
III Statistics

Statistics has become the essence of many modern applications, especially in the tech world
and in finance. There was never a time in history where we were able to obtain as much
data as we currently do, and therefore a deep knowledge of statistics has become the most
demanded qualification in today’s job market. The tools of collecting, analyzing, and finding
nontrivial relations between data is what gives some very successful companies their edge.
For example, in the financial industry, there are a select few hedge funds that always beat
the market. The reason this happens is because those funds have found relations between
data that the rest of the market hasn’t, which in turn allow them to make profits that the
rest of the market can’t. In the sections that follow we touch upon a few topics from the
vast field of statistics.

III.1 Data and Distributions

There are two types of variables: numerical and categorical. Numerical variables can be
classified as either discrete or continuous. For example, the number of books you own
is a discrete numerical variable, your height, on the other hand, is continuous. Categorical
variables can also be divided into two categories: either regular or ordinal. For example, when
tossing a coin, the outcomes Heads and Tails are considered regular categorical variables,
but when responding to a survey that asks you to rate a certain service by selecting whether
you were very satisfied, somewhat satisfied, somewhat dissatisfied, or very dissatisfied, then
these are considered ordinal categorical variables. A dataset usually consists of a collection
of numerical and/or categorical variables.

Looking at raw data in a dataset and trying to draw meaningful information from their
values will most likely prove futile. Therefore, one of the most important tools in analyzing
data is having a good visualization technique. There are several ways to visualize data, and
here we will only discuss two: scatter plots and histograms.

• Scatter plots are two dimensional plots that show the relation between two variables.
An example of a scatter plot can be seen in Figure 1, which shows the relation between
the life expectancy of individuals in 180 countries and the average income per person
(GDP per capita) in that country (the dataset was obtained from gapminder.com).
This plot clearly shows that people who make more money tend to live longer. Unfor-
tunately, this function levels off at around 85 years, because humans haven’t found a
way to live forever (yet)!

• A histogram shows all the possible data outcomes of a given variable and how often
they occur. For example, we can use the above dataset to see whether more countries
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Figure 1: Scatter plot of life expectancy as a function of income per capita.

have high or low life expectancy. The histogram in Figure 2 shows that the majority
of countries have a life expectancy above 60 years, with the highest frequencies being
between 70 and 80 years. Since more people live longer, the histogram is left-skewed,
i.e. it has a long tail on the left.

Figure 2: Histogram of life expectancy from 180 countries.

III.2 Important parameters of distributions

There are several parameters through which a distribution can be characterized. We review
a few of those below:

mean: the mean, or arithmetic average, of a set of observations x1, . . . , xn is given by

x =
x1 + · · ·+ xn

n
. (1)
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median: the median of a set of observations x1, . . . , xn is calculated by first arranging the
set in ascending order, and then selecting the midpoint or center value if the number of
elements n is odd or the average of the two center values if n is even.

sample variance: The variance is the average of the square deviations of the data from the
mean. If we have a set of observations x1, . . . , xn, with a mean x, then the variance is given
by

s2 =
(x1 − x)2 + · · ·+ (xn − x)2

n− 1
. (2)

sample standard deviation: The standard deviation is the square root of the variance,
and it could be thought of as an error on the mean.

modality: A distribution could be uniform (no peaks), unimodal (one peak), bimodal (two
peaks), or multimodal (many peaks) as shown in Figure 3.

Figure 3: Varying modality.

skew: A distribution could be left-skewed, right-skewed, or symmetric (no skew). For a
left-skewed distribution, the mean is typically smaller than the median; for a right-skewed
distribution, the mean is larger than the median; and for a symmetric distribution the mean
is approximately equal to the median. These results are summarized in Figure 4.

