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2.0 Introduction 
In Chapter 1, we introduced the general system 

x, =-f;(x,, ... ,xn)  

and mentioned that its solutions could be visualized as trajectories flowing through 
an n-dimensional phase space with coordinates (x,, . .. , x,). At the moment, this 
idea probably strikes you as a mind-bending abstraction. So let's start slowly, be- 
ginning here on earth with the simple case n = 1. Then we get a single equation of 
the form 

Here x(t) is a real-valued function of time t , and f(x) is a smooth real-valued . 
function of x. We'll call such equations one-dimensional orfirst-order systems. 

Before there's any chance of confusion, let's dispense with two fussy points of 
terminology: 

1. The word system is being used here in the sense of a dynamical system, 
not in the classical sense of a collection of two or more equations. Thus 
a single equation can be a "system." 

2. We do not allow f to depend explicitly on time. Time-dependent or 
"nonautonomous" equations of the form x = f (x, t) are more compli- 
cated, because one needs two pieces of information, x and t, to predict 
the future state of the system. Thus x = f(x,t) should really be re- 
garded as a two-dimensional or second-order system, and will there- 
fore be discussed later in the book. 
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2.1 A Geometric Way of Thinking 
Pictures are often more helpful than formulas for analyzing nonlinear systems. 
Here we illustrate this point by a simple example. Along the way we will introduce 
one of the most basic techniques of dynamics: interpreting a differential equation 
as a vector field. 

Consider the following nonlinear differential equation: 

x = sin x. (1) 

To emphasize our point about formulas versus pictures, we have chosen one of the 
few nonlinear equations that can be solved in closed form. We separate the vari- 
ables and then integrate: 

dx 
dt=-, 

sin x 

which implies 

t = cscx dx I 

To evaluate the constant C, suppose that x = x, at t = 0.  Then C = In ( csc x, + cot x, 1. 
Hence the solution is 

csc x, + cot x, t = ln 
c s c x + c o t x  

This result is exact, but a headache to interpret. For example, can you answer 
the following questions? 

1. Suppose x, = n/4 ; describe the qualitative features of the solution x ( t )  
for all t > 0 .  In particular, what happens as t + .. ? 

2. For an arbitrary initial condition x,, what is the behavior of x ( t )  as 
t+.. ? 

Think about these questions for a while, to see that formula ( 2 )  is not transparent. 
In contrast, a graphical analysis of (1) is clear and simple, as shown in Figure 

2.1.1. We think of t as time, x as the position of an imaginary particle moving 
along the real line, and x as the velocity of that particle. Then the differential 
equation x = sin x represents a vectorfield on the line: it dictates the velocity vec- 
tor i at each x . To sketch the vector field, it is convenient to plot x versus x , and 
then draw arrows on the x-axis to indicate the corresponding velocity vector at 
each x.  The arrows point to the right when x > 0 and to the left when x < 0. 
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I Figure 2.1.1 
I 

I Here's a more physical way to think about the vector field: imagine that fluid 

1 is flowing steadily along the x-axis with a velocity that varies from place to 
place, according to the rule x = sin x .  As shown in Figure 2.1.1, theflow is to the 
right when x > 0 and to the left when x < 0. At points where x = 0, there is no I flow; such points are therefore called fixedpoints. You can see that there are two 
kinds of fixed points in Figure 2.1.1: solid black dots represent stable fixed 

I points (often called attractors or sinks, because the flow is toward them) and 
open circles represent unstable fixed points (also known as repellers or 

I sources). 
Armed with this picture, we can now easily understand the solutions to the dif- 

ferential equation x = sin x. We just start our imaginary particle at x, and watch 
how it is carried along by the flow. 

This approach allows us to answer the questions above as follows: 

1. Figure 2.1.1 shows that a particle starting at x, = n/4 moves to the 
right faster and faster until it crosses x = n/2 (where sinx reaches its 
maximum). Then the particle starts slowing down and eventually ap- 
proaches the stable fixed point x = n from the left. Thus, the qualita- 
tive form of the solution is as shown in Figure 2.1.2. 

