Anistropic media in industrial applications

lan Griffiths

Mathematical Institute, University of Oxford

Food science

Food science

• The cross-flow problem can be transformed into a version of 2D Stokes flow.

Food science

 This couples to an axial-flow problem akin to fibre drawing (the Trouton model) for the density ρ, velocity u, and width of extrudate h:

$$\rho u h = Q$$
 $\rho u^2 = M$ $\frac{d\rho}{dx} = -\frac{3(1-\rho)\rho\Delta p}{4M^{1/2}(4+3(1-\rho)(\lambda+\mu))}$

Food science

- Finally, we solve the microscale problem for the bubble evolution.
- This is vital for controlling mouth-feel.

- One funded research project
- Insight into creation of new exotically shaped cereals with improved taste

Food science

How can we make the perfect smoothie?

• Smoluchowski fragmentation theory captures the chopping process:

Food science

• In practice we have a continuum of particle sizes:

$$\frac{\partial y(x,t)}{\partial t} = -f(x)y(x,t) + \int_x^\infty f(s)y(s,t)\frac{2}{s}\,\mathrm{d}s$$

• Similarity solutions match well to experiments.

$$f(x) = x^{k}$$

Concentration, $y = \frac{kt^{2/k}e^{-x^{k}t}}{\Gamma\left(\frac{2}{k}\right)}$

Food science

Shark NINJA

- One funded research project
- One cross-disciplinary journal article
- Implementation of a new blade for NutriNinja blenders

unicef

FOCUS AREAS

WHERE WE PRESS WORK V CENTRE

Bangladesh

Latest

Providing safe water for families in Bangladesh

WHO

WE ARE

> Newsline

Statistics

Contact us

Country website

By Naimul Haq

BAGERHAT DISTRICT, Bangladesh, 24 February 2010 — Defying stifling heat and humidity, Maya Begum walks more than an hour from her village to fill two large plastic containers with drinking water for her family of four.

The INDEPENDENT Arsenic-tainted water from Unicef wells is poisoning half of Bangladesh

PETER POPHAM IN DHAKA Saturday 05 September 1998

Karagas, The Lancet, 2010

A strategy for arsenic removal?

• Iron-rich laterite soil removes arsenic.

- How do we know when a filter has expired?
- How do we upscale for a school or community?

State of deployment

- Three-year collaboration with IIT Kharagpur
- Filters in **5000 family homes**
- UNICEF have commissioned 40 community-scale filters
- Now studying **fluoride** and **reactive dye removal**

Dutta Pukur 2000 litres per hour

Compressible filters

$$(\lambda + 2\mu)\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} = \frac{\mathrm{d}p}{\mathrm{d}x} \qquad \qquad q = \frac{k}{\eta}\frac{\mathrm{d}p}{\mathrm{d}x} = \mathrm{constant}$$

$$k = k_1 + k_2 \frac{\mathrm{d}u}{\mathrm{d}x}$$

- The filter compressibility leads to shutdown of the membrane.
- We can choose an initial permeability distribution *k* that leads to a uniform permeability under operation.

This work can give insight into improving and optimizing the filtration process

• The opportunity to merge liquid crystals and microfluidics in liquid crystal microfluidic devices has shown promise in enhanced particle control and manipulation:

• The opportunity to merge liquid crystals and microfluidics in liquid crystal microfluidic devices has shown promise in enhanced particle control and manipulation:

• Interesting flow dynamics are observed experimentally depending on the strength of the flow field.

- When we add particles to the flow they distort the liquid crystal molecules.
- We must solve for the liquid crystal orientation (Beris–Edwards) and the flow field (Navier–Stokes).
- Both the flow and the liquid crystal molecules exert a force on the particle:

The drag on a particle

- Newtonian fluid: drag increases monotonically with particle size (viscous drag).
- Nematic liquid crystal: a maximum drag exists (as the particle size increases and its edges become closer to the walls and anchoring effects will hold the particle back).

The lift on a particle

- Newtonian fluid: particles always move to the centre of the channel.
- Nematic liquid crystal: particle may move to centre or to the wall depending on start location.

• This provides a possible mechanism for particle sorting.

Two particles

- If we place two separate particles into an NLC flow then they will aggregate.
- They equilibrate at an angle of approximately 41° to the flow direction

Three particles

• Three particles placed in a flow will also aggregate.

T = 2.7

• The initial configuration matters:

 \bigcirc

O T = 0

T = 1.7

We are now using our work to understand how **image sticking** occurs in LCD devices

T = 2.2

Conclusions and outlook

