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An attractive technique for forming and collecting aggregates of magnetic material at a liquid–air interface by

an applied magnetic field gradient was recently proposed, and its underlying principle was studied theoret-

ically and experimentally (Tsai et al., 2013): when the magnetic field is weak, the deflection of the liquid–air

interface has a steady shape, while for sufficiently strong fields, the interface destabilizes and forms a jet that

extracts magnetic material. Motivated by this work, we develop a numerical model for the closely related

problem of solving two-phase Navier–Stokes equations coupled with the static Maxwell equations. We com-

putationally model the forces generated by a magnetic field gradient produced by a permanent magnet and

so determine the interfacial deflection of a magnetic fluid (a pure ferrofluid system) and the transition into a

jet. We analyze the shape of the liquid–air interface during the deformation stage and the critical magnet dis-

tance for which the static interface transitions into a jet. We draw conclusions on the ability of our numerical

model to predict the large interfacial deformation and the consequent jetting, free of fitting parameters.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Synthesis and assembly on the nanoscale is an important goal of

ontemporary science and technology. Magnetic nano/microparticles

rise in a wide range of industrial and biomedical applications, and

o are one target for controlled assembly. For example, function-

lized magnetic microparticles can be used to separate cells [1]

nd magnetic microparticles have been used in microfluidics for

ell sorting, blood cleansing, and magneto-capillary self-assembly

see e.g. [2] and references therein). When magnetic nanoparticles

uch as magnetite are suspended at high concentration in aque-

us or non-aqueous carrier fluids, the entire system behaves as a

ontinuum of magnetic fluid, known also as a ferrofluid. The rhe-

logy and interfacial shape of ferrofluids can be tuned with exter-

al magnetic fields, often in useful ways. An example is the ap-

lication of ferrofluids in adaptive optics that has been considered

n recent experiments [3,4]. The control of ferrofluid properties us-

ng magnetic fields also has applications in mechanical sealing and

coustics [5], targeted drug delivery [6–8] and treatment of retinal

etachment [9].

Thin liquid films and droplets are ubiquitous in nature and also

ppear in many technological applications. The understanding of
∗ Corresponding author.

E-mail address: shahriar.afkhami@njit.edu (S. Afkhami).
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heir dynamical behavior and their stability is therefore of great

mportance and has attracted considerable attention in the litera-

ure. Recent research into thin film and droplet flows has resulted

n many experimental and theoretical developments, including ma-

ipulating film flows via external magnetic or electric fields to pro-

uce nanoscale patterns. In particular, experiments on thin ferrofluid

lms and droplets have revealed the formation of a wide range of

orphologies [10–14]. Ferrofluids can be manipulated using mag-

etic forces and have been extensively investigated and widely used

n a variety of engineering applications; see Rosensweig [15] and a

ore recent review by Nguyen [16]. Normal field instability of fer-

ofluid films (and the equivalent electric field problem) have been

xtensively studied in the past, see e.g. [17,18]. However, despite

he increase in the number of applications, surprisingly little can

e found in the literature on the direct numerical simulations of

hin ferrofluid films in the presence of a nonuniform magnetic field

such as is produced by a spherical magnet) and therefore our un-

erstanding of the instabilities that may occur in these flows is

imited.

An attractive technique for forming and collecting aggregates

f magnetic material at a liquid–air interface by an applied mag-

etic field was recently proposed, and its underlying principle was

tudied theoretically and experimentally, by Tsai et al. [19]. In the

xperiments described in [19], a water-based ferrofluid (EMG805,

errotec), with a density of 1200 kg m−3 and viscosity of 3 mPa s,

s suspended in a shallow reservoir containing deionized water,

ith a density of 1000 kg m−3 and viscosity of 1 mPa s, to form

http://dx.doi.org/10.1016/j.compfluid.2015.05.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2015.05.015&domain=pdf
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the magnetic mixture. This system is differentiated from a pure fer-

rofluid system because, in the presence of a magnet, it separates into

a region rich with magnetic material, and one of negligible magnetic

content. A spherical permanent magnet is slowly brought close to

the magnetic mixture allowing the ferrofluid to aggregate and form a

static hump at the liquid–air interface (see Fig. 1 in [19]). In these

experiments, a distinct boundary that separates the magnetic and

non-magnetic regions is observed. When the magnet is held suffi-

ciently close to the liquid–air interface, the hump destabilizes and

transforms to a jet. The theoretical approach developed in [19] de-

scribes a steady-state mathematical model for the behavior of the

magnetic-particle-laden fluid and the particle-free fluid regions. The

mathematical model results in [19] show excellent agreement with

the experimental data.

