , both

with their natural measures as discussed above, and T to be the Fourier transform.

Given p, q ∈ [1,∞] we write ‖T‖p→q for the infimum of all constants C such that

‖Tf‖Lq(dµY ) 6 C‖f‖Lp(dµX) for all f ∈ B(X).

Lemma 13. Let T : B(X) → B(Y ) be a linear operator. Then there is a linear operator

T ∗ : B(Y ) → B(X), called the adjoint of T , which satisfies

〈f, T ∗g〉X = 〈Tf, g〉Y
for all f ∈ B(X), g ∈ B(Y ).

Proof. This is simple linear algebra. For fixed g the map ψg : B(X) → C defined by

f 7→ 〈Tf, g〉 is linear or, in other words, ψg ∈ B(X)∗. But every such functional is of

the form f 7→ 〈f, h〉 for some unique h ∈ B(X). Define T ∗g = h, and check that T ∗ is

a linear map.

The following example of adjoint oprators T and T ∗ is of great relevance to this course.

Example. Let S ⊆ Fn
∗ , and endow S with the normalised counting measure σ ( so

σ(x) = |S|−1 if x ∈ S and 0 otherwise). let T : B(Fn) → B(S) be the restriction map

f 7→ f̂ |S.
Then the adjoint, T ∗, of T is the extension map

g 7→ (gdσ)∨.

Proof. We must check that
∫
f(x)(gdσ)∨(x) dx =

∫
f̂(ξ)gdσ(ξ).

But this is simply Parseval’s identity.

Another important example is the following.
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Example. Let T : B(X) → B(X) be given by convolution by a kernel K, so that

Tf = f ∗K. Then T ∗g = g ∗K ′, where K ′(x) = K(−x).

In the examples we will encounter, K will equal K ′. This is the case when K = ĥ,

where h is a real-valued function (such as a measure). In these cases, then, f 7→ f ∗K
is a self-adjoint operator.

For any linear operator T the various norms of T and of T ∗ are related in the following

pleasant way.

Proposition 6.4. Let p, q ∈ (1,∞). Then we have

‖T‖p→q = ‖T ∗‖q′→p′ .

Proof. By Proposition B.3 and Hölder we have

‖T ∗f‖p′ = sup
‖g‖p=1

〈T ∗f, g〉

= sup
‖g‖p=1

〈f, Tg〉

6 sup
‖g‖p=1

‖f‖q′‖Tg‖q

6 ‖T‖p→q‖f‖q′ .

It follows that ‖T ∗‖q′→p′ 6 ‖T‖p→q, and the reverse inequality may be demonstrated in

an identical manner.

This result tells us that for any problem requiring us to bound the Lp–Lq norm of some

operator T : B(X) → B(Y ), there is a corresponding dual problem concerning the

operator T ∗ : B(Y ) → B(X). It is often extremely helpful to think about the dual

formulation of a problem. There is a special situation in which one can manufacture

a third problem which is equivalent to both the original problem and its dual. This is

known as the T ∗T technique.

Proposition 6.5. Suppose that T : B(X) → B(Y ). Then ‖T ∗T‖p→p′ = ‖T‖2
p→2 =

‖T ∗‖2
2→p′.

Proof. The inequality ‖T ∗T‖p→p′ 6 ‖T ∗‖2→p′‖T‖p→2 = ‖T‖2
p→2 is immediate. On the

other hand we have, using Hölder, that for any f

‖Tf‖2
p→2 = 〈Tf, Tf〉Y

= 〈T ∗Tf, f〉X
6 ‖T ∗Tf‖Lp′ (dµX)‖f‖Lp(dµX)

6 ‖T ∗T‖p→p′‖f‖2
Lp(dµX).
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Thus we have the reverse inequality ‖T‖2
p→2 6 ‖T ∗T‖p→p′ .

Thus, in considering Lp–L2 bounds on an operator T : B(X) → B(Y ), we can if desired

consider the Lp–Lp′ bounds on the operator T ∗T : B(X) → B(X).

**Some remarks on infinite measure spaces. The classical space Lp(R) is defined

to be the vector space of all locally integrable functions f for which
∫ |f(x)|p dx < ∞.

Even this simple construct has no analogue in the finite case because every function on

a finite measure space has bounded Lp norm. Discussion of the Lp-Lq norm of a linear

operator T can become difficult because often there is no natural space on which T is

a priori defined.

To give a classical example, the Plancherel theorem states that

‖f̂‖L2(R) = ‖f‖L2(R). (6.1)

But what does this mean? As it stands, nothing. The Fourier transform on R is defined,

for functions f ∈ L1(R), by the equation

f̂(λ) =

∫ ∞

−∞
f(x)e−2πixλ dx. (6.2)

It is not the case that L2(R) ⊆ L1(R), so (6.1) does not make sense even for all f ∈
L2(R). The normal way to resolve this issue is to prove (6.1) for the class of Schwarz

functions (smooth functions, all of whose derivatives decay at infinity faster than any

polynomial). If f is Schwarz then both f and f̂ lie in all Lp spaces and so it certainly

makes sense to write down (and prove) (6.1). One can then get (6.1) for a wider class of

functions via a limiting argument, using the fact that the Schwarz functions are dense

in every Lp space. One can even use (6.1) to give a definition of the Fourier transform

on L2(R) which agrees with (6.2) on L1(R) ∩ L2(R).

This is how the Plancherel theorem is often stated. Namely, that the Fourier trans-

form as defined on L1(R) ∩ L2(R) by (6.2) extends to an isometry of L2(R). Let me

reiterate that this does not mean that one can make sense of the Fourier integral (6.2)

for all L2 functions.

We do not wish to get embroiled in matters such as this in the present course. For

that reason on the rare occasions that we have dealt with Euclidean Lp spaces we have

tacitly assumed that all functions involved are sufficiently regular that equations such

as (6.2) are a priori meaningful**.
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7. Riesz-Thorin and its consequences

In this set of notes (X,µX) and (Y, µY ) will be finite vector spaces with measures

µX , µY .

The classical Riesz-Thorin interpolation theorem is a result concerning the behaviour

of general linear operators in Euclidean Lp spaces. Here we prove a version for linear

operators on finite measure spaces. We give a proof which is almost identical to the

argument for the Euclidean case. However, as we are working in a finite setting we can

avoid several measure-theoretic difficulties.

Theorem 12 (Riesz-Thorin). Let T : B(X) → B(Y ) be linear and suppose that

p0, p1, q0, q1 ∈ [1,∞] satisfy p0 < p1 and q0 < q1. For any t ∈ [0, 1] define pt, qt by

1

pt

=
1− t

p0

+
t

p1

and
1

qt
=

1− t

q0
+

t

q1
.

Then

‖T‖pt→qt 6 ‖T‖1−t
p0→q0

‖T‖t
p1→q1

.

It turns out that this result is a short, if slightly tricky, deduction from the following

result in complex analysis known as the Hadamard three-circles theorem.

Proposition 7.1. Let D be the strip 0 < <(z) < 1. Suppose that a function f is

analytic on D and continuous and bounded on D. Suppose further that |f(z)| 6 M0 on

<(z) = 0 and |f(z)| 6 M1 on <(z) = 1. Then |f(a+ ib)| 6 M1−a
0 Ma

1 for any a ∈ [0, 1]

and b ∈ R.

Proof Write M = min(M0,M1). For any ε > 0 set

Fε(z) =
e−ε(1−z)zf(z)

M1−z
0 M z

1

.

It is easy to check the bound

|Fε(a+ ib)| 6 ‖f‖∞ e−ε(a(1−a)+b2)

M1−a
0 Ma

1

.

In particular we have |Fε(a+ ib)| 6 1 if |b| > Lε, where we can take

Lε = ε−1/2 (log(‖f‖∞ /M))1/2 .

It is also clear, straight from the definition, that |Fε(z)| 6 1 when <(z) = 0 or 1. By

applying the maximum principle to very large rectangles of the form 0 6 <(z) 6 1,

−R 6 =(z) 6 R (where R > Lε) we see that Fε is in fact bounded by 1 throughout D.
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Thus

|f(z)| 6 eε(a(1−a)+b2)M1−a
0 Ma

1

for all z = a+ ib ∈ D. For any fixed z let ε→ 0, and we get Proposition B.1. ¤

Remarks There is another Hadamard three-circles theorem, which actually involves

three circles (and is rather easy to prove). One might be tempted to deduce Proposition

B.1 from that result by a transformation such as z 7→ ez. This map not being one-to-one

makes such an undertaking rather difficult, but the map z 7→ eεz is one-to-one on an

increasingly large portion of D as ε→ 0. This perhaps motivates the above proof.

Proof of Theorem 12. Write M0 = ‖T‖p0→q0 and M1 = ‖T‖p1→q1 . It suffices to prove

that

〈Tf, g〉 6 M1−t
0 M t

1 (7.1)

whenever ‖f‖pt = ‖g‖q′t = 1. Indeed we have

‖T‖pt→qt = sup
‖f‖pt=1

‖Tf‖qt

= sup
‖f‖pt=1

sup
‖g‖q′t

=1

〈Tf, g〉.

Now for z ∈ D define functions α(z) and β(z) by

α(z) =
1− z

p0

+
z

p1

and

β(z) =
1− z

q0
+
z

q1
.

Set

h(z) = 〈Tfz, gz〉
where

fz(x) = |f(x)|α(z)/α(t)ei arg f(x)

and

gz(x) = |g(x)|(1−β(z))/(1−β(t))ei arg g(x).

Now h(z) is analytic in D and bounded and continuous on D. Now we claim that

|h(iy)| 6 M0 for any y ∈ R. To see this, observe that by Hölder’s Inequality we have

|h(iy)| 6 ‖giy‖q′0
‖Tfiy‖q0

. It is easy to check that ‖giy‖q′0
is equal to ‖g‖q′t/q′0

q′t
, which is

just 1. Furthermore ‖Tfiy‖q0
6 M0 ‖fiy‖p0

, a quantity which turns out to equal M0.

A very similar argument establishes that |h(1 + iy)| 6 M1 for any y ∈ R. We may

now apply Proposition B.1 to get that |h(t)| 6 M1−t
0 M t

1, and the proof is concluded by

observing that h(t) is precisely 〈Tf, g〉. ¤
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Our first corollary of Riesz-Thorin is a result of Young describing the Lp behaviour of

convolutions. We begin with a lemma.

Lemma 14 (Integral Minkowski inequality).

(∫

X

∣∣∣∣
∫

X

|F (x, y)| dµX(x)

∣∣∣∣
p

dµX(y)

)1/p

6
∫

X

(∫

X

|F (x, y)|p dµX(y)

)1/p

dµX(x).

Proof. This is really just the ordinary Minkowski inequality in disguise. Set

G(y) =

∫

X

|F (x, y)|dµX ,

and for x ∈ X write

Gx(y) = |F (x, y)|.
Then the inequality can be written as

‖G‖p 6
∫

X

‖Gx‖p dµX .

Remember, though, that the integrals here are simply (weighted) finite sums.

Theorem 13 (Young’s Inequality). Suppose that f, g ∈ B(X), and suppose that p, q, r ∈
[1,∞] satisfy

1 + r−1 = p−1 + q−1. (7.2)

Then

‖f ∗ g‖r 6 ‖f‖p‖g‖q.

Proof. Fix f ∈ B(X). Then the map Tf : g 7→ g ∗ f is linear. Hölder’s inequality

immediately yields

‖Tf (g)‖∞ 6 ‖f‖p‖g‖p′ . (7.3)

Furthermore the integral version of Minkowski’s inequality quickly leads to

‖Tf (g)‖p 6 ‖f‖p‖g‖1. (7.4)

Young’s inequality follows by using Riesz-Thorin to interpolate the two bounds (7.3)

and (7.4). Take t = p/r, which obviously lies in the interval [0, 1].

Our next result is in the spirit of the restriction theorems that are one of the main topics

of the course. It relates the Lp behaviour of a function to that of its Fourier transform.

Theorem 14 (The Hausdorff-Young Inequality). Suppose that f ∈ B(Fn) and that

1 6 p 6 2. Then

‖f̂‖p′ 6 ‖f‖p.

Proof. The map T : f 7→ f̂ is linear, and we have the bounds ‖f‖∞ 6 ‖f‖1 and

‖f̂‖2 = ‖f‖2. The result follows by using Riesz-Thorin to interpolate between these
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two.

It would not be a bad idea to look at Rudin’s red book, where the classical real-

variable analogues of all these inequalities are proved (the proofs are the same as the

above, modulo some measure theoretic technicalities). One difference between the finite

case and the Euclidean case is that Young and Hausdorff-Young are not sharp in the

Euclidean case. In the finite case of Hausdorff-Young, for example, equality occurs

when f is like a delta function (f(0) = 1 and f(x) = 0 when x 6= 0). In the Euclidean

case the extremal functions are gaussians and Hausdorff-Young fails to be sharp by a

multiplicative constant.

There is a situation in which Riesz-Thorin allows us to turn a single Lp-Lq bound into

a whole family of such bounds. If T : B(X) → B(X) is an operator then we say that

T is self-adjoint if T = T ∗. A natural family of self-adjoint operators is given by the

following lemma.

Lemma 15. Let K : X → C be an even function (so that K(−x) = K(x)). Then the

convolution operator f 7→ K ∗ f is self-adjoint.

Proof. Indeed

〈f,K ∗ g〉 =

∫

X

f(x)

∫

X

K(x− y)g(y) dy dx

=

∫

X

g(y)

∫

X

f(x)K(x− y) dx dy

= 〈K ∗ f, g〉.

Theorem 15. Suppose that T : B(X) → B(X) is self-adjoint and that p, q ∈ [1,∞].

Let θ ∈ [0, 1], and define

r =
pq

qθ + (1− θ)(q − 1)p
,

s =
pq

pθ + (1− θ)(p− 1)q
.

Then ‖T‖r→s 6 ‖T‖p→q.

Proof. This follows by using the Riesz-Thorin theorem to interpolate between ‖T‖p→q

and ‖T‖q′→p′ , which are equal by duality and self-adjointness.

As our final corollary of Riesz-Thorin I want to mention a bilinear interpolation result.

Proposition 7.2 (Bilinear Interpolation). Let ψ : B(X) × B(X) → C be a hermitian

form, and suppose that

|ψ(f, g)| 6 Ci‖f‖pi
‖g‖qi
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for i = 0, 1. Let t ∈ [0, 1] and write p−1
t = (1 − t)p−1

0 + tp−1
1 , q−1

t = (1 − t)q−1
0 + tq−1

1 .

Then

|ψ(f, g)| 6 C1−t
0 Ct

1‖f‖pt‖g‖qt .

Proof. There exists a linear operator T : B(X) → B(X) such that ψ(f, g) = 〈Tf, g〉 for

all f, g ∈ B(X). Furthermore Ci > ‖T‖pi→q′i . It follows from Riesz-Thorin that

‖T‖pt→qt 6 C1−t
0 Ct

1,

which immediately implies the proposition using Hölder’s inequality.

8. Restriction theory of the discrete paraboloid I

In this set of notes we consider the restriction theory of the discrete paraboloid in F3
∗,

defined to be the set of points

P =
{
(ξ1, ξ2, ξ

2
1 + ξ2

2) : ξ1, ξ2 ∈ F
}
.

We will assume that −1 is not a square in F, so that P does not contain any lines (this

is one of the exercises on the second example sheet). The reason for doing this is that

we can prove more in this case! Before we begin, here are a few reasons for and against

thinking about P instead of spheres like S2. Reasons for:

• No measure theoretic difficulties; one can compute the Lp norm of any function,

and also the Fourier transform.