Figure 4: How skew affects the relation between the mean and the median.
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Example: A wildlife biologist measures the lengths (in centimeters) of adult male and
female stoats captured in England:

male stoats: 20, 21, 23, 16, 20, 23, 25, 19, 18, 18, 20, 21, 22, 24, 18, 19, 20
sorted: 16, 18, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 22, 23, 23, 24, 25

female stoats: 14, 20, 23, 19, 13, 22, 22, 20, 19, 13, 18, 17, 15, 20
sorted: 13, 13, 14, 15, 17, 18, 19, 19, 20, 20, 20, 22, 22, 23

M F
Mean 20.4 18.2
Sample Standard Deviation 2.3 3.2
median 20 19+19

2
= 19

III.3 The Normal Distribution

The most important distribution in statistics is called the normal or Gaussian distribution.
What makes it very special are the rules that this distribution obeys which make many
calculations very easy to perform. There are no known variables that have an exact normal
distribution, but many numerical data can be approximated by the normal curve. Examples
include heights, weights, and IQ tests. Even when the variables are distributed very far from
normal, their averages will be normally distributed under the right conditions. This will be
discussed in more detail in the section on the Central Limit Theorem.

The normal distribution is shaped like a bell, it has a mean µ, a standard deviation σ, and
is typically denoted by N(µ, σ). The distribution is symmetric about µ, and it follows a few
very strict rules about how the data is distributed: 68% of the data is within one standard
deviation of the mean, i.e. 68% of the data lies between µ − σ and µ + σ; 95% is within 2
standard deviations, i.e. 95% of the data lies between µ− 2σ and µ+ 2σ; and 99.7% of data
is within 3 standard deviations of the mean, i.e. 99.7% of the data lies between µ− 3σ and
µ+ 3σ. This is referred to as the 68-95-99.7 rule, and is summarized in Figure 5.

The standard normal distribution

The standard normal distribution, also called the z-curve, has a mean µ = 0, standard devi-
ation σ = 1, and is denoted by N(0, 1). A variable that has a standard normal distribution
is called a standard normal variable and is typically denoted by Z.
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Figure 5: The 68–95–99.7 rule for normal distributions.

A variable X having a normal distribution N(µ, σ) can be standardized by performing
a change of variables that transforms X into a standard normal variable Z. This trans-
formation is usually very useful when calculating probabilities under a normal distribution
using the standard normal table (attached at the end of this document), or when calculating
percentiles. To standardize X ∼ N(µ, σ), we calculate

Z =
X − µ
σ

, (3)

where Z is a standard normal variable called the z-score. Although this idea stems from
standardizing a non-standard normal variable, we can actually calculate the z-score for any
distribution with mean µ and standard deviation σ. In general, a z-score is defined as

Z =
observation− µ

σ
. (4)

Calculating probabilities and percentiles

Suppose you have a random variable X which is normally distributed, with X ∼ N(µ, σ),
and suppose you are interested in finding the probability that X is smaller than some number
x, i.e. P (X ≤ x). This probability corresponds to the area under the normal curve to the
left of x, and it can be calculated by first standardizing X and turning it into Z = (X−µ)/σ,
which turns x into z = (x−µ)/σ. Then the probability P (X ≤ x) becomes P (Z ≤ z), which
is shown in Figure 6. The calculation can be performed using the standard normal table
(attached at the end of this document) which has z-scores up to two decimal points. To read
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Figure 6: A standard normal distribution where the shaded area corresponds to P (Z ≤ z).

the table for a given z-score, we find the first decimal point from the left-most column of the
table, then we find the second decimal point from the top column. For example, if we want
to calculate P (Z ≤ 2.81), we must first locate “2.8” in the left-most column, then from the
top we find “.01”, and we determine where the “2.8” row and the “.01” column intersect,
which turns out to be 0.9975. Then,

P (Z ≤ 2.81) = 0.9975. (5)

A percentile of the standard normal distribution corresponds a value on the horizontal axis,
such that the area under the z-curve to the left of that value equals the percentile value
divided by 100. For example, the 95th percentile corresponds to a value z, such that the
area under the curve to the left of z equals 0.95. Similarly, the 5th percentile corresponds to a
value with an area of 0.05 to the left of it. This is the inverse of the calculation P (Z ≤ z) =?
performed above. Now we have the right-hand-side, and we need to find z, so we have to use
the table in reverse. For example, if you want to calculate the 99th percentile, you would
write

P (Z ≤ z) = 0.99, (6)

and then you would look for the closest number to 0.99 in the body of the table, and read
off its z-score. The closest number is 0.9901 and it can be found in the second table in the
4th column and 24th row, which corresponds to a z-score of 2.33.