Note that the curve is concave up at first, and then concave down; 
this corresponds to the initial acceleration for x < n / 2  followed by the 
deceleration toward x = n. 

2. The same reasoning applies to any initial condition x,. Figure 2.1.1 
shows that if x > 0 initially, the particle heads to the right and asymptot- 

ically approaches the nearest sta- 

I ble fixed point. Similarly, if 
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n - - - - - - - - - - - - - x < 0 initially, the particle ap- 
proaches the nearest stable fixed 
point to its left. If x = 0 ,  then x 
remains constant. The qualitative n - 

4 form of the solution for any ini- 
tial condition is sketched in Fig- 
ure 2.1.3. 

Figure 2.1.2 



Figure 2.1.3 

In all honesty, we should admit that a picture can't tell us certain quantitative 
things: for instance, we don't know the time at which the speed I .i 1 is greatest. But in 
many cases qualitative information is what we care about, and then pictures are fine. 

2.2 Fixed Points and Stability 
The ideas developed in the last section can be extended to any one-dimensional 
system x = f (1). We just need to draw the graph of f (x) and then use it to sketch 
the vector field on the real line (the x-axis in Figure 2.2.1). 

Figure 2.2.1 
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As before, we imagine that a fluid is flowing along the real line with a local veloc- 
ity f (x). This imaginary fluid is called the phase fluid, and the real line is the 
phase space. The flow is to the right where f (x) > 0 and to the left where f (x) < 0. 
To find the solution to x = f (x) starting from an arbitrary initial condition x,, we 

I place an imaginary particle (known as aphasepoint) at x, and watch how it is car- 
ried along by the flow. As time goes on, the phase point moves along the x-axis 
according to some function x(t) . This function is called the trajectory based at x, , 
and it represents the solution of the differential equation starting from the initial 
condition x, . A picture like Figure 2.2.1, which shows all the qualitatively differ- 
ent trajectories of the system, is called aphaseportrait. 

The appearance of the phase portrait is controlled by the fixed points x *, de- 
fined by f(x*) = 0 ; they correspond to stagnation points of the flow. In Figure 
2.2.1, the solid black dot is a stable fixed point (the local flow is toward it) and the 

I open dot is an unstable fixed point (the flow is away from it). 
In terms of the original differential equation, fixed points represent equilib- 

rium solutions (sometimes called steady, constant, or rest solutions, since if 
x = x * initially, then x(t) = x * for all time). An equilibrium is defined to be sta- 
ble if all sufficiently small disturbances away from it damp out in time. Thus sta- 
ble equilibria are represented geometrically by stable fixed points. Conversely, 
unstable equilibria, in which disturbances grow in time, are represented by unsta- 
ble fixed points. 

EXAMPLE 2.2.1 : 
Find all fixed points for x = x2 - 1, and classify their stability. 
Solution: Here f (x) = x2 - 1. To find the fixed points, we set f (x*) = 0 and 

solve for x * . Thus x* = f 1. To determine stability, we plot x2 - 1 and then sketch 
the vector field (Figure 2.2.2). The flow is to the right where x2 - 1 > 0 and to the 
left where x2 - 1 < 0. Thus x* = -1 is stable, and x* = 1 is unstable. . 

I 
Figure 2.2.2 

2.2 F I X E D  P O I N T S  A N D  STABILITY 19 



Note that the definition of stable equilibrium is based on sinall disturbances; 
certain large disturbances may fail to decay. In Example 2.2.1, all small distur- 
bances to x* = -1 will decay, but a large disturbance that sends x to the right of 
x = 1 will not decay-in fact, the phase point will be repelled out to +m . To em- 
phasize this aspect of stability, we sometimes say that x* = -1 is locally stable, but 
not globally stable. 