• We can see the bare bones of some of the Euclidean arguments without the

need for smooth bump functions, dyadic decompositions, etc.

Reasons against:

• Some features of the Euclidean case are not really present here. For example,

there is no particularly natural notion of curvature in finite fields.

• The relation between restriction and Kakeya is a lot more tenuous in finite fields

(though see the paper of Mockenhaupt and Tao), largely because there is no

nice notion of tangency or approximation in the neighbourhood of a point in

the finite field case.

The Fourier transform of P . Although there is no natural notion of curvature in

F3
∗, one can still obtain an analogue of the decay estimates for dσSn−1 . As |P | = N2,

the surface measure σ on P is given by σ(ξ) = NχP (ξ).

Lemma 16 (Gauss sums). Suppose that a ∈ F \ {0}, and write G(a) =
∑

x∈F e(ax
2).

Then G(a) = ±i√N .
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Proof. We begin by evaluating |G(a)|. For a given t ∈ F, the number of representations

n(t) of t as x2 − x′2 is N − 1 unless t = 0, in which case it is 2N − 1. Thus we have

|G(a)|2 =
∑

x,x′
e(a(x2 − x′2))

=
∑

t

n(t)e(at)

= N + (N − 1)
∑

t

e(at)

= N.

Thus certainly |G(a)| =
√
N . Now −1 is not a square in F, and so for any a the sum

G(a) +G(a), which equals ∑
x

e(ax2) + e(−ax2),

runs over each of the elements of F exactly twice. It therefore equals zero, and so G(a)

is purely imaginary.

Lemma 17 (Fourier transform of dσ). The Fourier transform d̂σ is as follows.

|d̂σ(x)| =

1 x = 0

0 x3 = 0, x 6= 0

−N−1e ((x2
1 + x2

2)/4x3) otherwise

Proof. We have

d̂σ(x1, x2, x3) = N−2
∑

ξ1,ξ2

e
(−ξ1x1 − ξ2x2 − (ξ2

1 + ξ2
2)x3

)

= N−2
∑

ξ1

e
(−ξ1x1 − ξ2

1x3

) ∑

ξ2

e
(−ξ2x2 − ξ2

2x3

)
. (8.1)

It is clear that if x = 0 then this equals 1. If x3 = 0 but at least one of x1, x2 is nonzero

then one of the two sums in (8.1) vanishes, and d̂σ(x) = 0. If x3 6= 0 then we may

complete the square in both sums, turning them both into Gauss sums. The result then

follows from Lemma 16.

Basic algebra of restriction theory. Let p, q ∈ [1,∞]. We write R∗(p→ q) for the

smallest constant such that we have the restriction estimate

‖(fdσ)∨‖Lq(F3) 6 R∗(p→ q)‖f‖Lp(dσ).

In general, R∗(p→ q) will be a function of the underlying field. If, however, R∗(p→ q)

is bounded independently of |F| then we say that Res(p, q) holds. We are going to

prove several restriction estimates for the discrete parabola. To make this a bit more

meaningful, we need to get an idea of which restriction estimates are better than others.
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To do this, let is recall the lemma from a previous set of notes which dealt with nesting

properties of Lp-norms.

Lemma 18. Suppose that p1, p2 satisfy 1 6 p1 6 p2 6 ∞. Then

(i) ‖f‖Lp1(P ) 6 ‖f‖Lp2 (P );

(ii) ‖f‖Lp2 (F3) 6 ‖f‖Lp1(F3).

The following corollaries are immediate:

Corollary 8.1 (Small p is good). We have R∗(p1 → q) 6 R∗(p2 → q) whenever p1 > p2.

Corollary 8.2 (Small q is good). We have R∗(p→ q1) 6 R∗(p→ q2) whenever q1 > q2.

A discrete Tomas-Stein estimate. The Tomas-Stein argument, which we alluded

to in a non-examinable handout, concerns the restriction properties of spheres Sn−1.

In this section we prove Res(2, 4) for the discrete paraboloid using an argument which

may be regarded as the discrete analogue of the Tomas-Stein technique (of course, as I

am not going to discuss Tomas-Stein, this last claim won’t mean a great deal).

Theorem 16. R∗(2 → 4) 6 2.

Let T : B(P ) → B(F3) be the extension map f 7→ (fdσ)∨, and let T ∗ : B(F3) → B(P )

be its dual, the restriction map g 7→ ĝ|P .

We can get a bound on ‖T‖2→p by using the method of T and T ∗. Observe that

TT ∗g = (ĝdσ)∨ = g ∗ d̂σ (to check this, take Fourier transforms of both sides), so we

are interested in obtaining bounds of the form

‖g ∗ d̂σ‖4 6 ‖g‖4/3. (8.2)

To get such bounds we first of all split d̂σ into two pieces

d̂σ = δ0 +K,

the aim being to use the triangle inequality on the two pieces separately.

It is easy to deal with the δ0 portion. Indeed g ∗ δ0 = g, so the required estimate

‖g ∗ δ0‖4 6 ‖g‖4/3 (8.3)

becomes simply ‖g‖4 6 ‖g‖4/3, which an instance of the nesting-of-norms inequalities

under counting measure. (Alternatively – and this has more in common with the Tomas-

Stein argument – one could interpolate between the obvious bounds ‖g‖2 = ‖g‖2 and

‖g‖∞ 6 ‖g‖1.)
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The key to proving (8.2), then, is the following lemma.

Lemma 19. We have ‖g ∗K‖4 6 ‖g‖4/3.

Proof. Once again we proceed by interpolation. We have (by a simple case of Young’s

inequality which is trivial to prove directly) that ‖g ∗K‖∞ 6 ‖K‖∞‖g‖1. But we know

all about the magnitude of K from Lemma 17. Indeed ‖K‖∞ 6 N−1, leading to

‖g ∗K‖∞ 6 N−1‖g‖1. (8.4)

It is almost as easy to get an L2–L2 bound. One has, using elementary properties of

the Fourier transform,

‖g ∗K‖2 = ‖ĝK∨‖2

6 ‖K∨‖∞‖g‖2.

However K∨(ξ) = d̂σ
∨
(ξ)− δ∨0 (ξ), and this is just dσ(ξ)− 1 = N − 1. Therefore

‖g ∗K‖2 6 N‖g‖2. (8.5)

The lemma follows immediately by interpolating (8.4) and (8.5).

Combining (8.3) and Lemma 37 using the triangle inequality leads to ‖g∗d̂σ‖4 6 2‖g‖4/3.

As we have remarked, this gives (by the method of T and T ∗) a restriction estimate of

the form

‖(fdσ)∨‖4 6 2‖f‖2,

which is exactly the statement of Theorem 16.

**A fairly direct modification of the above proof to the Euclidean case constitutes an

argument of Tomas which comes within an ε of the Tomas-Stein theorem for spheres

that we discussed in the starred handout.. The most important modification is the

decomposition of d̂σ into dyadic chunks

d̂σi(x) = d̂σ(x)ψ
(
d̂σ(x)/2i

)
,

where ψ is a smooth approximation to the unit ball of Rn. One then performs an

L1–L∞ to L2–L2 interpolation, very similar to the above, on each convolution operator

f 7→ f ∗ d̂σi separately and adds up the results. In this manner one can prove that

‖(fdσ)∨‖Lp(Rn) ¿ ‖f‖L2(Sn−1) for any value of p strictly greater than the critical expo-

nent 2(n+ 1)/(n− 1). To get the endpoint p = 2(n+ 1)/(n− 1) one needs a technique

called complex interpolation, which is very similar to the argument we used to prove

Riesz-Thorin. It was introduced in this context by Stein, which explains the reason for

the result being called Tomas-Stein. In the finite field case we only need two “dyadic

chunks” K and δ0, so the extra complexity was not a problem**.
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What does Theorem 16 actually mean? One way to try and understand this question

is to substitute various functions f into the bound ‖(fdσ)∨‖4 ¿ ‖f‖2. One example,

which really captures the essence of the result, is to substitute f = χE where E ⊆ P is

some set. In the next lemma, and in the remainder of this course, we write E for χE;

that is, we identify sets with their characteristic functions.

Lemma 20. N5‖(Edσ)∨‖4
4 is equal to the number of additive quadruples in E, that is

to say the number of quadruples (ξ1, ξ2, ξ3, ξ4) ∈ E4 with ξ1 + ξ2 = ξ3 + ξ4.

Proof. This is a straightforward computation, which illustrates yet again the utility of

having L4, L6, etc norms around. We have

‖(Edσ)∨‖4
4 =

∫ ∣∣∣∣
∫
E(ξ)e(x · ξ) dσ(ξ)

∣∣∣∣
4

dx

= N−8
∑

ξ1...,ξ4

E(ξ1) . . . E(ξ4)
∑

x

e (x · (ξ1 + ξ2 − ξ3 − ξ4))

= N−5
∑

ξ1+ξ2=ξ3+ξ4
ξ1,...,ξ4∈E

1,

which concludes the proof.

It is rather easy to see that ‖E‖4
2 = N−4|E|2, and so our R∗(2 → 4) estimate tells us that

if E ⊆ P then the number of additive quadruples in E is bounded above by a constant

multiple of N |E|2. Now the number of additive quadruples in a set is a particular way

of describing how much arithmetic structure that set has. Thus, very qualitatively, our

restriction estimate tells us that P has no subspaces with lots of arithmetic structure.

This is not a surprise if one imagines P as a sort of curved surface.

In fact, Lemma 20 holds the key to a better restriction estimate, giving a good bound

on R∗(8/5 → 4).

Theorem 17. R∗(8/5 → 4) 6 10 logN .

Proof. The following lemma is the key to the proof.

Lemma 21. Suppose that E ⊆ P . Then the number of additive quadruples in E4 is at

most 5|E|5/2.

Proof. Fix ξ1 ∈ E. We will show that the number of pairs (ξ2, ξ3) ∈ E2 with ξ2, ξ3 6= ξ1

and ξ2 − ξ3 ∈ P − ξ1 is no more than |E|3/2. The number of additive quadruples in E4

which involve ξ1 is then at most |E|3/2 + 2|E|, and the proposition follows on summing

over ξ1. Now fix ξ3, and let us ask what condition on ξ2 guarantees that ξ2−ξ3 ∈ P −ξ1.
Writing ξi = (αi, βi, α

2
i + β2

i ) it transpires that we must have

(α3 − α1)(α3 − α2) = −(β3 − β1)(β3 − β2).
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This implies that (α2, β2) lies on a line l(ξ3) ⊆ F2
p defined by ξ3. After a linear change

in coordinates so that (α1, β1) becomes the origin of F2
p, this line may be written in the

form

α2α3 + β2β3 = α2
3 + β2

3 .

Consider some other line l(ξ′3) given by

α′2α3 + β′2β3 = α′23 + β′23 .

In order for this to coincide with l(ξ3) we must have, say, α′3 = λα3 and β′3 = λβ3. But

then we would need to have

λ2(α2
3 + β2

3) = λ(α2
3 + β2

3).

Since −1 is not a square in F2 and neither (α3, β3) nor (α′3, β
′
3) is the zero vector, this

forces ξ3 = ξ′3.

We have, then, m = |E| points pi and m lines li, and wish to place an upper bound

on the number of pairs (i, j) with pi ∈ lj. To do this, relabel so that each of the

points p1, . . . , pm′ meets some line, and suppose in fact that pi meets ni > 1 lines for

i = 1, . . . ,m′. The number of triples (pi, lj, lk) with j < k and pi = lj ∩ lk is then∑
i

(
ni

2

)
, which is at least

1

2m′

(∑
i

ni −m′
)2

by Cauchy-Schwarz. On the other hand it is at most the number of pairs of lines (lj, lk)

with j < k, which is at most m2. Thus

1

2m′

(∑
i

ni −m′
)2

6 m2,

which implies that
∑
ni 6 3m3/2. The lemma follows.

The deduction of Theorem 17 from this is via a dyadic decomposition. Let f ∈ B(P ),

and assume that ‖f‖∞ = 1. For each non-negative integer j write Ej for the set of x

for which 2−j−1 < f(x) 6 2−j. We have

‖f‖8/5
8/5 = N−2

∑
|f(x)|8/5

> N−2
∑

j

2−8(j+1)/5|Ej|,

so that

|Ej|5/2 6 N524(j+1)‖f‖4
8/5.
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Write fj = fχEj
. It follows from Lemma 21 and the preceding that

‖(fjdσ)∨‖4
4 = N−5

∑
ξ1,...,ξ4∈Ej

ξ1+ξ2=ξ3+ξ4

f(ξ1)f(ξ2)f(ξ3)f(ξ4)

6 N−52−4j
∑

ξ1,...,ξ4∈Ej

ξ1+ξ2=ξ3+ξ4

1

6 5 ·N−5 · 2−4j · |Ej|5/2

6 80‖f‖4
8/5.

Now since ‖f‖∞ = 1, ‖f‖4
8/5 is at least N−5. Thus, writing g = fχ{x:f(x)<2−m} we have

‖(gdσ)∨‖4
4 = N−5

∑
ξ1,...,ξ4∈P

ξ1+ξ2=ξ3+ξ4

g(ξ1)g(ξ2)g(ξ3)g(ξ4)

6 2−4m

6 ‖f‖4
8/5,

provided that m > 3 logN . Finally, then,

‖(fdσ)∨‖4 6 ‖(gdσ)∨‖4 +
∑

j63 log N

‖(fjdσ)∨‖4

6 10 logN‖f‖8/5,

as claimed.

9. Restriction Theory of the discrete paraboloid, II

In this set of notes we will show that R∗(2 → 18/5) (for the discrete paraboloid) grows

more slowly than any power of N . It is a very simple matter to adapt the arguments to

show that in fact Res(2, 18/5 + ε) holds for any ε > 0. The proof of this will use as its

main ingredient the bound on R∗(8/5 → 4) 6 10 logN from the previous set of notes,

together with quite a bit of interpolation and some specific properties of the Fourier

transform of the paraboloid.

We begin by using TT ∗. Once again let T : B(P ) → B(F3) be the extension map

g 7→ (gdσ)∨, and let T ∗ : B(F3) → B(P ) be its dual, the restriction map f 7→ f̂ |P .

Observe that TT ∗ is the map from B(F3) which sends f to f ∗ d̂σ.

Theorem 18. We have R∗(2 → 18/5) 6 logN .

By the method of TT ∗, it certainly suffices to prove that

‖f ∗ d̂σ‖18/5 6 10 logN‖f‖18/13. (9.1)
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Now we know quite a lot about d̂σ from our work in the previous set of notes. Recall

that d̂σ splits as δ0 +K, where the so-called Bochner-Riesz kernel K(x1, x2, x3) equals

0 when x3 = 0 and

K(x1, x2, x3) = − 1

N
e

(
x2

1 + x2
2

4x3

)
.

Now f ∗δ0 = f , and so the δ0 part of (9.1) follows immediately from the fact that norms

‖ · ‖r on F3 are nested as r decreases. That is, we have

‖f ∗ δ0‖18/5 6 ‖f‖18/13. (9.2)

The main content of this set of notes is the following.

Proposition 9.1. We have the estimate

‖f ∗K‖4 ¿ 10N1/8 logN‖f‖8/5 (9.3)

Proof. Let f ∈ B(F3). For each u ∈ F write fu for the restriction of f to the hyperplane

x3 = u. We will prove that for each u

‖fu ∗K‖4 6 10N−1/4 logN‖fu‖8/5. (9.4)

The left-hand side, raised to the power four, is

∑
y

∣∣∣∣∣
∑

x

fu(x)K(y − x)

∣∣∣∣∣

4

.