Example: A student scores 78 on an exam which was approximately normally distributed
according to N(68, 5).

• What is the percentile score of this student?

P (X ≤ 78) = P

(
X − 68

5
≤ 78− 68

5

)
= P (Z ≤ 2) = 0.9772 ≈ 0.98. (7)

Therefore, this student scored in the 98th percentile.

6



• Which grade corresponds to the 99th percentile?

P (Z ≤ z) = 0.99 =⇒ z = 2.33. (8)

But z = (x− µ)/σ, and therefore x = (σ × z) + µ = (5× 2.33) + 68 = 79.65.

The Central Limit Theorem

Suppose you have a population with any given underlying distribution, which has a mean
µ and standard deviation σ, and suppose that you take n samples {X1, X2, . . . Xn} from
this distribution, and you calculate the average value of each sample {x1, x2, . . . , xn}, where
x1 is the average value of the sample X1, etc.. Then, the distribution of the averages
{x1, x2, . . . , xn}, which we call X̄, will be normal with mean µ and standard deviation σ/

√
n

if the following conditions are met:

1. The sampled observations must be independent.

2. If sampling without replacement, n < 10% of population.

3. If the underlying population distribution is skewed, the sample size can be small. If it
is non-normal, the sample size must be large (rule of thumb: n > 30).

The above is a statement of the Central Limit Theorem which we illustrate further with
an example.

Example [This problem is selected from Chapter 4 in: Devore, J. L., Probability and Statistics, 9th Edition (2016)]

Consider the distribution shown in Figure 7 for the amount purchased (rounded to the
nearest dollar) by a randomly selected customer at a particular gas station. The distribution
is obviously quite non-normal.

We asked a computer program to select 1000 different samples, each consisting of n = 15
observations, and calculate the value of the sample mean X̄ for each one. Figure 8 is a
histogram of the resulting 1000 values; this is the approximate sampling distribution of X̄
under the specified circumstances. This distribution is clearly approximately normal even
though the sample size is actually much smaller than 30, our rule-of-thumb cutoff for invoking
the Central Limit Theorem. It is typically not non-normality of the population distribution
that causes the CLT to fail, but instead very substantial skewness.

One final remark about the central limit theorem: note that the distribution of the sample
mean has a standard deviation equal to σ/

√
n, therefore, the larger the sample size, the
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Figure 7: Probability distribution of X amount of gasoline purchased ($).

Figure 8: Approximate sampling distribution of the sample mean amount purchased when n = 15.

smaller the standard deviation or spread, and the more concentrated the data will be around
the mean µ.

Remarks about normal distributions

In practice, many observations can be approximated using the normal distribution. For
example, if you try to measure a quantity really carefully, say the mass of an electron, then
you can’t trust one single measurement as being accurate: your measurement will also contain
some unavoidable error (because, however carefully you calibrate all your apparatus, they
will never be “infinitely” precise). So then you repeat the measurement several times, and
you plot the observed values. Typically, they cluster around some central value, and when
you make a histogram around this central value, indicating how many of the observations
fell within a central bin, or in the next bin, or even further, . . . you get something that looks
close to a normal distribution, such as:
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How can we explain this? After all, we are not averaging anything here? The error itself,
however, is a conglomerate of many different things (none of which we can control, otherwise
we would get rid of it!—With technological advances, we can and do indeed reduce the error
when we repeat those classical measurements). The total error can therefore be viewed as
the sum total of all these different influences. On this sum the central limit theorem plays
its role → normal distribution.