Motivated by this work, here we develop a numerical model for a

closely related problem: we computationally model the magnetically

induced interfacial deflection of a magnetic fluid (ferrofluid) and the

transition into a jet by a magnetic field gradient from a permanent

magnet placed above the free surface. The system we study differs

from that considered by Tsai et al. [19]: we consider a pure ferrofluid

system, while Tsai et al. model a system with both magnetically dom-

inated and non-magnetic regions. Fig. 1 shows a schematic illustrat-

ing the set-up we consider: the magnetic region occupied by pure

ferrofluid, the liquid–air interface, and the spherical permanent mag-

net. The deformation of the ferrofluid–air interface arises as a result

of the magnetic field gradient induced by the spherical permanent

magnet held above the fluid; in line with the experiments we will see

that, for sufficiently strong fields, the interface in our model destabi-

lizes and forms a jet. We note that, although the focus of this work is

to use a numerical study to uncover the transition to instability in a

pure ferrofluid system, we believe that our study demonstrates some,

perhaps not obvious, features of the development of the instability

observed in the work of Tsai et al. [19]. The natural next step would

be to consider the effect of the nonuniform distribution of the fer-

rofluid/magnetic particles, but this is beyond the scope of the present

paper.

Here we solve the two-phase Navier–Stokes equations coupled

with the static Maxwell equations in axisymmetric cylindrical polar
r

Z

Magnet

Rm

n

Ferrofluid,

Air,

L

0f

f

Axis of axial symmetry

L

m

Fig. 1. A schematic illustrating the computational set-up and the coordinate system

used. A spherical permanent magnet of radius Rm is centered at distance L from the

initially undeformed film (red dashed line), which has a depth L0. The magnetic force

deforms the interface, ∂� f , into a hump (red solid line). A unit normal outwards from

the interface is denoted by n. A typical computational domain, �, and its boundary, ∂�,

is shown by the dash-dotted line. We use axisymmetric cylindrical polar coordinates.

(For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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oordinates. We analyze the shape of the liquid–air interface dur-

ng the deformation stage and the critical magnet distance (from

he undeformed free surface), for which the static interface tran-

itions into a jet. We draw conclusions regarding the ability of

ur numerical model to predict the large interfacial deformation

nd the consequent jetting, free of fitting parameters. The numeri-

al model provides a realistic and accurate framework for predict-

ng the evolution of magnetic liquids based on the Navier–Stokes

quations.

We describe the details of the numerical model in Section 2. In

ection 3, we describe a numerical boundary condition that may be

mplemented to simulate non-uniform magnetic fields. In Section 4,

e present the numerical results and the comparison with experi-

ental observations. In Section 5, we give an overview and future

utlook for improving our modeling.

. Mathematical model

Here we briefly describe the theoretical models that serve as a ba-

is for the proposed numerical studies. The coupled motion of a fer-

ofluid surrounded by a non-magnetic fluid is governed by the (static)

axwell equations, the Navier–Stokes equations, and a constitutive

elationship for the magnetic induction B, magnetic field H, and the

agnetization M. The magnetostatic Maxwell equations for a non-

onducting ferrofluid are, in SI units,

· B = 0, ∇ × H = 0, B(x, t) =
{
μ f H in ferrofluid

μmH in matrix,

here μ f denotes the magnetic permeability of the ferrofluid and

m is the permeability of the matrix fluid. For our application, the

atrix fluid is air, which has a permeability very close to that for

vacuum, μo. Therefore, we shall consider μm = μo throughout. A

agnetic scalar potential ψ is defined by H = ∇ψ , and satisfies

· (μ∇ψ) = 0, (1)

here μ = μo and μ f in the matrix and ferrofluid, respectively. We

ill assume that the magnetization is a linear function of the mag-

etic field given by M = χH, where χ = (μ f /μo − 1) is the mag-

etic susceptibility [20]. The magnetic induction B is therefore B =
o(H + M) = μo(1 + χ)H.