Substituting x = x′ + (0, 0, u) in the inner sum we see that it may be assumed, with no

loss of generality, that u = 0. Writing x = (x, x3) and y = (y, y3), and recalling that

K(x, x3) = −N−1e
(
x2/4x3

)

when x3 6= 0 and K(x, 0) = 0, this equals

N−4
∑

y,y3 6=0

∣∣∣∣∣
∑
x

f(x, 0)e

(
(x− y)2

4y3

)∣∣∣∣∣

4

. (9.5)

Write z = −y/2y3 and t = 1/4y3. Then

(y − x)2

4y3

= z2y3 + x.z + tx2,

and so (9.5) becomes

N−4
∑

(z,t),t6=0

∣∣∣∣∣
∑
x

f(x, 0)e
(
(x,x2).(z, t)

)
∣∣∣∣∣

4

.
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But this is precisely

N−4
∑

(z,t),t6=0

∣∣∣Ĝdσ(z, t)
∣∣∣
4

= N−4‖Ĝdσ‖4
4,

where the function G : P → C is defined by G(x,x2) = N2f(x, 0). This may be

estimated using the inequality R∗(18/5 → 4) 6 10 logN that we obtained in the last

set of notes. Using the fact that ‖G‖8/5 = N3/4‖fu‖8/5 (n.b. the two norms here are on

different spaces) we see that (9.4) does indeed hold.

Now simply observe that

‖f ∗K‖4 6
∑

u∈F
‖fu ∗K‖4

6 10N−1/4 logN
∑

u

‖fu‖8/5

6 10N1/8 logN

(∑
u

‖fu‖8/5
8/5

)5/8

= 10N1/8 logN‖f‖8/5.

This concludes the proof of Proposition B.1.

We are now in a position to prove (9.1) for the Bochner-Riesz part of d̂σ.

Proposition 9.2. We have the estimate ‖f ∗K‖18/5 6 logN‖f‖18/13.

Proof. The operator f 7→ f ∗K is self-adjoint, because K is the Fourier transform of a

real-valued function. Thus (9.3) automatically gives an estimate

‖f ∗K‖8/3 6 10N1/8 logN‖f‖4/3.

Interpolating between this and (9.3) (with t = 1/2 in the Riesz-Thorin theorem) gives

‖f ∗K‖16/5 6 10N1/8 logN‖f‖16/11. (9.6)

Now Young’s inequality togther with the estimate ‖K‖∞ 6 1/N gives

‖f ∗K‖∞ 6 N−1‖f‖1. (9.7)

Interpolating between this and (9.6), with t = 8/9 in the Riesz-Thorin theorem, gives

the bound claimed.

This brings to an end our discussion of restriction phenomena for the discrete paraboloid.

It might be conjectured that Res(2, 3) holds, at least in the sense that there are no

obvious examples of functions f for which ‖(fdσ)∨‖3 is substantially larger than ‖f‖2.

Needless to say, such a result is not known to be true.
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10. Montgomery’s conjecture and Kakeya

I am all too aware that this course contains rather a large number of conjectures.

The inclusion of this section makes the situation even worse in this regard. On the plus

side we will learn some interesting probabilistic lemmas, Khintchine’s inequality, and

we will also see that the Kakeya problem is related to an old conjecture of Montgomery

concerning Dirichlet sums, the truth of which would have implications for the Riemann

Hypothesis.

We begin with some preliminary lemmata. These are all of considerable importance in

their own right (probably more so than the main theme of this section!).

Lemma 22. Let a1, . . . , an be real numbers, and let ε1, . . . , εn be independent Bernouilli

random variables (that is, εi takes each value ±1 with probability 1/2). Let t > 0 be a

real number. Then

P

(
n∑

i=1

εiai > t

)
6 exp

(
−t2/2

n∑
i=1

a2
i

)
.

Proof. Let µ > 0 be a real number to be chosen later. Observe that for any real number

x one has the inequality cosh x 6 exp(x2/2); to prove this, write both functions as

power series, so that

cosh x =
∑
j>0

x2j

(2j)!

and

exp(x2/2) =
∑
j>0

x2j

2jj!
,

and compare term-by-term. Write X =
∑n

i=1 ε1ai. We have, then,

EeµX =
n∏

i=1

Eeµεiai

=
n∏

i=1

cosh(µai)

6 exp

(
µ2

n∑
i=1

a2
i /2

)
.

However by Markov’s inequality one has

P(X > t) = P
(
eµX > eµt

)
6 e−µtEeµX .

Combining this with the above gives

P(X > t) 6 exp

(
−µt+

1

2
µ2

n∑
i=1

a2
i

)
.
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Choose µ = t/
∑n

i=1 a
2
i , and the lemma follows immediately.

Corollary 10.1. Let a1, . . . , an be complex numbers, and let ε1, . . . , εn be independent

Bernouilli random variables. Let t > 0 be a real number. Then

P

(∣∣∣∣∣
n∑

i=1

εiai

∣∣∣∣∣ > t

)
6 4 exp

(
−t2/8

n∑
i=1

a2
i

)
.

Proof. Write U = <∑n
i=1 εiai and V = =∑n

i=1 εiai. By the lemma, one has

P(U > t/2) 6 exp

(
−t2/8

n∑
i=1

|<ai|2
)

6 exp

(
−t2/8

n∑
i=1

|ai|2
)
.

Similar inequalities hold for P(U 6 −t/2), P(V > t/2) and P(V 6 −t/2). However if

|U + V | > t then at least one of these four events must hold.

The next result is called Khintchine’s inequality. We have already seen it in action in

the case p = 4, but there a direct expanding-out type of proof was available.

Lemma 23. Let p > 1 be a real number. Then there are positive constants C1(p) and

C2(p) with the following property. Let gi : X → C be functions on some measure space

X. Suppose that ε1, . . . , εn are independent Bernouilli random variables. Then

C1(p)

∫

X

(
n∑

i=1

|gi(x)|2
)p/2

dx 6 E

∥∥∥∥∥
n∑

i=1

εigi

∥∥∥∥∥

p

p

6 C2(p)

∫

X

(
n∑

i=1

|gi(x)|2
)p/2

dx.

Proof. We work with one point of X at a time. One has

E

∣∣∣∣∣
n∑

i=1

εigi(x)

∣∣∣∣∣

p

= p

∫ ∞

0

tp−1P

(∣∣∣∣∣
n∑

i=1

εigi(x)

∣∣∣∣∣ > t

)
dt.

Writing M =
∑n

i=1 |gi(x)|2 and using Corollary 10.1, it becomes apparent that this is

bounded by

4p

∫ ∞

0

tp−1e−t2/8M dt.

Make the substitution u = t2/8M . Then this integral becomes

1

2
(8M)p/2

∫ ∞

0

up/2−1e−u,

which is precisely

C2(p)

(
n∑

i=1

|gi(x)|2
)p/2

,

where C2(p) = 1
2
8p/2Γ(p/2). The exact value of C2(p) is irrelevant, of course. Integrating

over X gives the upper bound of the lemma. To get the lower bound one can simply
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use Hölder’s inequality. One has, for any x ∈ X,

n∑
i=1

|gi(x)|2 = E

∣∣∣∣∣
n∑

i=1

εigi(x)

∣∣∣∣∣

2

6
(
E

∣∣∣∣∣
n∑

i=1

εigi(x)

∣∣∣∣∣

p)1/p

E

∣∣∣∣∣
n∑

i=1

εigi(x)

∣∣∣∣∣

p′



1/p′

.

6 C2(p
′)1/p′

(
n∑

i=1

|gi(x)|2
)1/2

.

Cancelling the common factor, raising to the power p and integrating over X gives the

lower bound claimed, with C1(p) > C2(p
′)−p/p′ .

The next lemma, which is often replaced by the words “a simple averaging argument”,

is of very wide applicability.

Lemma 24. Let Γ be an abelian group with cardinality N , and let S ⊆ Γ have cardinality

k. Then there is a set T ⊆ Γ, |T | 6 dN logN/ke, such that the translates S + t, t ∈ T ,

cover Γ.

Proof. Pick elements x1, . . . , xr ∈ Γ uniformly at random. If i1 < i2 < · · · < is then the

expected size of

|(S + xi1) ∩ (S + xi2) ∩ · · · ∩ (S + xis)|
is ks/N s−1. Indeed for any y ∈ Γ there are exactly ks choices of the xij such that

y ∈ S + xij for each j = 1, . . . , s. Now we may use inclusion-exclusion to calculate

E |(S + x1) ∪ · · · ∪ (S + xr)| = E
r∑

s=1

(−1)s+1
∑

16i1<···<is6r

|(S + xi1) ∩ · · · ∩ (S + xis)|

=
r∑

s=1

(−1)s+1

(
r

s

)
ks

N s−1

= N

(
1−

(
1− k

N

)r)

> N
(
1− e−kr/N

)
.

Set r = dN logN/ke, and we see that

E |(S + x1) ∪ · · · ∪ (S + xr)| > N − 1.

In particular, there is some specific choice of x1, . . . , xr for which the translates S + xi

cover Γ completely.

Montgomery’s conjecture. Let M be a positive integer. A Dirchlet series of length
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M is a series of the form

D(s) =
M∑

n=1

ann
is =

M∑
n=1

ane
is log n.

This is normally thought of as a function of a real variable s. Now for a typical value of s

one might expect the phase nis to depend in a rather random manner on n. In that case

one might hope for square-root cancellation, so that D(s) ≈ √
M . Montgomery, over

thirty years ago, made a conjecture asserting that this is indeed the case in a certain

sense. Montgomery’s original conjecture was actually false, but the following modified

form due to Bourgain seems rather plausible.

Conjecture 10.2. Let ν > 1 be a real number. Let ε > 0 be a real number. Then there

is a constant Cε with the following property. Let {an}M
n=1 be any sequence of complex

numbers with |an| 6 1, and suppose that T > M ν. Then

1

T

∫ T

0

|D(s)|2ν ds 6 CεM
ν+ε.

It is necessary to insist that T > M ν , or else the contribution to the integral from

small values of s can dominate (for example when an = 1 for all n). It is not particularly

difficult to prove the conjecture when ν is an integer, and in fact the cases ν = 1, 2 are

on the third example sheet. When 1 < ν < 2, however, the conjecture seems to lie

much deeper. Indeed, as we shall show in this section, it implies the Kakeya conjecture.

If that is not evidence enough for its difficulty, we remark that the conjecture seems

closely related to some well-known open problems concerning the Riemann ζ-function

(such as the so-called density hypothesis).

Montgomery’s conjecture and the Kakeya problem. We begin by combinatori-

alizing the Kakeya problem. We have already done this in various ways (by using slices,

for example). Our method here will be rather different. For simplicity of notation we

will think about the Kakeya problem in R3, but everything works in exactly the same

way in higher dimensions. Let B ⊆ R3 be Besicovitch, and suppose without loss of

generality that B ⊆ [0, 4]3.

Proposition 10.3. Suppose that η > 0 has the property that |Nδ(B)| 6 δ20η for some

sequence of δs tending to zero. Then there is a sequence of primes N →∞ and subsets

A ⊆ ZN with the following properties:

• |A| 6 N1−2η

• For any d ∈ Z∗N there is an arithmetic progression P ⊆ A with length Nη and

common difference d.
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Proof. Let δ be such that |Nδ(B)| 6 δ20η, set W = d2/δe and divide [0, 4]3 into 8W 3

little cubes of sidelength 1/W . Index these cubes, using their lower left corners, by

lattice points (i1, i2, i3) with 0 6 i1, i2, i3 < 4W , let Σ ⊆ Z3 be the set of cubes which

have non-empty intersection with B, and let Σ̃ ⊆ Z3 be the corresponding set of lattice

points. Observe that Σ is contained in the neighbourhood Nδ(B), since the diameter of

a cube with sidelength 1/W is
√

3/W , which is at most δ. Clearly

|Σ̃| 6 W 3|Σ| 6 10δ−3|Nδ(B)| 6 10δ20η−3.

Now suppose that d = (d1, d2, d3) is a lattice vector with |d| 6 W 1−4η. The Besicovitch

set B contains a unit line l = x + [0, 1]d/|d| in direction d. Suppose that x lies in the

cube (i1, i2, i3). Then it is not hard to see that Σ̃ contains the arithmetic progression

{
(i1, i2, i3) + j(d1, d2, d3) | j = 0, 1, . . . , bW 4ηc} . (10.1)

Consider the map

ψ : Z3 −→ Z

defined by

ψ(i1, i2, i3) = i1 + 4Wi2 + 16W 2i3.

This map is one-to-one on {0, . . . , 4W − 1}3, which it maps to the set {0, . . . , 64W 3}.
Furthermore the map sends an arithmetic progression such as the one in (10.1) to an

arithmetic progression in Z with common difference d1 +4Wd2 +16W 2d3, and thus the

set X = ψ(Σ̃) contains plenty of arithmetic progressions with distinct common differ-

ences. In fact, since B(0,W 1−4η) contains at least W 3−12η lattice points, X contains at

least W 3−12η arithmetic progressions of length at least W 4η. X has the same cardinality

as Σ̃, and so |X| 6 10δ20η−3.

Pick a prime N ∈ [64W 3, 128W 3], and regard X as a subset of ZN . Using Lemma

24 one can construct a new set A which is still quite thin, but which contains arith-

metic progressions in all directions. Indeed X contains W 3−12η arithmetic progres-

sions with length at least W 4η. Apply Lemma 24 to the set S of common differences

of these progressions, where S ⊆ Z∗N . This tells us that there is some union A of

dN logN/W 3−12ηe dilates of X which contains a progression of length W 4η is every di-

rection. The proof of the proposition is concluded by observing that, for N sufficiently

large, N1−2η > 10δ20η−3dN logN/W 3−12ηe and Nη < W 4η.

The point of Proposition 10.3, of course, is that if d(B) < 3 then there must exist some

positive η satisfying the conditions. Thus if we could show that no set A of the form

described can exist then we would have a proof of Kakeya in 3 dimensions (and, by

an almost identical argument, in any dimension). The exact conclusion of Proposition

10.3 is not completely convenient for applying the Montgomery conjecture. Suppose
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we have a set A ⊆ ZN with |A| 6 N1−2η containing a progression of length Nη with

every common difference. By subjecting A to the unwrapping map ZN ↪→ {1, . . . , N}
one ends up with a set A ⊆ {1, . . . , N} of the same size which contains an arithmetic

progression of length L and common difference d for every d ∈ [N/6L,N/3L], where

L = bNη/2c. In what follows we shall, regarding η as fixed and N as large, consider

such a set A. Using the Montgomery conjecture, we shall show that A cannot exist.

The Short Sum Construction. Suppose that a, d ∈ Z, and consider the arithmetic

progression

P = {a+ 2πd, . . . , a+ 2πLd} (10.2)

of real numbers. We associate to P a so-called “short” Dirichlet sum dP (s, h) defined

by

dP (s, h) =
∑

d6n<d+h

e−ia(n−d)/dnis. (10.3)

To understand why we have made this definition, let us prove a technical lemma which

will be required later.

Lemma 25. Suppose that x, y are positive real numbers with x > y. Then
∣∣∣∣log x− log y − x− y

y

∣∣∣∣ 6
(
x− y

y

)2

.

