Dynamical Systems: Lecture 1

Naima Hammoud

Feb 21, 2017
What is dynamics?

Dynamics is the study of systems that evolve in time.
What is dynamics?

Dynamics is the study of systems that evolve in time

A system can settle to an equilibrium.
What is dynamics?

Dynamics is the study of systems that evolve in time. A system can settle to an equilibrium.
What is dynamics?

Dynamics is the study of systems that evolve in time. A system can settle to an equilibrium.
What is dynamics?

Dynamics is the study of systems that evolve in time. A system can settle to an equilibrium.
What is dynamics?

Dynamics is the study of systems that evolve in time.

A system can settle to an equilibrium.
What is dynamics?

Dynamics is the study of systems that evolve in time. A system can settle to an equilibrium.
What is dynamics?

Dynamics is the study of systems that evolve in time

- A system can settle to an equilibrium.
- It can repeat itself in cycles.
What is dynamics?

Dynamics is the study of systems that evolve in time.

- A system can settle to an equilibrium.
- It can repeat itself in cycles.
What is dynamics?

Dynamics is the study of systems that evolve in time.

- A system can settle to an equilibrium.
- It can do something very complex.
- It can repeat itself in cycles.
What is dynamics?
History of dynamics

• Subject began mid 1600s when Newton invented **differential equations**
• Newton combined his laws of motion and gravitation to explain Kepler’s laws
• Newton solved the two-body problem
History of dynamics

• Subject began mid 1600s when Newton invented **differential equations**
• Newton combined his laws of motion and gravitation to explain Kepler’s laws
• Newton solved the two-body problem
History of dynamics

• Subject began mid 1600s when Newton invented differential equations
• Newton combined his laws of motion and gravitation to explain Kepler’s laws
• Newton solved the two-body problem
• Many scientists tried to extend Newton’s methods to solve the three-body problem, but always to a dead end
• Breakthrough came with Poincaré in late 1800s who emphasized qualitative rather than quantitative questions
• Instead of asking the exact positions of planets at all times, Poincaré asked, “Is the solar system stable? Or will planets fly off to infinity?”
• In the 1950s, the invention of computers allowed scientists to find numerical solutions to equations
History of dynamics

• In 1963, Lorenz discovered the chaotic motion of a strange attractor
• Solutions to Lorenz’s equations never settled down to equilibrium or a periodic state, instead they continued to oscillate in an irregular manner
History of dynamics

• In 1963, Lorenz discovered the chaotic motion of a strange attractor
• Solutions to Lorenz’s equations never settled down to equilibrium or a periodic state, instead they continued to oscillate in an irregular manner
• Solutions were completely unpredictable: changing the starting point changed the outcomes completely. This is what we refer to as **chaos**.
History of dynamics

• In 1963, Lorenz discovered the chaotic motion of a strange attractor.

• Solutions to Lorenz’s equations never settled down to equilibrium or a periodic state, instead they continued to oscillate in an irregular manner.

• Solutions were completely unpredictable: changing the starting point changed the outcomes completely. This is what we refer to as **chaos**.

• But, there was structure in chaos!
History of dynamics

• The 1970s marked the boom of chaos:
 • Feigenbaum discovered universal laws that govern the transition from regular to chaotic behavior
History of dynamics

- The 1970s marked the boom of chaos:
 - Feigenbaum discovered universal laws that govern the transition from regular to chaotic behavior
 - Mandelbrot popularized fractals
How do we study such dynamical systems?

• We need some terminology
• There are two types of dynamical systems

- differential equations
- iterated maps (difference equations)
How do we study such dynamical systems?

- We need some terminology
- There are two types of **dynamical systems**

 - differential equations
 - iterated maps (difference equations)

- We will start by analyzing problems using differential equations.
- Next week we will study some examples using iterated maps, which will lead us to chaotic solutions.
Differential Equations: defining the derivative

• Suppose you have a variable x which varies with time t (x could be the position of an object at time t)

• The position at time t will be denoted by $x(t)$

• Suppose you know the position at time t and you want to calculate it at another time t'. So, you have $x(t)$ and you want $x(t')$

• To do this you need to know the velocity at which the object moved between times t and t'

• The velocity will be denoted by:

$$\dot{x} = \frac{dx}{dt}$$

This is called a derivative
Differential Equations: defining the derivative

- A derivative of a quantity (say position) x with respect to time is the variation of x with time, where both x and time are continuous.