EXAMPLE 2.2.2: 
Consider the electrical circuit shown in Figure 2.2.3. A resistor R  and a capaci- 

tor Care  in series with a battery of constant dc voltage V,,. Suppose that the switch 
is closed at t = 0, and that there is no charge on the capacitor initially. Let Q(t) de- 

1 note the charge on the capacitor at time 

The graph of f (Q) is a straight line with a negative slope (Figure 2.2.4). The 
corresponding vector field has a fixed point where f(Q) = 0 ,  which occurs at 

Q* = CV, . The flow is to the right where 
Q f (Q) > 0 and to the left where f (Q) < 0. 

Thus the flow is always toward Q *-it is a 
stable fixed point. In fact, it is globally sta- 
ble, in the sense that it is approached from 

Q all initial conditions. 
To sketch Q(t), we start a phase point at 

the origin of Figure 2.2.4 and imagine how 
it would move. The flow carries the phase 

Figure 2.2.4 point monotonically toward Q * .  Its speed 

$7 t 2 0 .  Sketch the graph of Q(t). 
Solution: This type of circuit problem 

is probably familiar to you. It is governed 
by linear equations and can be solved an- + 
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- 

alytically, but we prefer to illustrate the 
geometric approach. 

First we write the circuit equations. As 
we go around the circuit, the total voltage - - 

- drop must equal zero; hence -4 + 
Figure 2.2.3 RI + Q/C = 0, where I is the current 
flowing through the resistor. This current causes charge to accumulate on the ca- 
pacitor at a rate Q = I .  Hence 



Q decreases linearly as it approaches the fixed point; therefore Q(t )  is increasing 
and concave down, as shown in Figure 2.2.5. a 

EXAMPLE 2.2.3: 
- - - - Sketch the phase portrait corre- 

sponding to x = x - cos x , and deter- 
mine the stability of all the fixed points. 

Solution: One approach would be to 
plot the function f ( x )  = x - cos x and 

t then sketch the associated vector field. 
Figure 2.2.5 This method is valid, but it requires you 

to figure out what the graph of 
x - cos x looks like. 

There's an easier solution, which exploits the fact that we know how to graph 
g = x and y  = cosx separately. We plot both graphs on the same axes and then 
observe that they intersect in exactly one point (Figure 2.2.6). 

Figure 2.2.6 

This intersection corresponds to a fixed point, since x* = cos x * and therefore 
f (x*) = 0. Moreover, when the line lies above the cosine curve, we have x > cos x 
and so x > 0: the flow is to the right. Similarly, the flow is to the left where the line is 
below the cosine curve. Hence x * is the only fixed point, and it is unstable. Note that 
we can classify the stability of x *, even though we don't have a formula for x * it- 
self! a 

2.3 Population Growth 
The simplest model for the growth of a population of organisms is N = rN, 
where N(t )  is the population at time t , and r  > 0 is the growth rate. This model 
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Growth rate 

r 

Figure 2.3.1 

predicts exponential growth: 
N(t) = Noer', where No is the 
population at t = 0. 

Of course such exponential 

\ growth cannot go on forever. 
\ To model the effects of over- 

*\" crowding and limited resources, 
population biologists and de- 
mographers often assume that 
the per capita growth rate N / N  

decreases when N becomes sufficiently large, as shown in Figure 2.3.1. For 
small N, the growth rate equals r, just as before. However, for populations larger 

This leads to the logistic equation 

than a certain carrying capacity 

first suggested to describe the growth of human populations by Verhulst in 1838. 
This equation can be solved analytically (Exercise 2.3.1) but once again we prefer a 
graphical approach. We plot N versus N to see what the vector field looks like. 
Note that we plot only N 2 0, since it makes no sense to think about a negative pop- 
ulation (Figure 2.3.3). Fixed points occur at N* = 0 and N* = K, as found by set- 
ting N = 0 and solving for N. By looking at the flow in Figure 2.3.3, we see that 
N* = 0 is an unstable fixed point and N* = K is a stable fixed point. In biological 
terms, N = 0 is an unstable equilibrium: a small population will grow exponen- 
tially fast and run away from N = 0 . On the other hand, if N is disturbed slightly 
from K, the disturbance will decay monotonically and N(t) -+ K as t -+ . 