Proof. Indeed, we have
∣∣∣∣log x− log y − x− y

y

∣∣∣∣ =

∣∣∣∣
∫ x

y

t− x

t2
dt

∣∣∣∣

6 |x− y| sup
t∈[y,x]

∣∣∣∣
t− x

t2

∣∣∣∣

6
∣∣∣∣
x− y

y

∣∣∣∣
2

.

Let us forget for a moment the exact form of the lemma, and write log x ≈ log y+ (x−
y)/y. Substituting into the definition (10.3) gives, heuristically at least,

dP (s, h) ≈ dis
∑

06n′<h

ei(s−a)n′/d. (10.4)

Now if s lies in P , or is close to an element of P , then the quantity (s−a)n′/d is roughly

2π times an integer. Thus the exponentials in (10.4) are all roughly unity and the sum

dP (s, h) is approximately h in magnitude.

We wish to extend the definition of short sum to any progression of real numbers, and

in particular to progressions of integers which will interest us later. Suppose then that

P = {a + 2πd, . . . , a + 2πLd}, where d need not be an integer. Associate to P the
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progression P ′ = {a + 2πbdc, . . . , a + 2πLbdc}, which is of the special form (B.1). Set

dP (s, h) = dP ′(s, h).

Now let P be a progression of integers of length L, P = {a + t, . . . , a + Lt}. Let P̃

denote the fattening of P , that is the set of all integers of the form p+ x where p ∈ P
and |x| 6 N .

Proposition 10.4. Suppose that P̃ ⊆ {1, . . . , 2N2}, that t > N2/6L and that h 6
N/200L. Then |dP (s, h)| > h/2 for all s ∈ P̃ .

Proof. Write d = bt/2πc, so that d > N2/40L. If s ∈ P̃ then we can write

s = a+ 2πkd+ x, (10.5)

where k ∈ {1, . . . , L} and |x| 6 2N . Of course, the short sum dP (s, h) is defined in

terms of the progression P ′ = {a+ 2πd, . . . , a+ 2πLd}.

Now using the inequality |eiθ1 − eiθ2| 6 |θ1 − θ2| together with Lemma 27 gives
∣∣∣∣∣dP (s, h)− dis

∑

d6n<d+h

ei(s−a)(n−d)/d

∣∣∣∣∣ 6 |s|
d2

∑

06n′<h

n′2

6 h/8,

this last fact following because |s| 6 2N2. With s as in (B.2), we have furthermore that
∣∣∣∣∣d

is
∑

d6n<d+h

ei(s−a)(n−d)/d

∣∣∣∣∣ =

∣∣∣∣∣
∑

06n′<h

eixn′/d

∣∣∣∣∣

> <
∑

06n′<h

eixn′/d

> h
√

2/2

Since |hx| 6 πd/4. The proposition follows immediately.

Remark. This is rather closely analogous to the so-called Knapp example which we

discussed when considering restriction phenomena of spheres.

Recall now our set A ⊆ {1, . . . , N} containing lots of APs. Let us “fatten up” A to

a subset A′ ⊆ {1, . . . , 2N2} by decreeing that if x ∈ A then all of the points Nx +

1, . . . , Nx+ 2NL are in A′. Clearly, we have

|A′| 6 2NL|A|. (10.6)

Now we claim that if d ∈ [N2/6L,N2/3L] then A′ contains P̃ , where P is some pro-

gression with common difference d and length L. Indeed, write d = Nd′+ r, where d′ ∈
[N2/6L,N2/3L] and 0 6 r < N , and suppose that the progression {a+ d′, . . . a+ Ld′}
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lies in A. Then P̃ ⊆ A′, where P = {N(a + d′) + r, . . . , N(a + Ld′) + Lr}. Now select

N values d1, . . . , dN ∈ [N2/6L,N2/3L] which are N/7L-spaced and consider the corre-

sponding progressions P1, . . . , PN . Associated to each of these is a short sum di(s, h)

supported on the range
[⌊

di

2π

⌋
,
⌊

di

2π

⌋
+ h

]
. Take h = bN/200Lc. Because of our choice

of parameters, these intervals do not overlap. Thus any sum of the form

D(s) =
N∑

i=1

εidi(s, h),

where εi = ±1, is a Dirichlet sum of length at most N2/L, all of whose coefficients have

unit modulus. Choose the signs εi independently at random. By Khintchine’s inequality

we have, for any ν and any T ,

E
∫ T

0

|D(s)|2ν ds > C1(2ν)

∫ T

0

(
N∑

i=1

|di(s;h)|2
)ν

ds (10.7)

Choose T = 2N2. Then if s ∈ P̃i, s lies in the range of the integral. Therefore the

right-hand side of (10.7) is, by Proposition 10.4, at least

(h/2)2νC1(2ν)

∫ T

0

(
N∑

i=1

χP̃i

)ν

ds.

Now, using Hölder’s inequality, we have

N2L 6
∫ T

0

(
N∑

i=1

χP̃i

)
χA ds

6
(∫ T

0

(
N∑

i=1

χP̃i

)ν

ds

)1/ν

|A′|1/ν′
. (10.8)

Now there is a specific choice of the signs εi for which (10.7) holds without the ex-

pectation symbol. Making such a choice, and combining (10.7) with (10.8), one gets

that
1

T

∫ T

0

|D(s)|2ν ds Àν h2νN2ν−2Lν |A′|1−ν .

The length of D(s) is at most N2/L, and the value of T is 2N2. The hypothesis of

Montgomery’s conjecture is therefore satisfied provided ν < 2/(2− η). For such a value

of ν, one has (assuming Montgomery’s conjecture) that

(N2/L)ν+ε Àν,ε h2νN2ν−2Lν |A′|1−ν .

Recalling that hÀ N/L one gets after a slight rearrangement that

|A′| Àν,ε N2− 2ε
ν−1Lε.
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Since LÀ Nη it follows that

|A| Àν,ε N1−η+ε(η− 2
ν−1).

For any fixed ν < 2/(2− η) we may choose ε so that this is at least N1−2η.

Let us summarize what has been achieved. We have shown that Montgomery’s con-

jecture implies that there does not exist η > 0, infinitely many primes N and subsets

A ⊆ ZN with |A| 6 N1−2η and A containing a progression of length Nη with every

common difference. We showed that any Besicovitch set B ⊆ R3 with dimension less

than 3 could be used to find such an η. Hence, assuming Montgomery’s conjecture,

Besicovitch subsets of R3 have Minkowski dimension 3.

**I suspect that any subset of ZN containing a progression of length Nη with every

common difference must in fact have cardinality at least N/2. Of course, I have no

idea how to prove this since it would imply the Kakeya conjecture. Worse than that,

however, I cannot even see how it would follow from Montgomery’s conjecture. This

question may be stated in the following alternative form (it is easy to see that they are

equivalent).

Question 10.5. Let A ⊆ ZN have cardinality dN/2e. Is it true that there is some

dilate λA whose maximum gap is α(N), where α(N) is a function more slowly growing

than any power of N?

There are some interesting sets of size bN/2c. One that intrigues me particularly is

the set A ⊆ ZN of quadratic residues. For every quadratic non-residue a, the dilated

set aA equals Ac ∪ {0} and hence has a gap of length n(N), the least quadratic non-

residue modulo N . It is suspected that n(N) ¿ε N
ε: in fact, assuming the Generalised

Riemann Hypothesis (GRH), one has n(N) ¿ (logN)2. Nothing of this strength is

known however (the best bound, due to Burgess, states that n(N) ¿ N1/4
√

e+ε).

Could it be the case, then, that to attack the Kakeya conjecture one firsts needs to

despatch the GRH? I suspect that the answer to this question is no. To see why, look

again at the quadratic residue example. If n(N) was large then Ac would contain plenty

of arithmetic progressions in different directions, but these progressions are all centred

on the point 0. The analagous geometric situation, in which one has a large number

of lines emanating from a single point, is well understood (the lines intersect only at

that point). Thus I believe that the link between the Kakeya problem and number

theory is slightly artifical as regards mounting an attack on Kakeya. It might well be

the case, however, that by understanding geometrical versions of restriction and Kakeya

phenomena one might be able to better understand Montgomery’s conjecture.**
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11. Λ(p)-sets

In this set of notes we begin to move away from what might classically be called

restriction phenomena. All that follows is, however, very much in the spirit of restriction

theory – that is, trying to understand the structural properties of some set S by looking

at Lp norms of sums of exponentials supported on S. I hope that the work we did on

the discrete parabola will make at least some of what follows seem natural, perhaps

even obvious.

Let p > 2, and suppose that S ⊆ Z. We say that S is a Λ(p) set with constant

Kp = Kp(S) if ∥∥∥∥∥
∑
n∈S

ane
inθ

∥∥∥∥∥
Lp(S1)

6 Kp

(∑
n∈S

|an|2
)1/2

(11.1)

for all choices of complex numbers {an}n∈S. We will normally assume that Kp(S) is the

least constant for which this inequality is always satisfied. Observe that by Parseval’s

identity ∥∥∥∥∥
∑
n∈S

ane
inθ

∥∥∥∥∥
L2(S1)

= (2π)1/2

(∑
n∈S

|an|2
)1/2

.

Thus a set has small Λ(p)-constant if the Lp-norm of any function f : S1 → C which

is S-spectral (that is, its Fourier transform is supported on S) is comparable to its L2-

norm.

Various natural questions (in addition to the question “why make such a definition?”)

present themselves. Are there any Λ(p)-sets with small constant Kp? If so, what is the

largest Λ(p)-subset of {1, . . . , N}? We address this last question first of all.

Lemma 26. Suppose that S ⊆ {1, . . . , N}. Then |S| 6 4Kp(S)2N2/p.

Proof. Test (11.1) with the constant sequence an = 1. When |θ| 6 1/2N we have

cosnθ > 1/2 for all n ∈ S, and so for this range of θ
∣∣∣∣∣
∑
n∈S

einθ

∣∣∣∣∣ > |S|/2.

This implies that ∥∥∥∥∥
∑
n∈S

einθ

∥∥∥∥∥
p

> |S|
2N1/p

.

However, the definition of Λ(p) implies that the left-hand side is also at mostKp(S)|S|1/2.

Thus we have the inequality

|S|
2N1/p

6 Kp(S)|S|1/2,
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which immediately implies the lemma.

The question of whether, for a fixed p, there exists a sequence of sets SN ⊆ {1, . . . , N}
with cardinalities À N2/p and with uniformly bounded Λ(p) constant was famously

unsolved for many years. In 1988 Bourgain showed that in fact a random subset of

{1, . . . , N} of cardinality about N2/p has bounded Λ(p) constant. The proof is a tour de

force and uses tools such as entropy and decoupling (about which I do not pretend to

understand very much). It is, however, not particularly difficult to construct Λ(p)-sets

of essentially optimal size when p is an even integer.

Proposition 11.1. Let N be a positive integer and let p = 2h be an even integer. Then

there is a set S ⊆ {1, . . . , N} with |S| > 1
2
N2/p and Kp(S) 6 3

√
h.

Proof. We begin by constructing something called a Bh-set. This is a large subset of

{1, . . . , N} which has the property that the only solutions to the equation

x1 + · · ·+ xh = x′1 + · · ·+ x′h

are ones in which the set {x1, . . . , xh} is just a rearrangement of {x′1, . . . , x′h}. To do

this, take a prime q such that 2−hN < qh 6 N (this is possible by Bertrand’s theorem).

Consider the finite field K = Fqh , the subfield L ⊆ K with L ∼= Fq and a generator a of

the cyclic group K∗. Let X ⊆ Z/(qh − 1)Z be the set of all θ for which

aθ − a ∈ L.

We claim that X is a Bh-subset of Z/(qh − 1)Z. Suppose, indeed, that

θ1 + · · ·+ θh = θ′1 + · · ·+ θ′h,

where aθi = a+ λi and aθ′i = a+ λ′i. Then we have

(a+ λ1)× · · · × (a+ λh) = (a+ λ′1)× · · · × (a+ λ′h).

Since the minimal polynomial of a over L has degree h, this identity must collapse so

that we have ∑
i

λi =
∑

i

λ′i,

∑
i<j

λiλj =
∑
i<j

λ′iλ
′
j

and so on for the other symmetric functions. Thus {λ1, . . . , λh} and {λ′1, . . . , λ′h} are

both the set of h roots of some polynomial of degree h. Hence these sets must be

rearrangements of one another, which confirms our claim that X is a Bh-set.

At the moment X is a subset of Z/(qh−1)Z, but by picking the least positive residue of

each class in X we may construct a Bh-subset X ⊆ {1, . . . , N} with cardinality at least
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N1/h/2. We claim that Kp(X) 6 (2πh!)1/p 6 3
√
h. Indeed we have, for any sequence

{an}n∈X ,
∥∥∥∥∥
∑
n∈X

ane
inθ

∥∥∥∥∥

p

p

= 2π
∑

n1+···+nh=

n′1+···+n′h

an1 . . . anh
an′1 . . . an′h

6 2πh!
∑

n1,...,nh

|an1|2 . . . |anh
|2

= 2πh!

(∑
n∈X

|an|2
)p/2

.

Checking that (2πh!)1/p 6 3
√
h is a rather simple matter which we leave to the reader.

Eigenvectors of the Laplacian. The definition of Λ(p) constant makes perfect

sense in Zd, except that instead of taking norms on S1 one must take them on the

d-dimensional torus Td. There are various arithmetically-defined sets for which esti-

mates of the Λ(p) constant of that set would have very interesting consequences. One

such arises in discussing eigenvectors of the Laplacian on the 2-torus T2.

Functions on T2 may be regarded as functions of x = (x1, x2) which have any vector

(2πn1, 2πn2) as a period. The Laplacian is defined, for functions f ∈ C∞(T2), by

∆f =
∂2f

∂x2
1

+
∂2f

∂x2
2

.

An eigenvector of the Laplacian is a function f such that ∆f + λf = 0 for some λ. A

fact, which we shall use without proof, is that the only eigenvalues are λ = m2
1 + m2

2,

where m1,m2 ∈ Z. The eigenspace corresponding to λ is generated by all exponentials

eim.x, where |m|2 = m2
1 + m2

2 = λ. You can easily check that these exponentials are

eigenvectors of the Laplacian.

A general eigenvector of ∆ with eigenvalue λ therefore has the form

φλ(x) =
∑

|m|2=λ

ame
im.x. (11.2)

This makes it clear that the the Lp norms of eigenvectors of ∆ are tied up with the

Λ(p)-properties of sets such as {(m1,m2) : m2
1 +m2

2 = λ}.

Proposition 11.2. Suppose that φλ is an eigenvector of the Laplacian on T2 with

eigenvalue λ. Then we have the estimate ‖φλ‖4 6 31/4‖φλ‖2.
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Proof. Write φλ in the form (11.2). Then

‖φλ‖4
4 = 4π2

∑
m1+m2=m3+m4

|mi|2=λ

am1am2am3am4 . (11.3)

Now there are rather few solutions to the equation m1 + m2 = m3 + m4. Indeed,

think geometrically, so that the mi are points on a circle of radius
√
λ. Suppose that

m1 +m2 = m3 +m4, and consider the midpoint of m1m2. If this is not the origin then

we must have {m3,m4} = {m1,m2}, because given a point inside a circle and not at

its centre there is a unique chord bisected by it. Thus if {m3,m4} 6= {m1,m2} then we

must have m2 = −m1 and m4 = −m3. Referring back to (11.3), this implies that

(4π2)−1‖φλ‖4
4 6 2

∑
m1,m2

|am1|2|am2|2 +
∑

m1,m2

|am1a−m1am2a−m2|

6 3

(∑
m

|am|2
)2

= 3 · (4π2)−1‖φλ‖4
2,

which is what we wished to prove.