- The discrete version is denoted by $\frac{\Delta x}{\Delta t}$.

This is called a derivative.
Differential Equations: defining the derivative

- A derivative of a quantity (say position) x with respect to time is the variation of x with time, where both x and time are continuous.

- The discrete version is denoted by $\frac{\Delta x}{\Delta t}$

$$\dot{x} = \frac{dx}{dt}$$

This is called a derivative.
Differential Equations: defining the derivative

\[
\dot{x} = \frac{dx}{dt}
\]

This is called a derivative

- A derivative of a quantity (say position) \(x \) with respect to time is the variation of \(x \) with time, where both \(x \) and time are continuous.

- The discrete version is denoted by
 \[
 \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}
 \]

\((t_1, x_1)\) \hspace{1cm} \((t_2, x_2)\)
A derivative of a quantity (say position) x with respect to time is the variation of x with time, where both x and time are continuous.

The discrete version is denoted by

$$\frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}$$

In this expression, both time and position are discrete.
Differential Equations: the derivative (graphically)
Differential Equations: the derivative (graphically)

position x

time t

(t_1, x_1)

(t_2, x_2)
Differential Equations: the derivative (graphically)

\[\frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1} \]

position \(x \)

(\(t_2, x_2 \))

(\(t_1, x_1 \))

time \(t \)
Differential Equations: the derivative (graphically)

\[\Delta x / \Delta t = \frac{x_2 - x_1}{t_2 - t_1} \approx \text{slope} \]
Differential Equations: the derivative (graphically)

\[
\frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1} \approx \text{slope}
\]
Differential Equations: the derivative (graphically)

\[\frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1} \approx \text{slope} \]

\[
\text{slope} = \frac{dx}{dt}
\]
Differential Equations: the derivative (graphically)

\[\frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1} \approx \text{slope} \]

\[\text{slope} = \frac{dx}{dt} \]
In a dynamical system, we try to model a real life problem mathematically.

A dynamical system will show how some quantity varies with time.

A one-dimensional dynamical system has ONE equation representing the variation of ONE variable with time.

Examples:

\[\dot{x} = x + 1 \]

\[\dot{x} = 3x - 2 \]

\[\dot{x} = -5x^2 + \sin(x) \]
• A two-dimensional dynamical system has TWO equations which are usually coupled, and which represent the variation of TWO variables with time.

Example: \[\dot{x}_1 = 3x_2 - 2x_1 \]
\[\dot{x}_2 = x_1 + 4x_2 \]

• We will only consider autonomous systems, i.e. systems that do not explicitly depend on time

• We won’t consider something like \[\dot{x} = x + t \]
A two-dimensional dynamical system has TWO equations which are usually **coupled**, and which represent the variation of TWO variables with time.

Example:

\[
\begin{align*}
\dot{x}_1 &= 3x_2 - 2x_1 \\
\dot{x}_2 &= x_1 + 4x_2
\end{align*}
\]

- We will only consider **autonomous** systems, i.e. systems that do not **explicitly** depend on time.
- We won’t consider something like \(\dot{x} = x + t \) (non-autonomous)
A Geometric Way of Thinking: Flows on the Line

• The idea is NOT to solve the equation
• Instead, we want to think geometrically
• We begin with a one-dimensional dynamical system

\[\dot{x} = f(x) \]

\(x(t) \) is a real-valued function of time \(t \)

\(f(x) \) is smooth and also real-valued
\[\dot{x} = f(x) \]

\(x(t) \) is a real-valued function of time \(t \)

\(f(x) \) is smooth and also real-valued
$x(t)$ is a real-valued function of time t

$f(x)$ is smooth and also real-valued
A Geometric Way of Thinking: Flows on the Line

\[\dot{x} = f(x) \]