What about for other types of measurements? For instance, the height of young men between
25 and 30 in the US? Or the number of calories in people’s diets? Or how well they see small

printed characters?

Here again, in a population where there are no obvious inhomogeneities (and here this is a
big assumption that will need to be carefully examined), one usually observes things which
look like normal distributions around a central value. It is believed that the deviation from
the average is caused by many different independent factors. (Do you really believe this?
Isn’t height, for instance, largely determined by genetics? How would you then still explain
observing a normal distribution?)

Simpson’s paradox

Simpson’s paradox illustrates how easily one can be misled by statistical consideration of
scenarios in which one has an aggregate of individuals in a variety of different circumstances.

In the 105/104 academic school year of the University of Alexandria, the Thracians got
angry at the Admissions Office, because they found out (and it was an incontrovertible fact)
that 4400 Dacians had applied and 4400 Thracians had also applied, but 3280 Dacians were
admitted while only 1120 Thracians were admitted.

We can present this data on a table:
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Nationality Applicants Admitted Percent Admitted
Dacian 4400 3280 74.55 %

Thracian 4400 1120 25.45 %

However, it was pointed out to the Thracians that there were two academic divisions in U. of
Alexandria, the Trivium (Grammar, Logic, and Rhetoric), and the Quadrivium (Arithmetic,
Geometry, Astronomy, and Music). If we break down the numbers according to division,
then we see a different picture emerge:

Nationality Triv. Applicants Triv. Acceptances Triv. % Admitted
Dacians 4000 3200 80 %

Thracians 400 320 80 %

Nationality Quadriv. Applicants Quadriv. Acceptances Quadriv. % Admitted
Dacians 400 80 20 %

Thracians 4000 800 20 %

Check that if you total up the number of Dacian applicants to both divisions, you get a total
of 4400 and if you total up the number of Dacians admitted, you get 3280. Likewise, the
totals for Thracians are exactly as we originally said. Yet, now it would appear that there is
no bias at all in the admissions process—in each division the admission rates are the same
for Dacians and Thracians, and more Dacians get in because they flock to the easier division
(Trivium). This is an example of a “hidden variable,” namely, that different divisions have
different admission rates, and that Thracians seem to prefer the harder division.

Then a clever Dacian realized that there might be further hidden variables. He realized that
the Trivium has two departments, one handling Grammar and Logic (G&L) and the other
handling Rhetoric. And likewise, the Quadrivium is split into two departments: Arithmetic,
Geometry, and Astronomy (affectionately known as AGA), and the Department of Music.
The Dacian split the data further.

Trivium Programs
Nationality G&L Applicants G&L Acceptances G&L % Admitted

Dacians 3600 3060 85 %
Thracians 100 95 95 %

Nationality Rhetoric Applicants Rhetoric Acceptances Rhetoric % Admitted
Dacians 400 140 35 %

Thracians 300 225 75 %

Quadrivium Programs
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Nationality AGA Applicants AGA Acceptances AGA % Admitted
Dacians 300 75 25 %

Thracians 400 260 65 %

Nationality Music Applicants Music Acceptances Music % Admitted
Dacians 100 5 5 %

Thracians 3600 540 15 %

Again, one can check that the total number of Dacians who applied to Trivium programs
(G&L and Rhetoric) is 4000, of whom 3200 were admitted. This agrees with the last analysis.
And likewise you can check that all the other totals for Dacians or Thracians in Trivium or
Quadrivium are as in the previous analysis. But the further breakdown shows that Thracians
had a higher admission rate in EVERY SINGLE department, despite the fact that the overall
admission rate for Thracians was much lower than that of the Dacians!

So the initial Thracian uproar seems unjustified, to say the least. Until we find another
hidden variable...

When do we know that we have found all the hidden variables? In general, we don’t. In any
case, finding hidden variables here was not done by a mathematical procedure, but rather
by reflection on factors present in the situation being analyzed (in this case, the structure of
the University of Alexandria).
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