Amazingly, it is not known whether a similar result holds for ‖φλ‖6. This seems to

involve some tricky number theory. Some other rather nice open problems are as follows:

Problem 11.3. Is there any p > 2 such that one has an estimate ‖φλ‖p ¿ ‖φλ‖2 for

all eigenvectors φλ of the Laplacian on T3?

Problem 11.4. Are the squares a Λ(p)-set for any p > 2?

Regarding this last question, it is not particularly hard to see that the squares are

not a Λ(4)-set.

12. Beckner’s inequality

In this set of notes we work with the finite field F = F2 and the vector spaces F n over

it. Rather annoyingly our policy of using the counting measure on the spatial side and

normalised counting measure on the Fourier side is not particularly natural here. For

this reason we adopt the convention that the sum symbol Σ refers to counting measure

(as usual) whilst the integral symbol
∫

refers to normalised counting measure. Norms,

‖.‖p, will be taken with respect to the normalised counting measure.

If X is a finite measure space then B(X) will refer to the real-valued functions f : X →
R. For each ξ ∈ F n

∗ define the character uξ(x) = (−1)ξ.x, and given f ∈ B(F n) define
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the Fourier transform

f̂(ξ) =

∫
f(x)uξ(x) dx.

Observe that the Fourier transform of a real-valued function is always real-valued. The

possibility of dealing with the Fourier transform without worrying about complex-valued

functions is a special feature of working in characteristic two. We will celebrate by

omitting complex conjugation from any inner products or instances of Parseval’s identity

that we might encounter. Note also that f̂(ξ) = f̂(−ξ), so there is no need to use the

symbol f∨ when working in characteristic two.

Given ξ ∈ F n
∗ we write |ξ| for the number of non-zero components of ξ with respect to

the standard basis of F n
∗ .

To begin with suppose that n = 1. Let ε ∈ (0, 1), and define a map T : B(F ) → B(F )

by

Tf(x) =
∑

f(y)K(x, y),

where

K(x, y) =

∫

ξ

ε|ξ|uξ(x)uξ(y) dξ.

It is easy to write down a more explicit form for T . Indeed it is a trivial matter to check

that K(0, 0) = K(1, 1) = 1
2
(1 + ε) and that K(0, 1) = K(1, 0) = 1

2
(1− ε). Suppose that

a function f ∈ B(F ) is given by f(0) = a − b and f(1) = a + b (this way of writing

things is very convenient). Then we see that (Tf)(0) = a− εb and (Tf)(1) = a+ εb.

Lemma 27. One has ‖Tf‖2 6 ‖f‖1+ε2.

Proof. Set p = 1 + ε2. We need to prove the inequality

(a2 + ε2b2)p/2 6 |a+ b|p + |a− b|p
2

.

If a = 0 this is rather easy, and if a 6= 0 we may de-homogenize the inequality by

dividing both sides by ap, reducing it to

(1 + ε2y2)p/2 6 |1 + y|p + |1− y|p
2

. (12.1)

Suppose first of all that |y| < 1. Then the right-hand side of (B.1) may be expanded

using the binomial theorem as
∞∑

k=0

(
p

2k

)
y2k. (12.2)

Now for fixed λ < 1 the function g(x) = (1 + x)λ − 1 − λx has negative derivative on

the interval (0,∞). It follows that g(x) 6 0 for all non-negative x, and so the left-hand

side of (B.1) is no more than 1+pε2y2/2. This expression is equal to the first two terms

of the binomial expansion (B.2). To confirm (B.1) in the case |y| < 1 one only need
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observe that, since 1 < p < 2, all of the binomial coefficients in (B.2) are positive.

When y = ±1 the inequality (B.1) follows from what we have just done by a limiting

argument. Suppose, then, that |y| > 1. Set z = 1/y, and rewrite (B.1) as

(z2 + ε2)p/2 6 |1 + z|p + |1− z|p
2

.

Observe, however, that

(1 + ε2z2)− (z2 + ε2) = (1− z2)(1− ε2)

> 0,

and so this new inequality follows immediately from (B.1) in the case |y| < 1 (which we

have already proved).

Now given linear maps Ti : B(Xi) → B(Xi) written in the form Tif(x) =
∑
f(y)Ki(x, y),

i = 1, 2, one may define the product map

T1 ⊗ T2 : B(X1 ×X2) → B(X1 ×X2)

by

((T1 ⊗ T2)f) (x1, x2) =
∑

f(y1, y2)K1(x1, y1)K2(x2, y2).

Lemma 28. Suppose that T1, T2 are two maps with ‖Ti‖p→2 6 1. Then ‖T1⊗T2‖p→2 6
1.

Proof. Using the integral Minkowski inequality (see the 7th set of notes) one has, for

any f ∈ B(X1 ×X2),

‖(T1 ⊗ T2)f‖2
2 =

∫ ∫
|(T1 ⊗ T2)f(x1, x2)|2 dx1 dx2

6
∫ (∫

|T2f(x1, x2)|p dx2

)2/p

dx1

6
(∫ (∫

|T2f(x1, x2)|2 dx2

)p/2

dx1

)2/p

6
(∫ ∫

|f(x1, x2)|p dx1 dx2

)2/p

= ‖f‖2
p.

Now using the map T : B(F ) → B(F ) we may construct its nth power T⊗n : B(F n) →
B(F n). Combining lemmas 27 and 29, it can be seen that ‖T⊗n‖1+ε2→2 6 1. But what
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is this map? We have

(T⊗nf)(x1, . . . , xn) =
∑

f(y1, . . . , yn)

∫

ξi

ε|ξ1|+···+|ξn|
∏

uξi
(xi)

∏
uξi

(yi)
∏

dξi

=
∑

f(y)

∫

ξ

ε|ξ|uξ(x)uξ(y) dξ

=

∫

ξ

ε|ξ|f̂(ξ)uξ(x) dξ.

Write T = T⊗n for simplicity of notation. This formula shows that T maps f to

a function whose Fourier transform is precisely ε|ξ|f̂(ξ). Observe how the map gives

weight to Fourier coefficients at frequencies which have small support (meaning very

few non-zero coefficients when written in the standard basis on F n
∗ ). Let us record what

what we have proved.

Proposition 12.1 (Beckner’s inequality). Let ε ∈ (0, 1). Define a map T : B(F n) →
B(F n) by mapping f to the function whose Fourier transform at ξ ∈ F n

∗ is ε|ξ|f̂(ξ).

Then ‖Tf‖2 6 ‖f‖1+ε2.

Now as with any map which acts simply as a multiplier on the Fourier side, T is

self-adjoint. Indeed for any functions f, g ∈ B(F n) one has, using Parseval’s identity,

∑
f(x)Tg(x) =

∫
f̂(ξ)T̂ g(ξ) dξ

=

∫
ε|ξ|f̂(ξ)ĝ(ξ) dξ

=

∫
T̂ f(ξ)ĝ(ξ) dξ

=
∑

Tf(x)g(x).

Thus the general theory of operators that we developed earlier in the course allows us

to conclude from Proposition B.3 that

‖Tf‖1+ε−2 6 ‖f‖2. (12.3)

In this dual form, Beckner’s inequality may be used to deduce a statement (which is

pretty much equivalent to the original inequality) concerning the Λ(p)-constant of the

subset of F n
∗ consisting of all ξ with |ξ| = k.

Proposition 12.2. Let k be a positive integer, and let Λ be the set of all ξ ∈ F n
∗ for

which |ξ| = k. Then for any p > 2 and any sequence {aξ}ξ∈Λ one has
∥∥∥∥∥
∑

ξ∈Λ

aξ(−1)ξ.x

∥∥∥∥∥
p

6 (p− 1)k/2

(∑

ξ∈Λ

|aξ|2
)1/2

.
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Proof. Define a function f : F n → R by setting f̂(ξ) = 2naξ if ξ ∈ Λ and f̂(ξ) = 0

otherwise (it is prefectly valid to define a function via its Fourier transform - just use

the inversion formula). Observe that

∑

ξ∈Λ

aξ(−1)ξ.x =

∫

ξ

f̂(ξ)uξ(x) dξ. (12.4)

Set ε = (p− 1)−1/2, and observe that the right-hand side of (12.4) is equal to

ε−k

∫

ξ

ε|ξ|f̂(ξ)uξ(x) dξ = ε−kTf.

Since p = 1 + ε−2 this means, using (12.3), that
∥∥∥∥∥
∑

ξ∈Λ

aξ(−1)ξ.x

∥∥∥∥∥
p

= (p− 1)k/2‖Tf‖p

6 (p− 1)k/2‖f‖2

= (p− 1)k/2

(∑

ξ∈Λ

|aξ|2
)1/2

.

This completes the proof of the proposition.

In keeping with the general philosophy of this course, we can interpret this proposition

as a Fourier-analytic manifestation of the fact that the set of all ξ ∈ F n
∗ with |ξ| = k

does not have a great deal of additive structure. This is most evident when k = 1, when

this set has no non-trivial additive relations whatsoever.

13. The influence of boolean functions

In this set of notes write N = 2n.

A boolean function in n variables is a map from {0, 1}n to {0, 1}. Such an object may

equivalently be regarded as a map from Fn
2 to {0, 1}, or as a subset of the power set

P([n]). In this latter incarnation, which is also known as a set-system, one identifies a

function f with the collection of sets A such that f(χA(1), . . . , χA(n)) = 1.

We will typically suppose that the variables of our boolean function are x1, . . . , xn. For

each k = 1, . . . , n write

(σkf)(x1, . . . , xn) = f(x1, . . . , xk−1, xk, xk+1, . . . , xn)−f(x1, . . . , xk−1, 1−xk, xk+1, . . . , xn).

Define the kth influence Ik(f) by

Ik(f) = N−1
∑
xi

|(σkf)(x1, . . . , xn)| .
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This may be interpreted as the probability that if x1, . . . , xk−1, xk+1, . . . , xn are chosen

at random then f(x1, . . . , xn) is still undetermined (that is, depends on the value of xk).

Example. Define the function f by

f(x1, . . . , xn) = x1 + · · ·+ xn

(where, of course, the addition is taken modulo 2). Then the value of f is never deter-

mined by the values of x2, . . . , xn and so I1(f) = 1. Similarly, Ik(f) = 1 for all k.

Write P for the uniform probability measure on Fn
2 (which is the same as the normalised

counting measure). Write E = Ef . If 1/4 6 E 6 3/4 (a slightly arbitrary choice) we

say that f is quite fair.

Example. Consider the function f(x1, . . . , xn) = x1x2 . . . , xn (a computer scientist

might write this x1 ∧ · · · ∧ xn). Then f is determined by x2, . . . , xn unless x2 = · · · =

xn = 1, which occurs with probability just 21−n. Thus in this case all of the influences

of f are tiny. However, f is nowhere near being quite fair.

Proposition 13.1. There is a quite fair boolean function f , all of whose influences are

at most 2 log n/n.

Proof. Let m be an integer to be chosen later, let r = bn/mc and set

f(x1, . . . , xn) = x1x2 . . . xm + xm+1xm+2 . . . x2m + · · ·+ x(r−1)m+1x(r−1)m+2 . . . xrm.

The influences Irm+1(f), . . . , In(f) are clearly all zero, and all of the other influences

are exactly 21−m. To see this, observe that the only choices of x2, . . . , xrm for which f

remains undetermined are those in which x2 = · · · = xm = 1. The function f is only

quite fair if m is relatively small, and the majority of the work in this proposition goes

into decided just how small.

Now if the xi are chosen independently and at random then the r variables

Yi = x(i−1)m+1 . . . xim

are independent Bernouilli random variables with P(Yi = 1) = q = 2−m. P(f = 0) is

then precisely ∑

06j6r/2

(
r

2j

)
q2j(1− q)r−2j,

which is just
1

2
(1 + (1− 2q)r) .
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Set m = log n− log log n+ C, where the logarithms are to the base two and C ∈ [0, 1)

is selected so that m is an integer. Then

(1− 2q)r =

(
1− log n

2C−1n

)bn/mc

=

(
1− log n

2C−1n

) n
log n

(1+o(1))

= (1 + o(1)) exp
(−21−C

)

6 1/2

for n sufficiently large. Thus, for this value of m, the function f is quite fair.

Now we have

max
16k6n

Ik(f) = 21−m

6 2 log n

n
,

as claimed.

Our main objective in this set of notes will be to show that this example is basically

sharp; every boolean function has at least one variable whose influence is À E log n/n.

Influences and Fourier analysis. To link the quantities Ik(f) with the Fourier

transform, observe that

Ik(f) = N−1
∑

x

σkf(x)2.

Now σkf is equal to f ∗ Jk, where Jk is the function defined by Jk(0, . . . , 0) = 1,

Jk(0, . . . , 0, 1, 0, . . . , 0) = 1

(where the 1 is in the kth position) and Jk(x) = 0 otherwise. Thus

Ik(f) = N−1
∑

x

σkf(x)2

= N−1
∑

x

(f ∗ Jk)(x)
2

= N−1

∫

ξ

f̂(ξ)2Ĵk(ξ)
2 dξ.

The Fourier transform Ĵk(ξ) is easily computed. It is equal to 2 if ξk = 1, and 0 if

ξk = 0. Thus we have the important formula

Ik(f) = 4 ·N−1

∫

ξ:ξk=1

f̂(ξ)2dξ. (13.1)
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This immediately gives another important formula,

n∑

k=1

Ik(f) = 4 ·N−1

∫

ξ

|ξ|f̂(ξ)2 dξ. (13.2)

The Fourier transform of σkf is also worth recording in its own right:

σ̂kf(ξ) =

{
2f̂(ξ) (ξk = 1)

0 (ξk = 0).
(13.3)

Theorem 19. Let f be any boolean function with E 6 1/2. Then there is a value of k

such that Ik(f) > E log n/15n.

Now the function σkf takes the values ±1. One can think of this function being

rather like the characteristic function of some set, the size of this set being proportional

to Ik(f). Suppose that g : F n → {−1, 0, 1} is some function for which the set Ag = {x :

g(x) 6= 0} has size αN . Then
∫

ξ

ĝ(ξ)2 dξ =
∑

x

g(x)2 = αN. (13.4)

We will use Beckner’s inequality to show that if α is small then only a tiny proportion

of this L2-norm can be concentrated at frequencies ξ with |ξ| less than about log n.

Thus either there is some large Ik(f) or else the contribution to (13.2) from small |ξ|
is negligable. But then the right-hand side of (13.2) must be quite large, and in fact∑n

k=1 Ik(f) must be at least CE log n. This will lead to a proof of Theorem 19.

Observe that this slightly complicated strategy is necessary. Indeed it is not the case that∑
k Ik(f) À log n for all functions f , the function f(x1, . . . , xn) = x1 being an example

where such an inequality fails. In this example, however, there is one influence, I1(f),

which is very large indeed.

Proposition 13.2. Consider a function g as above, and let M be a positive integer.

Then ∫

ξ:|ξ|6M

ĝ(ξ)2 dξ 6 4Mα8/5N.

Remark. If M and α are both small, then this is an insignificant fraction of αN .
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Proof. Using Beckner’s inequality,
∫

ξ:|ξ|6M

ĝ(ξ)2 dξ 6 4M

∫

ξ

(1/2)2|ξ|ĝ(ξ)2 dξ

= 4M

∫
T̂1/2g(ξ)

2 dξ

= 4M
∑

x

T1/2g(x)
2

= 4MN‖T1/2g‖2
2

6 4MN‖g‖2
5/4

= 4Mα8/5N.