\(x(t) \) is a real-valued function of time \(t \)

\(f(x) \) is smooth and also real-valued
A Geometric Way of Thinking: Flows on the Line

\[\dot{x} = f(x) \]

- \(x(t) \) is a real-valued function of time \(t \)
- \(f(x) \) is smooth and also real-valued
A Geometric Way of Thinking: Flows on the Line

\[\dot{x} = f(x) \]

- \(x(t) \) is a real-valued function of time \(t \)
- \(f(x) \) is smooth and also real-valued
A Geometric Way of Thinking: Flows on the Line

\[\dot{x} = f(x) \]

\(x(t) \) is a real-valued function of time \(t \)

\(f(x) \) is smooth and also real-valued
• Let’s take an example: \(\dot{x} = f(x) = \sin x \)
• The idea is to analyze how \(x(t) \) behaves
• If you know calculus, you can solve this system exactly and you get

\[
t = -\log |\csc x + \cot x| + \text{constant}
\]

• We don’t even have \(x(t) \), we have \(t(x) \) instead, and inverting is impossible!
A Geometric Way of Thinking: Flows on the Line

• Instead of solving exactly, we will plot $f(x)$ against x, i.e. \dot{x} against x
A Geometric Way of Thinking: Flows on the Line

\[f(x) = \dot{x} \]
A Geometric Way of Thinking: Flows on the Line

• Instead of solving exactly, we will plot $f(x)$ against x, i.e. \dot{x} against x

• Then we want to find the **fixed points**, which correspond to points where the system isn’t varying with time, i.e. points where

\[\dot{x} = 0 \]
A Geometric Way of Thinking: Flows on the Line

\[f(x) = \dot{x} \]
Instead of solving exactly, we will plot $f(x)$ against x, i.e. \dot{x} against x.

Then we want to find the **fixed points**, which correspond to points where the system isn’t varying with time, i.e. points where

$$\dot{x} = 0$$

There are two kinds of fixed points: **stable** and **unstable**.
Instead of solving exactly, we will plot $f(x)$ against x, i.e. \dot{x} against x.

Then we want to find the **fixed points**, which correspond to points where the system isn’t varying with time, i.e. points where

$$\dot{x} = 0$$

There are two kinds of fixed points: **stable** and **unstable**.

The **flow** goes **towards** stable points and **away** from unstable points.
• Instead of solving exactly, we will plot $f(x)$ against x, i.e. \dot{x} against x

• Then we want to find the **fixed points**, which correspond to points where the system isn’t varying with time, i.e. points where

\[\dot{x} = 0 \]

• There are two kinds of fixed points: **stable** and **unstable**

• The **flow** goes **towards** stable points and **away** from unstable points

• This is determined by the sign of \dot{x}
A Geometric Way of Thinking: Flows on the Line

\[f(x) = \dot{x} \]
A Geometric Way of Thinking: Flows on the Line

\[f(x) = \dot{x} \]
A Geometric Way of Thinking: Flows on the Line

\[f(x) = \dot{x} \]
A Geometric Way of Thinking: Flows on the Line

\[f(x) = \dot{x} \]
A Geometric Way of Thinking: Flows on the Line

\[f(x) = \dot{x} \]
A Geometric Way of Thinking: Flows on the Line

\[f(x) = \dot{x} \]
Stable vs. Unstable
Romans and their hot baths!

flat ceiling will always drip!

curved ceiling may protect your back!
Simple Example

• Let’s start with a simple example

\[\dot{x} = x^2 - 1 \]

• First, we must plot this system
Plot: $x^2 - 1$ for $x = -2$ to 2.
Simple Example

\[f(x) = \dot{x} \]

\[\dot{x} = x^2 - 1 \]
Simple Example

\[f(x) = \dot{x} \]

\[\dot{x} = x^2 - 1 \]
Simple Example

\[f(x) = \dot{x} \]

\[\dot{x} = x^2 - 1 \]
Simple Example

\[f(x) = \dot{x} \]

\[\dot{x} = x^2 - 1 \]
Simple Example

\[f(x) = \dot{x} \]

\[\dot{x} = x^2 - 1 \]
Population Growth

• Suppose you have a species and you’re interested in how it will grow in time or if it could possibly die out.

