
Figure 4.4.3 

As y decreases, the two fixed points move farther apart. Finally, when y = 0 ,  the 
applied torque vanishes and there is an unstable equilibrium at the top (inverted 
pendulum) and a stable equilibrium at the bottom. 

4.5 . Fireflies 
Fireflies provide one of the most spectacular examples of synchronization in na- 
ture. In some parts of southeast Asia, thousands of male fireflies gather in trees at 
night and flash on and off in unison. Meanwhile the female fireflies cruise over- 
head, looking for males with a handsome light. 

To really appreciate this amazing display, you have to see a movie or videotape 
of it. A good example is shown in David Attenborough's (1992) television series 
The Trials of Life, in the episode called "Talking to Strangers." See Buck and 
Buck (1976) for a beautifully written introduction to synchronous fireflies, and 
Buck (1988) for a more recent review. For mathematical models of synchronous 
fireflies, see Mirollo and Strogatz (1990) and Ermentrout (1991). 

How does the synchrony occur? Certainly the fireflies don't start out synchro- 
nized; they arrive in the trees at dusk, and the synchrony builds up gradually as the 
night goes on. The key is that the fireflies influence each other: When one firefly 
sees the flash of another, it slows down or speeds up so as to flash more nearly in 
phase on the next cycle. 

Hanson (1978) studied this effect experimentally, by periodically flashing a 
light at a firefly and watching it try to synchronize. For a range of periods close to 
the firefly's natural period (about 0.9 sec), the firefly was able to match its fre- 
quency to the periodic stimulus. In this case, one says that the firefly had been en- 
trained by the stimulus. However, if the stimulus was too fast or too slow, the 
firefly could not keep up and entrainment was lost-then a kind of beat phenome- 
non occurred. But in contrast to the simple beat phenomenon of Section 4.2, the 
phase difference between stimulus and firefly did not increase uniformly. The 
phase difference increased slowly during part of the beat cycle, as the firefly strug- 
gled in vain to synchronize, and then it increased rapidly through 2 n ,  after which 
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the firefly tried again on the next beat cycle. This process is called phase walk- 
through orphase drift. 

Model 
Ermentrout and Rinzel (1984) proposed a simple model of the firefly's flashing 

rhythm and its response to stimuli. Suppose that 6 ( t )  is the phase of the firefly's 
flashing rhythm, where 6 = 0 corresponds to the instant when a flash is emitted. 
Assume that in the absence of stimuli, the firefly goes through its cycle at a fre- 
quency w , according to 6 = o . 

Now suppose there's a periodic stimulus whose phase O satisfies 

where O = 0 corresponds to the flash of the stimulus. We model the firefly's re- 
sponse to this stimulus as follows: If the stimulus is ahead in the cycle, then we as- 
sume that the firefly speeds up in an attempt to synchronize. Conversely, the 
firefly slows down if it's flashing too early. A simple model that incorporates 
these assumptions is 

where A > 0 .  For example, if O is ahead of 6 (i.e., 0 < 0 - 6 < n) the firefly 
speeds up ( 6  > o ). The resetting strength A measures the firefly's ability to mod- 
ify its instantaneous frequency. 

Analysis 

To see whether entrainment can occur, we look at the dynamics of the phase dif- 
ference $ = 0 - 6 . Subtracting (2)  from (1) yields 

which is a nonuniform oscillator equation for $( t )  . Equation (3) can be nondimen- 
sionalized by introducing 

a-o r = A t ,  p = - .  
A 

Then 

where 4' = d4ld.r. The dimensionless group ,u is a measure of the frequency dif- 
ference, relative to the resetting strength. When ,u is small, the frequencies are rel- 
atively close together and we expect that entrainment should be possible. This is 
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confirmed by Figure 4.5.1, where we plot the vector fields for ( 3 ,  for different val- 
ues of p > 0 .  (The case p < 0 is similar.) 

(a) P = 0 (b) 0 < , u < 1  (c) P > 1 

Figure 4.5.1 

When p = 0, all trajectories flow toward a stable fixed point at $* = 0 (Figure 
4.5.la). Thus the firefly eventually entrains with zero phase difference in the case 
L2 = w . In other words, the firefly and the stimulus flash simultaneously if the fire- 
fly is driven at its natural frequency. 

Figure 4.5.lb shows that for 0 < p < 1 ,  the curve in Figure 4.5.la lifts up and 
the stable and unstable fixed points move closer together. All trajectories are still 
attracted to a stable fixed point, but now $* > 0 .  Since the phase difference ap- 
proaches a constant, one says that the firefly's rhythm isphase-locked to the stim- 
ulus. 

Phase-locking means that the firefly and the stimulus run with the same instan- 
taneous frequency, although they no longer flash in unison. The result $* > 0 im- 
plies that the stimulus flashes ahead of the firefly in each cycle. This makes 
sense-we assumed p > 0, which means that L2 > w ; the stimulus is inherently 
faster than the firefly, and drives it faster than it wants to go. Thus the firefly falls 
behind. But it never gets lapped-it always lags in phase by a constant amount $ *. 

If we continue to increase p . the stable and unstable fixed points eventually co- 
alesce in a saddle-node bifurcation at p = 1. For p > 1 both fixed points have dis- 
appeared and now phase-locking is lost; the phase difference $ increases 
indefinitely, corresponding to phase drift (Figure 4 .5 .1~) .  (Of course, once $ 
reaches 2 n  the oscillators are in phase again.) Notice that the phases don't sepa- 
rate at a uniform rate, in qualitative agreement with the experiments of Hanson 
(1978): $ increases most slowly when it passes under the minimum of the sine 
wave in Figure 4.5.lc, at $ = n / 2 ,  and most rapidly when it passes under the max- 
imum at $ = -n/2 .  

The model makes a number of specific and testable predictions. Entrainment is 
predicted to be possible only within a symmetric interval of driving frequencies, 
specifically w - A < L2 5 w + A .  This interval is called the range of entrainment 
(Figure 4.5.2). 
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