The fluid equation of motion is described by the conservation of

ass and momentum (Navier–Stokes) equations

· u = 0, (2)

(
∂u

∂t
+ (u · ∇)u

)
= −∇p + ∇ · (2ηD) + ∇ · τm + Fs + ρg, (3)

here Fs denotes the surface tension force per unit volume (pre-

ented as a body force [21]), p is pressure, u is velocity, D = 1
2 (∇u +

(∇u)T ) is the rate of deformation tensor (where T denotes the trans-

ose), η is viscosity, ρ is density, τm is the magnetic stress ten-

or, and g is the gravitational acceleration. The total stress is τ =
pI + 2ηD + τm, where I denotes the identity operator. The magnetic

tress tensor of an incompressible, isothermal, magnetizable medium

s [22]

m = −μo

2
H2I + μHHT

,

here H = |H|. These equations must be solved subject to suitable

oundary and initial conditions, discussed in Section 3 below.

. Numerical methodologies

We will use an Eulerian framework, where the material moves

hrough a stationary mesh, and therefore a special procedure will
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e required to track the interface between fluids. We will use the

olume of fluid (VOF) method to track the interface between the fer-

ofluid and the matrix fluid [23–25]. In this way, the VOF formulation

escribes each fluid by assigning a volume fraction function, f (r, z, t),

s

f (r, z, t) =
{

1 in ferrofluid

0 in matrix
(4)

see Fig. 1 for the polar coordinates (r, z) used here). The posi-

ion of the interface is computed from f (r, z, t) by reconstruct-

ng the curve where the step discontinuity takes place. In this

ork, the reconstruction is a ‘piecewise linear interface calcula-

ion’ (PLIC) [26]. To track the interface, f (r, z, t) is advected by the

ow,

∂ f

∂t
+ ∇ · (u f ) = 0. (5)

n the Navier–Stokes equations (Eq. (3)), Fs includes the continuum

ody force due to interfacial tension

s = σκδSn, (6)

here σ denotes the surface tension, κ the curvature of the interface,

he unit normal n = ∇ f/|∇ f |, and δS = |∇ f | is the delta function at

he interface.

.1. An effective method for simulating non-uniform magnetic fields

Special care must be taken when computing the solution

f the Maxwell equations to account, accurately and robustly,

or the non-uniformity of the magnetic field. The boundary

ondition on the magnetic field is reconstructed from an ex-

ct solution of the magnetic field due to a spherical magnet,

n the absence of the ferrofluid. We let ψa denote the mag-

etic potential for this infinite-domain analytical solution, satisfy-

ng Laplace’s equation, in cylindrical coordinates with azimuthal

ymmetry,

1

r

∂

∂r

(
r
∂ψa

∂r

)
+ ∂2ψa

∂z2
= 0.

e assume a magnetic potential generated by a uniformly magne-

ized spherical magnet, as in [19], hence

a(r, z) =
{

MmR3
m(L − (z − L0))r

3
[
(L − (z − L0))

2 + r2
]3/2

}
+ constant, (7)

here Mm is the magnetization of the magnet and Rm is the radius of

he magnet. The magnet center is at (r, z) = (0, L + L0), where L is the

agnet distance from the undeformed interface and L0 is the initial

nperturbed interfacial depth in our problem set-up (see Fig. 1). The

nalytical magnetic field Ha = ∇ψa is thus

a =
{

MmR3
m((z − L0) − L)r[

(L − (z − L0))
2 + r2

]5/2

}
r̂

+
{

MmR3
m

[
2((z − L0) − L)

2 − r2
]

3
[
(L − (z − L0))

2 + r2
]5/2

}
ẑ, (8)

here r̂ and ẑ denote the unit vectors in the r and z directions, re-

pectively. This solution will provide the boundary condition for the

agnetic field generated by the permanent magnet, as we now ex-

lain.

The numerical magnetic potential ψ is calculated by solving Eq.