Remark. In fact, by carefully choosing some ε to play the rôle of 1/2, one can improve

this proposition so as to conclude that
∫

ξ:|ξ|6M

ĝ(ξ)2 dξ 6
(

10 log(1/α)

M

)M

α2N,

provided that M 6 log(1/α). We do not, however, need this strong form and dealing

with it turns out to be slightly messier than might be desired.

Another remark. Although we have used Beckner’s inequality directly, Proposition

13.2 is really a Λ(p)-set phenomenon. That is, a ±1 function with small support cannot

have a lot of L2-Fourier weight on any set with small Λ(p)-constants. We will see another

instance of this phenomenon in the next set of notes, where we will proceed directly

from the Λ(p) property.

Now if Ik(f) > En−3/4 for any k then Theorem 19 is proved. Suppose, then, that

Ik(f) 6 En−3/4 for all k. The following is an immediate consequence of (13.3) and

Proposition 13.2.

Proposition 13.3. For each k,
∫

ξ:ξk=1
|ξ|6log n/20

f̂(ξ)2 dξ 6 n−11/10EN.

Summing over k gives
∫
|ξ|6log n/20

ξ 6=0

f̂(ξ)2 dξ 6 n−1/10EN.

However, by Parseval’s identity, we have
∫

ξ 6=0

f̂(ξ)2 dξ = (E − E2)N > EN/2.
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Thus ∫
|ξ|>log n/20

ξ 6=0

f̂(ξ)2 dξ > EN/3

and, by (13.2),

∑

k

Ik(f) = 4N−1

∫
|ξ|f̂(ξ)2 dξ

> E log n/15.

This completes the proof of Theorem 19.

14. Sumsets in Fn
2

Let C and D be subsets of an abelian group Γ. The sumset C+D is defined to be the

set of all elements of Γ which have the form c+ d, with c ∈ C and d ∈ D. My original

intention was to present a result which says that if Γ = Z/NZ and if |C|, |D| À N then

C+D contains an arithmetic progression of length about e
√

log N (this is to be thought of

as quite long). I can supply any interested readers with a paper where this is done, but

I thought that I would take the opportunity to prove an analagous result for Γ = Fn
2 .

This has two advantages; firstly, we can use results (such as Beckner’s inequality) from

the previous two sets of notes and secondly the argument comes out much more cleanly

than it does for Z/NZ. The main theorem of this set of notes, then, is the following.

Theorem 20. Suppose that γ and δ are real numbers with γδ > 1/
√
n. Let C,D ⊆ Fn

2

have cardinalities γN and δN respectively. Then C + D contains a translate of some

subspace of Fn
2 with dimension at least nγδ/80.

**Before proving this result I would like to spend some time discussing a few examples.

These should give you some idea of what the result is saying, and why it is (I think)

interesting. Thanks to Oleg Pikhurko and Tom Körner for pushing me into discussing

these things in lectures.

Let us begin by remarking that we will think of γ and δ in Theorem 20 as being fixed,

and of n as being large (though, as stated, the theorem covers some situations where

γ and δ tend to zero slowly with n). In all our examples γ and δ will be fixed reals of

moderate size.

Example 1. C = D is a subspace of codimension 2. Then γ = δ = 1/4 and C + D

contains a subspace of dimension n− 2, rather obviously.

Example 2. C is generated by choosing each element of Fn
2 to lie in C independently

and at random with probability 1/4. D is generated similarly. Then with very high

probability both γ and δ will be about 1/4 (exercise). Now, for any fixed x ∈ Fn
2 there
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are bN/2c completely disjoint pairs (u, v) with u + v = x. For each such pair there is

a probability 1/16 that u ∈ C and v ∈ D, and so the probability that x /∈ C + D is

bounded above by (15/16)bN/2c. It follows that

E|C +D| > N
(
1− (15/16)bN/2c) ,

which is very, very, close to N . In fact one can show that C +D is all of Fn
2 with high

probability by bounding E|(C+D)c|2 and using Chebyshev’s inequality (I have put this

on the third example sheet).

Examples 1 and 2 show that if we take either very structured sets or very random sets

then C +D will contain a translate of a subspace having very large dimension indeed.

Quite often, in a combinatorial problem, either very structured examples or random

examples are extremal. This problem is different, as the following modification of an

example of Ruzsa shows.

Example 3. Let C = D be the set of all vectors x ∈ Fn
2 with at least n/2 +

√
n/2

ones with respect to the standard basis. By the central limit theorem the number of

ones in a random vector (x1, . . . , xn) is roughly normally distributed with mean n/2

and standard deviation
√
n/2, and so for large n both γ and δ are at least 1/4. Now

any vector x ∈ C + D must have at least
√
n zeros. Using this fact, we shall prove

that C +D meets all translates of all (n− b√nc)-dimensional subspaces. Indeed, write

d = b√nc and suppose that U is a translate of some subspace of dimension n = d. U

can be written as

U = {a0 + λ1a1 + · · ·+ λn−dan−d : λi ∈ F2} ,
where the ai are linearly independent. Write ai in component form as (a

(j)
i )n

j=1. The

column rank of the matrix (aij) is n − d, and hence so is the row rank. Without loss

of generality, suppose that the first n − d rows (a
(j)
1 , . . . , a

(j)
n−d), j = 1, . . . , n − d, are

linearly independent. Then we can solve the n− d equations

a
(j)
0 + λ1a

(j)
1 + · · ·+ λn−da

(j)
n−d = 1

for the λi, giving a vector in U with no more than d zeros.**

Hereditary non-uniformity. If κ > 0 is a real number then we say that a set A ⊆ Fn
2

is κ-hereditarily non-uniform (HNU) if for any S ⊆ A one has

sup
ξ 6=0

|Ŝ(ξ)| > κ|S|.

Let us make a couple of remarks on the meaning of this statement. In Fn
2 it is particularly

easy to understand what it means for a set to have a large Fourier coefficient. Indeed if
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Â(ξ) is large then A has a bias relative to the two hyperplanes ξ.x = 0 and ξ.x = 1; one

of these hyperplanes contains rather more than half the points of A, the other rather

less. To say that a set is HNU means that every subset of A is biased with respect to

some pair of hyperplanes. The notion of uniformity (having no large Fourier coefficients

except at ξ = 0) will be explored in a lot more detail in Tim Gowers’ course “Additive

and Combinatorial Number Theory” in the Lent Term.

Proposition 14.1. Let C,D ⊆ Fn
2 have cardinalities γN and δN respectively. Then

(C +D)c is
√
γδ-HNU.

Proof. Suppose that S ⊆ (C +D)c. Then
∑

x

S(x)(C ∗D)(x) = 0.

Writing this in terms of Fourier coefficients using Parseval’s identity and the formula

for Fourier transforms of convolutions gives
∑

ξ

Ŝ(ξ)Ĉ(ξ)D̂(ξ) = 0.

By the triangle inequality and Parseval (again) one then has

αβN2|S| = |Ĉ(0)||D̂(0)||Ŝ(0)|
6

∑

ξ 6=0

|Ĉ(ξ)||D̂(ξ)||Ŝ(ξ)|

6 sup
ξ 6=0

|Ŝ(ξ)|
(∑

ξ

|Ĉ(ξ)|2
)1/2 (∑

ξ

|D̂(ξ)|2
)1/2

6 sup
ξ 6=0

|Ŝ(ξ)| · (γδ)1/2N2.

The result follows.

The following beautiful result will be our way of harnessing Beckner’s inequality in this

instance.

Lemma 29. Let A ⊆ Fn
2 have cardinality αN , let ρ ∈ (0, 1) be a real number and let

Λ be the set of all ξ for which |Â(ξ)| > ρ|A|. Then Λ is contained in a subspace of

dimension at most 8ρ−2 log(1/α).

Proof. Suppose not. Then we may select linearly independent vectors ξ1, . . . , ξd ∈ Λ. If

M : Fn
2 → Fn

2 is an invertible linear map and if a set A′ is defined by A′(x) = A(M−1x)

then one has Â′(ξ) = Â(MT ξ). By choosing M suitably and replacing A with A′ we may

assume that ξ1, . . . , ξd are the standard basis vectors e1, . . . , ed. We may now repeat an
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argument from the previous set of notes almost verbatim. For any ε ∈ (0, 1) we have

dρ2α2N2 =
d∑

i=1

Â(ei)
2

6 ε−2
∑

ξ

ε2|ξ|Â(ξ)2

= ε−2N2‖TA‖2
2

6 ε−2N2‖A‖2
1+ε2

= ε−2N2α2/(1+ε2).

The passage between the third and fourth lines is effected via Beckner’s inequality.

Now cancelling the α2N2 from both sides and setting ε = (log(1/α))−1/2 gives d 6
e2ρ−2 log(1/α), from which the lemma follows immediately.

We’ll need the following result, which can be proved in an almost identical manner to

the Bernstein/Chernoff bound we saw in Notes 10. With more foresight I could have

proved this more general version back then, but I didn’t, and I don’t want to repeat the

argument. A full (non-examinable) proof may be found on the Expositions page of my

website.

Lemma 30. Let X1, . . . , Xn be independent complex-valued random variables with EXi =

0 and E|Xj|2 = σ2
j . Write σ2 = σ2

1 + · · · + σ2
n, and suppose that |Xj| 6 1 uniformly in

j. Suppose that σ2 > 6nt. Then we have the inequality

P
(|X| > t

)
6 4e−n2t2/8σ2

,

where X = (X1 + · · ·+Xn)/n.

Theorem 21. Suppose that κ > n−1/4, and that A ⊆ Fn
2 is κ-HNU. Then Ac contains

a translate of some subspace of Fn
2 of dimension at least nκ2/80.

Remark. The condition on κ could be relaxed slightly, but our interest is in constant

κ anyhow.

Proof. Let β = 2−nκ2/40. We consider two cases.

Case 1. |A| 6 βN . Pick any subspace U ⊆ Fn
2 of dimension less than log(1/β). Fn

2 is a

disjoint union of more than βN translates of U , so one of these must miss A entirely.

Case 2. |A| > βN . Let B ⊆ A be a subset of cardinality βN for which supξ |B̂(ξ)|
is as small as possible. Since A is κ-HNU this quantity cannot be too small; in fact,

if it equals η|B| then we must have η > κ. Define Λ to be the set of all ξ for which

|B̂(ξ)| > η|B|/2. By Lemma 29, Λ is contained in a subspace V ⊆ Fn
2 of dimension at
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most 32κ−2 log(1/β). Let V ⊥ be the orthogonal complement of V with respect to the

standard inner product x.y = x1y1 + · · · + xnyn. Then V ⊥ is a subspace of dimension

at least n − 32κ−2 log(1/β). Pass to a subspace W ⊆ V ⊥ with dimension nκ2/50. To

ensure that this is possible, it must be checked that

nκ2

50
+ 32κ−2 log

(
1

β

)
< n,

a trivial matter.

Lemma 31. For at least (1− η/16)N values of x we have B ∩ (W + x) = ∅.

Proof. Suppose not. Then |B ∩ (W + x)| > 1 for more than ηN/16 values of x, and so

|W ||B| =
∑

x

|(x+W ) ∩B|

> ηN/16.

We claim this is at least |W ||B|. To see this, note that it suffices to check that η/16 >

2−nκ2/200, which is immediate from the fact that η > κ > n−1/4. This contradiction

establishes the lemma.

Call the set C of such x good ; the above lemma tells us that |C| > (1− η/16)N . As C

is very large, it cannot have any really huge Fourier coefficients. Indeed if ξ 6= 0 then

|Ĉ(ξ)| = |Ĉc(ξ)|
6 |Cc|
6 ηN/16

6 η|C|/8. (14.1)

We are now going to choose a subset D ⊆ C of size t. We will do this by picking elements

of C at random with probability t/|C|. It turns out that, provided t is large enough, D

inherits from C the property of not having any really large Fourier coefficients.

Lemma 32. Let t > 214η−2 logN . Then there is a subset D ⊆ C with size t such that

supξ 6=0 |D̂(ξ)| 6 ηt/4.

Proof. As promised, choose a set E ⊆ C by letting each x ∈ C be in E with probability

p = t/|C|, these choices being independent. The Fourier coefficient Ê(ξ) is then a sum

of |C| independent random variables X
(ξ)
j = E(x)(−1)ξ.x with variances at most p. It

follows from Lemma 37 and (14.1) that

P
(
|Ê(ξ)| > ηt/6

)
6 P

(∣∣∣Ê(ξ)− EÊ(ξ)
∣∣∣ > ηt/24

)

< 4e−η2t/5000.
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By the same token

P (||E| − t| > ηt/24) < 4e−η2t/5000.

If t > 214η−2 logN , then, there is a positive probability that none of the above events

happen. By adding or deleting at most ηt/12 elements from E we get a set D satisfying

the conclusion of the lemma.

An almost identical argument proves the following.

Lemma 33. Let N1/2 > t > 214η−2 logN . Then there is a subset X ⊆ B with |X| = t

and ∣∣∣∣∣X̂(ξ)− tB̂(ξ)

|B|

∣∣∣∣∣ 6 ηt/12

for all ξ 6= 0.

Lemma 34. Let S be the (multi)set (B \X) ∪D. Then

sup
ξ∈Λ

|Ŝ(ξ)| 6 η|S| − ηt/6,

whilst

|Ŝ(ξ)| 6 η|S|
2

+
ηt

3
for all other ξ 6= 0.

Proof. We have

Ŝ(ξ) = B̂(ξ)− X̂(ξ) + D̂(ξ)

=

(
1− t

|B|
)
B̂(ξ) +Q,

where |Q| 6 ηt/3 by the previous two lemmas. If ξ ∈ Λ then |B̂(ξ)|/|B| > η/2 by

definition, and the first part of the result follows easily. For the second part of the

result observe that if ξ /∈ Λ then

|Ŝ(ξ)| 6
∣∣∣∣1−

t

|B|

∣∣∣∣ |B̂(ξ)|+ |Q|

6 η|S|
2

+
ηt

3
.

This proves the lemma.

Now let D = {d1, . . . , dt}. Let D′ be any set obtained by replacing dj (j = 1, . . . , t)

with dj + xj, where xj ∈ W (now might be a good opportunity to recall the definition

of W ).
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Lemma 35. Suppose that t 6 ηβN/10. Let S ′ be the (multi)set (B \X) ∪D′. Then

sup
ξ 6=0

|Ŝ ′(ξ)| < η|S ′|.

Proof. We deal first with the easy case ξ /∈ Λ. However we change the elements of D

the contribution to Ŝ(ξ) cannot vary by more than 2t. It follows from Lemma 34 that,

for ξ /∈ Λ,

|Ŝ ′(ξ)| 6 η|S ′|
2

+ 5t < η|S ′|.
However if ξ ∈ Λ then

Ŝ ′(ξ) = Ŝ(ξ) +
t∑

j=1

(
(−1)ξ(dj+xj) − (−1)ξdj

)

= Ŝ(ξ),

Since xj ∈W = V ⊥ and Λ ⊆ V . The result follows immediately from Lemma 34.

If we could choose x1, . . . , xt so that S ′ was actually a set (as opposed to a multiset)

and also so that S ′ ⊆ A then we would have a contradiction of our earlier assumption

about the minimality of B. It follows that there is no such choice of x1, . . . , xt.