In fact, Figure 2.3.3 shows that if we start a phase point at arly No > 0 ,  it will al- 
ways flow toward N = K. Hence the populatiorl always approaches the carrying 
capacity. 

The only exception is if No = 0 ; then there's nobody around to start reproducing, 
and so N = 0 for all time. (The model does not allow for spontaneous generation!) 

Growth rate 
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K, the growth rate actually be- 
comes negative; the death rate is 

r higher than the birth rate. 
A mathematically convenient 

way to incorporate these ideas is 
to assume that the per capita 

N growth rate N / N  decreases lin- 
early with N (Figure 2.3.2). 

Figure 2.3.2 



Figure 2.3.3 

Figure 2.3.3 also allows us to deduce the qualitative shape of the solutions. For 
example, if No < K/2, the phase point moves faster and faster until it crosses 
N  = K/2, where the parabola in Figure 2.3.3 reaches its maximum. Then the phase 
point slows down and eventually creeps toward N  = K. In biological terms, this 
means that the population initially grows in an accelerating fashion, and the graph 
of N ( t )  is concave up. But after N  = K/2, the derivative N begins to decrease, 
and so N ( t )  is concave down as it asymptotes to the horizontal line N  = K (Figure 
2.3.4). Thus the graph of N ( t )  is S-shaped or sigmoid for N(, < K/2. 

Figure 2.3.4 

Something qualitatively different occurs if the initial condition No lies between 
K/2 and K ;  now the solutions are decelerating from the start. Hence these solu- 
tions are concave down for all t .  If the population initially exceeds the carrying ca- 
pacity ( N o  > K ), then N ( t )  decreases toward N  = K and is concave up. Finally, if 
No = 0 or No = K, then the population stays constant. 

Critique of the Logistic Model 
Before leaving this example, we should make a few comments about the biological 

validity of the logistic equation. The algebraic form of the model is not to be taken lit- 
erally. The model should really be regarded as a metaphor for populations that have a 
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tendency to grow from zero population up to some carrying capacity K. 
Originally a much stricter interpretation was proposed; and the model was ar- 

gued to be a universal law of growth (Pearl 1927). The logistic equation was tested 
in laboratory experiments in which colonies of bacteria, yeast, or other simple or- 
ganisms were grown in conditions of constant climate, food supply, and absence of 
predators. For a good review of this literature, see Krebs (1972, pp. 190-200). 
These experiments often yielded sigmoid growth curves, in some cases with an im- 
pressive match to the logistic predictions. 

On the other hand, the agreement was much worse for fruit flies, flour beetles, 
and other organisms that have complex life cycles, involving eggs, larvae, pupae, 
and adults. In these organisms, the predicted asymptotic approach to a steady car- 
rying capacity was never observed-instead the populations exhibited large, per- 
sistent fluctuations after an initial period of logistic growth. See Krebs (1972) for a 
discussion of the possible causes of these fluctuations, including age structure and 
time-delayed effects of overcrowding in the population. 

For further reading on population biology, see Pielou (1969) or May (1981). 
Edelstein-Keshet (1988) and Murray (1989) are excellent textbooks on mathemat- 
ical biology in general. 

2.4 Linear Stability Analysis 
So far we have relied on graphical methods to determine the stability of fixed 
points. Frequently one would like to have a more quantitative measure of stability, 
such as the rate of decay to a stable fixed point. This sort of information may be 
obtained by linearizing about a fixed point, as we now explain. 

Let x * be a fixed point, and let q(t)  = x( t )  - x * be a small perturbation away 
from x *. To see whether the perturbation grows or decays, we derive a differential 
equation for q .  Differentiation yields 

since x * is constant. Thus ?j = x = f ( x )  = f ( x  * + q) .  Now using Taylor's expan- 
sion we obtain 

where 0(q2)  denotes quadratically small terms in q . Finally, note that f ( x*)  = 0 
since x * is a fixed point. Hence 

Now if f f ( x* )  # 0 ,  the 0 ( q 2 )  terms are negligible and we may write the approxi- 
mation 
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