• The species has population $N(t)$ at time t.

• We assume the population grows at a steady rate $r > 0$.

Population Growth

- Suppose you have a species and you’re interested in how it will grow in time or if it could possibly die out.
- The species has population $N(t)$ at time t.
- We assume the population grows at a steady rate $r > 0$.
- This system can be modeled by:

$$\dot{N} = rN$$
• Suppose you have a species and you’re interested in how it will grow in time or if it could possibly die out
• The species has population $N(t)$ at time t
• We assume the population grows at a steady rate $r > 0$
• This system can be modeled by:

\[
\dot{N} = rN
\]

• In this simple model, the population will grow indefinitely
Population Growth

In the model \(\dot{N} = rN \)

- We did not specify what may cause the population to die
- We did not consider how the presence of a **carrying capacity** may hinder growth
- We also did not consider what happens if a disease breaks out
Population Growth

In the model \(\dot{N} = rN \)

- We did not specify what may cause the population to die
- We did not consider how the presence of a carrying capacity may hinder growth
- We also did not consider what happens if a disease breaks out

To model the effects of overpopulation, demographers usually assume that the per-capita growth-rate \(\dot{N}/N \) decreases as \(N \) becomes sufficiently large
Population Growth

In the model $\dot{N} = rN$

• We did not specify what may cause the population to die
• We did not consider how the presence of a carrying capacity may hinder growth
• We also did not consider what happens if a disease breaks out

To model the effects of overcrowding, demographers usually assume that the per-capita growth-rate \dot{N}/N decreases as N becomes sufficiently large.

When N is small, growth rate is r; when N is larger than a carrying capacity K, growth rate is negative (death rate higher than birthrate).
Population Growth

\[\frac{\dot{N}}{N} \]

\[\dot{N}/N \]

\[r \]

\[K \]

\[N \]
Population Growth: the logistic equation

This leads to the logistic model for population growth

\[\dot{N} = rN \left(1 - \frac{N}{K}\right) \]

How to solve this?
1. \(N \geq 0 \): a negative population makes no sense
2. We plot the function to find the fixed points
3. We find the values of these fixed points and analyze what they mean
Here I chose $r=0.3$, $K=5$.

WolframAlpha.com:
plot: $0.3 \times (1 - x/5)$, $(x,0.5,5)$
Population Growth: the logistic equation

\[\dot{N} = rN \left(1 - \frac{N}{K}\right) \]
Population Growth: the logistic equation

\[
\dot{N} = rN \left(1 - \frac{N}{K}\right)
\]
Population Growth: the logistic equation

\[\dot{N} = rN \left(1 - \frac{N}{K} \right) \]
Population Growth: the logistic equation

\[\dot{N} = rN \left(1 - \frac{N}{K}\right) \]

Calculating the fixed points:

\[\ddot{N} = 0 \]
Population Growth: the logistic equation

\[\dot{N} = rN \left(1 - \frac{N}{K} \right) \]

Calculating the fixed points:

\[\dot{N} = 0 \]

\[rN \left(1 - \frac{N}{K} \right) = 0 \]
Population Growth: the logistic equation

\[\dot{N} = rN \left(1 - \frac{N}{K} \right) \]

Calculating the fixed points:

\[\dot{N} = 0 \]

\[rN \left(1 - \frac{N}{K} \right) = 0 \]

\[rN = 0 \]

\[\implies N = 0 \]
Population Growth: the logistic equation

\[\dot{N} = rN \left(1 - \frac{N}{K} \right) \]

Calculating the fixed points:

\[\dot{N} = 0 \]

\[rN \left(1 - \frac{N}{K} \right) = 0 \]

\[rN = 0 \]

\[\Rightarrow N = 0 \]

\[\left(1 - \frac{N}{K} \right) = 0 \]

\[\Rightarrow N = K \]