Lemma 36. There is some j such that dj +W is contained in Ac, except for at most

t elements.

Proof. Suppose not, and recall that none of the dj+W intersects B. Thus we may choose

x1 ∈ W so that d1 +x1 ∈ A\B, and then x2 ∈ W so that d2 +x2 ∈ A\ (B ∪ {d1 + x1}).
Continue in this way; at the last stage we will still be able to choose xt ∈W so that

dt + xt ∈ A \
(
B ∪

t−1⋃
j=1

{dj + xj}
)
.

This gives us an S ′ of the type that we argued couldn’t exist. The lemma follows.

Pick a j ∈ [t] be such that the conclusion of this lemma holds. There is clearly a

subspace U ⊆ W of dimension at least dimW − log t such that some translate x+U lies

entirely in Ac. Certainly dimU > nκ2/80, and the proof of Theorem 21 is complete.

Appendix A. A brief discussion of spheres

There is a large and highly-regarded literature concerning generalisations of results

like the L∞–L4 local restriction theorem for circles to higher dimensions. I thought long

and hard about whether to include any of this in the course, but in the end I decided

that I could not achieve a satisfactory level of rigour without assuming more measure

theory than I would like to. This set of notes, which is entirely non-examinable, is
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intended to give you a brief overview of what is known and what we would like to

know. We will return to the restriction phenomena in the next set of notes, where we

will investigate the paraboloid in F3 in some detail. Although this “toy model” is in

some ways analagous to the Euclidean 2-sphere, there are a number of features of the

Euclidean situation which cannot be adequately appreciated in the finite field case.

The reader who feels bothered by all this, and who would like to understand the Eu-

clidean case better, should consult Terry Tao’s lecture notes for “Math 254B”, particu-

larly the first two chapters. These are available on his website.

The first thing to understand is the Fourier transform of dσ, where σ is the natural mea-

sure on the sphere Sn−1 ⊆ Rn. It turns out not to be particularly difficult to generalise

the results we proved in the plane. Using stationary phase, one can get an asymptotic

which implies the estimate

|d̂σ(λ)| ¿ min(1, |λ|−(n−1)/2).

To prove this, it once again suffices to consider the case λ = (0, 0, . . . , λ). In estimating
∫

Sn−1

e−2πiλxn dσ(x)

there are just two stationary phase points, the north and south poles of the sphere.

At these points one can write the surface of the sphere in local coordinates as z =

y2
1 + · · ·+ y2

n−1, much as we did for the circle, and then use the stationary phase lemma

to estimate the resulting integral. When n = 3 one can actually evaluate d̂σ(λ) in closed

form (this is on the example sheet).

By analogy with the results we proved for the circle, we might ask the following.

Problem A.1 (Local restriction problem). Let f : Sn−1 → C be measurable. For which

p do we have the estimate

‖(fdσ)∨‖Lp(B(0,R)) ¿ε Rε‖f‖L∞(Sn−1)? (A.1)

If such an estimate holds we say that LR(n, p) is true. It is easy to see that LR(n, p) ⇒
LR(n, p′) if p′ > p, so it is natural to ask for the smallest value of p for which LR(n, p)

holds. We know that LR(2, 4) holds, and that this is sharp (simply test (A.1) with

f = 1). By analogy one might conjecture that LR(n, 2n/(n − 1)) holds. This is called

the local restriction conjecture and is not known to be true, even in three dimensions.

The trick that made our proof work in two dimensions was the observation that an L4

norm can be worked out simply, as |z|4 = z2z2. There is no equivalent of this for, say,

an L3 norm, and this is why a näıve modification of our arguments does not work.
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By modifying the argument of the previous set of notes one can show that LR(n, p)

implies that the Minkowski dimension of Kakeya sets in Rn is at least 2p
p−2

− n, and in

particular that the local restriction conjecture implies the Minkowski Kakeya conjecture.

The so-called “Knapp example” generalises to say that the Fourier transform of a δ-cap

of Sn−1 is large on a tube with dimensions roughly δ−2 × δ−1 × · · · × δ−1 × δ−1. The

main difficulty in generalising the argument is that one has to prove an estimate of the

form

E

∥∥∥∥∥
k∑

i=1

εigi

∥∥∥∥∥

p

p

À
∥∥∥∥∥∥

(
k∑

i=1

|gi|2
)1/2

∥∥∥∥∥∥

p

p

,

where the εi are random phases as they were before, and the gi are measurable functions

on Euclidean space. In the previous set of notes we needed this for p = 4, and could

prove it by simply multiplying out. For p not an even integer such a trick is not available

and a different proof is necessary. One is given in Chapter 1 of Tao’s notes; I may also

discuss the result in an examples class. It is called Khintchine’s inequality.

Are there any results of the form LR(n, p) that we can prove when n > 2? One strategy

is to aim for a weaker type of result of the form

‖(fdσ)∨‖Lp(B(0,R)) ¿ε Rε‖f‖L2(Sn−1). (A.2)

This certainly implies LR(n, p), and it is well-known to analysts that L2 norms are nice

things to have around. It turns out that we can prove an essentially optimal result of

the form (A.2), but sadly this does not have the exponent p = 2n/(n − 1). Indeed by

testing (A.2) with a Knapp example (that is, f is the charactistic function of a δ-ball)

one can see that such a result can only hold for p > 2(n+ 1)/(n− 1). The Stein-Tomas

theorem states that this is exactly the correct range, and that there is actually no need

to localise to a ball:

Theorem 22 (Stein-Tomas). We have the bound

‖(fdσ)∨‖L2(n+1)/(n−1)(Rn) ¿ ‖f‖L2(Sn−1).

Stein-Tomas is proved by the method of T and T ∗, which will be discussed in the

discrete setting in the next set of notes. This is very specific to the L2 setting.

Thus LR(n, 2(n + 1)/(n − 1)) is true. Sadly, however, this leads only to the rather

disappointing bound d(n) > 1 for Kakeya sets! This is far worse than the bounds we

know for Kakeya, particularly bounds like d(3) > 5/2 given by the Wolff Hairbrush

argument6.

In the early 1990’s an argument was introduced by Bourgain which allows one to get a

6admittedly, in this course we only proved this in the “toy” setting of finite fields
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(rather partial) reverse implication of the form

Kakeya estimates ⇒ Restriction estimates.

I believe that Bourgain’s result and subsequent modifications of it allow one to prove

something at least as strong as LR(3, 4− 2
7
), which is an improvement on the Tomas-Stein

result LR(3, 4). There are also improvements in higher dimensions. Sadly Bourgain’s

argument is outside the scope of this course, but you can read about it in the fifth

chapter of Terry Tao’s notes for Math 254B.

I should conclude this section by explaining something about where the term restric-

tion comes from. Tomas-Stein asserts that the extension operator T : f 7→ (fdσ)∨ is

bounded as a map from L2(Sn−1) to Lp(Rn), p = 2(n + 1)/(n − 1). As in the discrete

case T has an adjoint T ∗, which is just the restriction map f 7→ f̂ |Sn−1 . Thus the

Tomas-Stein theorem says, in dual form, that there is an inequality

‖f̂ |Sn−1‖L2(Sn−1) ¿ ‖f‖L2(n+1)/(n+3)(Rn). (A.3)

When n = 3, the exponent on the right equals 4/3. Tomas-Stein is often phrased in the

form “the Fourier transform of an L4/3 function on R3 can be meaningfully restricted

to the 2-sphere”. This is perhaps rather nonsensical, but at least (A.3) makes it clear

where the word “restriction” comes from.

Appendix B. Stationary phase

1. Introduction. The Principle of Stationary Phase (PSP) is a means of estimating

oscillatory integrals of the form

I(λ) =

∫

Rn

eiπλf(x)a(x) dx (B.1)

asymptotically as λ→∞. It is particularly simple to state and prove results under the

assumptions that f ∈ C∞ and a ∈ C∞0 , and furthermore many interesting examples are

covered by this case. For example we will prove later on the following result.

Theorem 23. Let µ be the measure on Sn−1 induced from Lebsegue measure on Rn.

Then

µ̂(λ) = 2|λ|−(n−1)/2 cos π

(
|λ| − n− 1

4

)
+O

(|λ|−(n+1)/2
)
.

If f is rapidly varying then we might expect there to be lots of cancellation in (B.1),

so that I(λ) decays very rapidly. This indeed proves to be the case, and we will for-

mulate this more exactly as the Principle of Non-Stationary Phase (PNSP). If ∇f = 0,

however, there is not nearly such rapid decay. The analysis of this case consititutes

the Principle of Stationary Phase as we will study it. We will only study functions f
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with non-degenerate singularities (that is to say singularities at which the Hessian is

non-singular). A fully general analysis would be immensely complicated.

These notes draw heavily on lecture notes of T. Wolff and on lectures of E. Stein.

2. Two 1-Dimensional Estimates. In this section we state and prove two 1-

dimensional estimates which may be regarded as the heart of the PNSP and the PSP

respectively. The first is rather standard.

Proposition B.1. Let a ∈ C∞0 (R) and let

J(λ) =

∫

R
eiπλxa(x) dx.

Then J(λ) = O
(
λ−N

)
as λ→∞ for any positive integer N .

Proof. This is nothing more than the statement that the Fourier transform of a C∞0
function decays superpolynomially. It may be proved by repeated integration by parts.

¤

The second result is a little less standard.

Proposition B.2. Let a ∈ C∞0 (R) and let

K(λ) =

∫

R
eiπλx2

a(x) dx.

Let λ > 0. Then

K(λ) = λ−1/2eiπ/4a(0) +O
(
λ−3/2

)
.

Proof. Applying Parseval’s formula gives
∫

R
e−zx2

a(x) dx = (4πz)−1/2

∫

R
â(ξ)e−ξ2/4z dξ (B.2)

for z > 0. Now the left hand side here can easily be extended to an analytic function on

all of C. The right hand side cannot, but applying the dominated convergence theorem

it is possible to see that it can be extended to a continuous function on the set

S = {z : <z > 0, z 6= 0}
which is analytic on So. It follows by the identity principle that (B.2) holds for all

z ∈ S, and hence in particular for z = −iπλ. When λ > 0 this gives the identity
∫

R
eiπλx2

a(x) dx = λ−1/2eiπ/4

∫

R
â(ξ)eiξ2/4πλ dξ.
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The proposition follows immediately by observing that
∣∣∣∣
∫

R
â(ξ)eiξ2/4πλ dξ −

∫

R
â(ξ) dξ

∣∣∣∣ 6
∫

R
|â(ξ)|

∣∣∣1− eiξ2/4πλ
∣∣∣ dξ

6 1

4πλ

∫

R
|â(ξ)| |ξ2| dξ

¿ λ−1

and that ∫

R
â(ξ) dξ = 2πa(0).

There is no reason to be mysterious about why Propositions B.1 and B.2 encapsulate

the PNSP and PSP respectively. The reason is that (at least in R) the functions x 7→ x

and x 7→ x2 are in some sense the “generic” functions with non-vanishing derivative and

with non-degenerate singular point respectively. We can formalise this in the following

standard lemma from differential geometry, the second part of which is due to Morse.

Lemma 37. (i) Let f : Rn → R be a smooth function and that ∇f(p) 6= 0 at some point

p ∈ Rn. Then there is a neighbourhood U containing p, a neighbourhood V containing

0 and a diffeomorphism φ : V → U with φ(0) = p such that f(φ(x)) = f(p) + x1.

(ii) Let f : Rn → R be a smooth function such that ∇f(p) = 0. Suppose that the Hessian

Hp(f) = (∂2f/∂xj∂xk)j,k is non-singular. Then there is an r 6 n, neighbourhoods U, V

with p ∈ U ,0 ∈ V and a diffeomorphism φ : V → U with φ(0) = p such that

f(φ(x)) = f(p) + x2
1 + · · ·+ x2

r − x2
r+1 − · · · − x2

n.

We call the quantity σ = 2r − n the signature of f at the critical point p. It turns

out to be an invariant of f (in other words it is independent of the diffeomorphism φ).

In view of this lemma it will come as no surprise that we are interested in the following

two results, which are simple generalisations of Propositions B.1 and B.2 proved in

exactly the same way.

Proposition B.3. Let a ∈ C∞0 (Rn) and let

J(λ) =

∫

Rn

eiπλx1a(x) dx.

Then J(λ) = O
(
λ−N

)
as |λ| → ∞ for any positive integer N .

Proposition B.4. Let a ∈ C∞0 (Rn) and let

K(λ) =

∫

Rn

eiπλ(x2
1+···+x2

r−x2
r+1−···−x2

n)a(x) dx.

Let λ > 0. Then

K(λ) = λ−n/2eiπσ/4a(0) +O
(
λ−(n+2)/2

)
.
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3. The Principle of Non-Stationary Phase.

Theorem 24. Let a ∈ C∞0 (Rn) and f ∈ C∞(Rn) be such that ∇f 6= 0 in Supp(a).

Write

I(λ) =

∫

Rn

eiπλf(x)a(x) dx.

Then I(λ) = O(λ−N) for any N as λ→∞.

Proof. Let us first of all work locally. Let p ∈ Supp(a) and let Up, Vp be the neighbour-

hoods featuring in Lemma 37. Let φp : Up → Vp be the diffeomorphism described in

that Lemma. Let bp : Rn → R be smooth and supported on Up. Then by change of

variables ∫

Up

eiπλf(x)bp(x) dx = eiπλf(p)

∫

Vp

eiπλx1bp(φ(x)) |Jφ(x)| dx

¿ λ−N

for any N by Proposition B.1. Now pick a finite set of points pj such that the corre-

sponding neighbourhoods Uj = Upj
cover Supp(a). Take a partition of unity gj relative

to the Uj, so that

• The gj are C∞;

• Supp(gj) ⊆ Uj;

• ∑
j gj(x) is identically equal to 1 on

⋃
j Uj.

Set bj(x) = a(x)gj(x). Then the theorem follows from the observation that

I(λ) =
∑

j

∫

Up

eiπλf(x)bj(x) dx.
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4. The Principle of Stationary Phase.

Theorem 25. Let a ∈ C∞0 (Rn) and suppose that f ∈ C∞(Rn) has only non-degenerate

critical points. Let these be p1, . . . , pm and suppose that the signature of f at pj is σj.

Let ∆j denote the absolute value of detHf (pj), the determinant of the Hessian at pj.

Write

I(λ) =

∫

Rn

eiπλf(x)a(x) dx.

Then

I(λ) = λ−n/2

(
m∑

j=1

eiπλf(pj)eiπσj/4∆
−1/2
j a(pj)

)
+O

(
λ−(n+2)/2

)
.

Proof. Once again we work locally in the first instance. Let p be a critical point of f

and suppose we are in the situation described by (ii) of Lemma 37. To spell it out, we

have neighbourhoods U , V with p ∈ U , 0 ∈ V and a diffeomorphism φ : V → U with

φ(0) = p such that

f(φ(x)) = f(p) = x2
1 + · · ·+ x2

k − x2
k+1 − · · · − x2

n.

Let b be any C∞ function supported in U . By change of variables and Proposition B.2

we have∫

U

eiπλf(x)b(x) dx = eiπλf(p)

∫

V

eiπλ(x2
1+···+x2

k−x2
k+1−···−x2

n)b(φ(x)) |Jφ(x)| dx

= eiπλf(p)eiπσ/4λ−n/2b(p) |Jφ(0)|+O
(
λ−(n+2)/2

)
. (B.3)

It turns out that we can express |Jφ(0)| in terms of intrinsic properties of f . To do this

one uses the chain rule and the fact that ∇f = 0 to check that

H(f◦φ)(0) = φ′(0)tHf (p)φ
′(0).

Noting that | detH(f◦φ)(0)| = 1 this implies that

|Jφ(0)| = |detφ′(0)| = ∆−1/2,

and so (B.3) constitutes a sort of local version of the theorem. To deduce a global

version, choose the neighbourhoods Uj = Upj
to be disjoint, and let bj be a C∞ function

which is supported in Uj and which equals a(x) in a neighbouhood of pj. Let c(x) =

a(x)−∑
j bj(x), so that Supp(c) is contained in an open set on which ∇f 6= 0. We have

then that

I(λ) =
∑

j

∫

Uj

eiπλf(x)bj(x) dx+

∫

Rn

eiπλf(x)c(x) dx,

and the full strength of the theorem follows from the local version together with Theorem

24. ¤

The form of Theorem 25 looks complicated. We would like to emphasise again that
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there is really nothing at all difficult going on here. One looks at the behaviour in

the simplest possible case of a non-degenerate stationary point (Proposition B.2) and

then reduces the general case to this by showing that the behaviour of these oscillatory

integrals is in some sense invariant under diffeomorphisms. The complicated look of our

calculations is not helped by the need to invoke partitions of unity, but these are merely

a convenient way of allowing one to think locally. Local then becomes global because

the amplitude function a has compact support, allowing us to add up a finite number

of local estimates.

Before moving on to an application we remark that these asymptotic expansions can

be continued to greater accuracy by expanding the exponential eiξ2/4πλ appearing in

the proof of Proposition B.2. One can also say something about the dependence of

the implied constants on f, a and their derivatives. We will not, however, discuss this

matter here.

5. Application: Fourier Transforms of Spherical Measures. An important use

of PSP is in the estimation of the Fourier Transforms of measures µ supported on the

sphere Sn−1 ⊆ Rn.

Theorem 26. Let µ be the measure on Sn−1 induced from Lebsegue measure on Rn.

Then

µ̂(λ) = 2|λ|−(n−1)/2 cos π

(
|λ| − n− 1

4

)
+O

(|λ|−(n+1)/2
)
.

Proof. It is clear that µ̂ is a radial function (that is, one which depends only on distance

from the origin) because Sn−1 is radially symmetric. It suffices, then, to evaluate µ̂ at

λen for λ ∈ R+.

Lemma 38. Let

φj : (x1, . . . , xn) −→ (x1, . . . , xj−1, xj+1, . . . , xn)

denote the jth projection map. Then we can express Sn−1 as a (non-disjoint) union

V ∪ W ∪ ⋃m
k=1 Uk of open sets, where V and W are small caps about the south and

north poles P± = (0, 0, . . . ,±1) of Sn−1, and for each k there is j 6 n − 1 such that

φj : Uk → φj(Uk) is a diffeomorphism.

Proof. φj|Sn−1 is a local diffeomorphism everywhere except on xj = 0. Hence if p is

not one of the poles then there is a neighbourood U containing p on which some φj

(j 6 n− 1) is a diffeomorphism. The lemma follows by a compactness argument. ¤

Let {v, w, uk} be a partition of unity for the cover V ∪W ∪⋃m
k=1 Uk so that v(P−) =
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w(P+) = 1. Then

µ̂(λen) =

∫

V

v(x)eiπλxn dµ+

∫

W

w(x)eiπλxn dµ+
m∑

k=1

∫

Uk

uk(x)e
iπλxn dµ. (B.4)

Working in local coordinates (x1, . . . , xj−1, xj+1, . . . , xn) it is easy to see that each inte-

gral ∫

Uk

uk(x)e
iπλxn dµ

is O(λ−N) for any N by the PNSP. The interesting integrals are those involving v and

w, and we will treat the former. The local coordinates at P− are (x1, . . . , xn−1) and in

terms of these one has

xn = − (
1− |x|2)1/2

and

dµ = (1− |x|2)−1/2dx1 . . . dxn−1.

It is easy to check that xn, considered as a function of x1, . . . , xn−1, is singular only at

(0, . . . , 0) and that the Hessian at this point is just the identity matrix. It follows from

PSP that ∫

V

v(x)eiπλxn dµ = λ−(n−1)/2e−iπλeiπ(n−1)/4 +O
(
λ−(n+1)/2

)
.

Similarly
∫

W

w(x)eiπλxn dµ = λ−(n−1)/2eiπλe−iπ(n−1)/4 +O
(
λ−(n+1)/2

)
.

Adding these together and recalling (B.4) gives the result. ¤

It can be shown that if S ∈ Rn is a smooth (n− 1)-dimensional hypersurface with non-

vanishing Gauss curvature at every point, and if µ is a smooth measure supported on

S, then µ̂(λ) ¿ |λ|−(n−1)/2 for large λ. The reader will appreciate that this is essentially

a stationary phase argument if we say what it means for a point p ∈ S to be a point of

non-zero Gauss curvature. Take a tangent plane Π to S at p, and use the orthogonal

projection of S onto Π as a method of defining local coordinates. If the equation of S in

these local coordinates is xn = F (x1, . . . , xn−1) then we say that p is a point of non-zero

curvature if the Hessian (∂2F/∂xj∂xk)16j,k6n−1 has non-zero determinant.

6. Van der Corput’s Estimates. This section covers a topic related to stationary

phase, but with a slightly different flavour.
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Theorem 27 (Van der Corput’s Estimates). Let [a, b] be an interval on the real line,

let k be a positive integer, and let f : [a, b] → R be continuous. Write

I =

∫ b

a

eif(x) dx.

(i) Suppose that k = 1 and that f ∈ C2(a, b). Suppose furthermore that f ′ is monotonic

and that |f ′(x)| > λ > 0 uniformly on (a, b). Then |I| 6 4/λ.

(ii) Suppose that k > 2 and that f ∈ Ck(a, b). Suppose that |f (k)(x)| > λ > 0 uniformly

on (a, b). Then |I| 6 3 · 2k · λ−1/k.

Proof. (i) Observe that

eif(x) =
1

if ′(x)
d

dx

(
eif(x)

)
,

this expression being valid everywhere because of our assumption about f . Thus

|I| =

∣∣∣∣
∫ b

a

d

dx

(
eif(x)

) dx

if ′(x)

∣∣∣∣

=

∣∣∣∣∣
[
eif(x)

if ′(x)

]b

a

−
∫ b

a

eif(x) d

dx

(
1

if ′(x)

)
dx

∣∣∣∣∣

6 2

λ
+

∫ b

a

∣∣∣∣
d

dx

(
1

if ′(x)

)∣∣∣∣ dx

=
2

λ
+

∣∣∣∣
∫ b

a

d

dx

(
1

if ′(x)

)
dx

∣∣∣∣

6 4

λ
.

The crucial step here of taking the absolute value signs back outside the integral was

permissible, of course, because f ′ was assumed to be monotonic. The integrations by

parts were all valid because f ∈ C2(a, b).

(ii) We will prove the stronger statement that |I| 6 (
3 · 2k − 2

) · λ−1/k by induction on

k. The inductive step will also serve to deduce the case k = 2 from part (i), as the

reader will verify. Suppose then that f ∈ Ck(a, b) and that
∣∣f (k)(x)

∣∣ > λ on (a, b). Since

f (k) is continuous it is clear that either f (k)(x) > λ or f (k)(x) 6 −λ for all x. Without

loss of generality we suppose the former holds. Now observe that for any δ > 0 we may

write

I = I1 ∪ I2 ∪ I3
where f (k−1)(x) 6 −δλ on I1, f

(k−1)(x) > δλ on I3 and |I2| 6 δλ. Furthermore on

each of I1 and I3 the function f (k−1) will be monotonic (this remark is only relevant for
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k = 2). It follows from our inductive hypothesis that

|I| 6
∣∣∣∣
∫

I1

eif(x) dx

∣∣∣∣ +

∣∣∣∣
∫

I2

eif(x) dx

∣∣∣∣ +

∣∣∣∣
∫

I3

eif(x) dx

∣∣∣∣
6 2

(
3 · 2k−1 − 2

)
(δλ)−1/(k−1) + 2δ.

Choosing δ = λ−1/k gives the result. ¤

A very useful feature of this result is that the estimates are independent of the interval

[a, b]. The Van der Corput estimates imply a very general stationary phase result in 1

dimension, in which the phase function f is allowed to have finitely many stationary

points each with order at most k. We sketch the argument briefly. For an estimate on

I(λ) =

∫ ∞

∞
eiλf(x)a(x) dx

where a ∈ C∞0 (R) one can begin by splitting the range of integration into finitely many

intervals on which one of the derivatives f (j), j 6 k, is bounded below in absolute value

by some positive constant. One can then apply the Van der Corput estimate to each

interval in turn to get an estimate of form I(λ) ¿ λ−1/k. In doing this one writes a(x)

in integral form as

a(x) =

∫ x

c

b(t) dt;

substituting into the integral for I and swapping the order of summation brings us into

the realm of Theorem 27. The details we leave to the reader.

Appendix C. Exercises from the course

1. Show that for every ε > 0 there is a subset of R2 of area at most ε in which one can

continuously rotate a unit needle through 180 degrees.

2. Prove that dF (n) > (n+ 1)/2 in a different way by adapting the “slicing” argument

we used to prove d(n) > (n+ 1)/2 (you should find that the argument is much simpler,

and quite similar to part of the argument we used to show that dF (n) > (4n+ 3)/7).

3. Let m,n be positive integers. Show that dF (m + n) 6 dF (m) + dF (n), and that

dF (n+ 1) 6 dF (n).

4. Prove in detail that the arithmetic Kakeya conjecture implies that dF (n) = n.

5. Construct a subset E ⊆ [0, 1] with dim(E) 6 1/10 and dim(E) > 9/10.

6. Show that any subset of R3 which contains a unit plane in each direction (that is, a

unit square normal to every direction) has positive measure.
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7. Construct a set G ⊆ Z× Z with

|π−1(G)| > max (|π0(G)|, |π1(G)|, |π∞(G)|)11/10 .

(Compare with the arithmetic Kakeya conjecture.)

8**. The base 4 Cantor set C is the set of all real numbers between 0 and 1 whose

base 4 expansion contains only zeros and ones. Define a subset of R2 as follows: take

the sets A = C × {0} and B = 2C × {1} and join everything in A to everything in B

by a line segment. This gives a set E with line segments in many different directions.

Show that E has measure zero.

9**. Show that any subset of R4 which contains a unit plane in each direction has

positive measure.

Things to read. To get some idea of what the course is about, try having a look at

Terry Tao’s article From rotating needles to stability of waves: emerging connections

between combinatorics, analysis and PDE, Available at

http://www.ams.org/notices/200103/fea-tao.pdf.

Alex Iosevich’s article Curvature, combinatorics and the Fourier transform, available at

http://www.ams.org/notices/200106/fea-iosevich.pdf,

will give you some idea of the material we will cover in lectures 6 and 7.

1. Evaluate the Fourier transform d̂σ(ξ) explicitly when σ is the surface measure on

the sphere S2 ⊆ R3.

2. Show that the discrete paraboloid P ⊆ F3
∗ contains a line if and only if −1 is a square

in F.

3. Suppose that −1 is a square in F, and let 2 < p < 4 be a real number. Supppose

that ‖f̂dσ‖p 6 C‖f‖2 for all functions f ∈ B(P ). Prove that C À N2/p−1/2 (so, in

particular, Res(2, p) does not hold when p < 4).

4. Use stationary phase to get an asymptotic for χ̂(ξ), where χ is the characteristic

function of the unit ball in R2.

5. Show that the set A ⊆ (Z/pZ)3 consisting of all triples (x, x2, x3) is a B3-set. Using

such sets construct (for any large N) a set X ⊆ {1, . . . , N} with |X| > 1
10
N1/3 and

K6(X) 6 20.

6*. (The Phragmén–Lindelöf Theorem) Suppose that f is analytic, and that f satisfies
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an estimate

|f(z)| 6 Ce|=z|α

for all z with 0 6 <z 6 1, where α > 1 and C are fixed constants. Suppose also that f

is bounded on the two lines <z = 0 and <z = 1. Prove that f is in fact bounded in the

whole strip 0 6 <z 6 1.

7*. Let ψ ∈ C∞0 (R). Show that
∫
eiλx3

ψ(x) dx ¿ |λ|−1/3.

8***. Try and prove that there is an absolute constant C such that ‖φ‖6 6 C‖φ‖2 for

any eigenfunction φ of the Laplacian on T2.

In this set of exercises p is always a prime and Zp is shorthand for Z/pZ.

1. Let n = 2m be an even integer, and consider the majority function f : Fn
2 → {0, 1}

defined by f(x1, . . . , xn) = 0 if less than m of the xi equal 1 and f(x1, . . . , xn) = 1

otherwise. Show that

f̂((1, 1, 0, 0, . . . , 0)) = −22mπ−1/2m−3/2(1 + o(1)),

where the o(1) denotes a function which tends to 0 as m→∞.

2. Find a set A ⊆ Zp with |A| > p/20, but such that A + A does not contain an

arithmetic progression of length more than 10
√
p. Can you find such a set with |A| >

p/2? *What about with |A| > p/3?

3. Suppose that A ⊆ Zp is a set with cardinality αp with the property that the only

three-term arithmetic progressions in A are the trivial ones of the form (a, a, a). Show

that A is α-HNU.

4. Let f : {0, 1}n → {0, 1} be a boolean function. Show that there is a monotone

increasing function g : {0, 1}n → {0, 1} such that Ik(f) > Ik(g) for all k ∈ {1, . . . , n},
and such that Ef = Eg. (Recall that a monotone increasing function is a function

h : {0, 1}n → {0, 1} such that if h(x1, . . . , xn) = 1, and if we change some xi from zero

to one, then h still equals 1).

5. Let p be very large. Show that there is a set A ⊆ Zp with |A| > p/2, but such that

there do not exist 2003 translates A+ xj with

2003⋃
j=1

(A+ xj) = Zp.
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6. Let A be a subset of Zp containing, for every common difference d ∈ Z∗p, an arithmetic

progression of length at least 10
√
p. Show that |A| > p/2.

Appendix D. Errata to the notes

Thanks to Tom Sanders, Julia Wolf, Graham Lee.

1. Notes2, p3 line 10: k2|Ri|2 is comparable to 1, not δ−1 as previously advertised. Also,

in (6) I have changed δ−ε to δε.

2. Notes 8, p5. The two occurrences of R∗(18/5 → 4) have been replaced by R∗(8/5 →
4). Also an errant factor of ‖f‖8/5 has been removed from the statement of Theorem 9.

3. Notes 14, p1. “Cardinalities C and D” changed to “Cardinalities γN and δN”. p5,

line -6: “all of the above” changed to “none of the above”.

4. Notes 2, p2. d changed to d in statement of Problem 2 (Kakeya problem). The

definition of dF (n) has also been changed slightly, by changing the phrase “infinitely

many p” to “all p”. This means that dF (n+m) 6 dF (n) + dF (m), a desirable property,

is easy to demonstrate.

5. Notes 5, p3 “length |BX|” changed to “length |AX|”.

6. Notes 9, p1. “For each u ∈ F3” changed to “For each u ∈ F”.

7. Notes 11, p4. In equation (3), it should be (and now is) |mi|2 = λ.

8. Notes 12, p3. ‖T⊗n‖1+ε2→2 6 1 replaces ‖T⊗n‖2→1+ε2 6 1