1) on the computational domain � (see Fig. 1) using a multi-

rid algorithm, as described in [20], with appropriate boundary

onditions. We note that in all simulations presented below, the
pherical magnet lies outside the computational domain. The nu-

erical solution to the elliptic partial differential equation for ψ
Eq. (1)) will be complicated by the fact that the magnetic perme-

bility, μ, experiences a jump across the interface [20]. The bound-

ry conditions for ψ on the domain boundaries ∂� are defined

s

∂ψ

∂n
= ∂ψa

∂n
on ∂�, (9)

here ∂/∂n = n� · ∇ , and n� denotes the normal to the boundary

�. In order to impose the boundary condition in our numerical

odel, we perform a transformation of variables to ζ : ψ = ψa + ζ ,

here ψa is the potential field without the magnetic medium, Eq. (7).

ne can then rewrite Eq. (1) such that

· (μ∇ζ ) = −∇ · (μ∇ψa), (10)

here ∇ · (μ∇ψa) vanishes everywhere except on the surface be-

ween the ferrofluid/matrix interface ∂� f and

∂ζ

∂n
= 0 on ∂�. (11)

hough we do not use this in the following analysis, we note that

ur numerical approach may also be used to model the nonlin-

ar magnetic susceptibility of ferrofluids; for example, the well-

nown Langevin function L(α) = cothα − α−1 can be implemented

o describe the magnetization behavior of the ferrofluid versus the

trength of the magnetic field H,

(H) = MsL

(
μom|H|

kBT

)
H

|H| , (12)

here the saturation magnetization Ms and the magnetic moment of

he particle enter as parameters, T denotes the absolute temperature,

nd kB is the Boltzmann constant.

.2. Pressure, velocity, and volume fraction boundary conditions

We impose symmetry boundary conditions at the axis r = 0. At

he top (z = Lz), bottom (z = 0) and right (r = Lr) boundaries, we im-

ose solid-wall boundary conditions for the pressure and the veloci-

ies. The boundary condition for the volume fraction function at the

op wall is f = 0, at the bottom wall is f = 1, and for the right (outer)

all is that the interface has zero slope: ∂ f/∂r = 0 on r = Lr . We have

lso varied the computational domain in simulations to verify that it

s large enough for the boundary to have negligible effect on the de-

ormation of the liquid–air interface.

. Results and discussion

Numerical simulations are presented in three parts. First we

resent tests of the numerical implementation by focusing on the re-

ulting magnetic fields and by studying the convergence of the solu-

ion for the magnetic field with grid refinement. Second, we present

everal numerical solutions of our system that demonstrate both

he steady-interfacial-deflection regime, and the transition from this

egime to the unstable jetting regime. Third, we examine the effect of

arying the magnetic Bond number, which characterizes the domi-

ant balance between the magnetic and surface tension forces, in the

teady-interfacial-deflection regime.

Our numerical set-up closely follows that in [19]; a spheri-

al permanent magnet of radius Rm and magnetization Mm = 106

A m−1 is placed at a distance L from the initially undeformed fer-

ofluid film (see Fig. 1). The ferrofluid has a density ρ f = 1200

kg m−3, viscosity η f = 3 mPa s, and surface tension σ = 0.07

N m−1. The ferrofluid is assumed to have a constant magnetic sus-

eptibility, χ , which will be determined by comparing the nu-

erical result with the experimental data in [19] (note that this
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Fig. 3. The convergence of the L2 and L∞ relative error norms between the H(r, z) com-

puted at � = Lz/Nz(= Lr/Nr ) and at �max = Lz/240, for the computational set-up illus-

trated in Fig. 2.
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value is often not reported by manufacturers so is determined by

users).

4.1. Magnetic field and imposed numerical boundary condition

We first demonstrate the effectiveness of our methodology for

computing the magnetic field by presenting the results of the sim-

ulated applied magnetic field using the numerical boundary condi-

tions described in Section 3.1. The following relative error norms are

defined

L2(H,�) = ||H||2,� − ||H||2,�max

||H||2,�max

, L∞(H,�) = ||H||∞,� − ||H||∞,�max

||H||∞,�max

,

where

||H||2,� =
√

�i� jH
2
i j
�2 and ||H||∞,� = Max

(|Hi j|
)
�

,

where i and j are indices of a computational cell. Fig. 2 shows the

computational domain � : r ∈ (0, Lr) and z ∈ (0, Lz), where (Lr, Lz) =
(1.5 mm,3 mm), with a 1 mm radius permanent magnet placed

5 mm above the r-axis. The mesh size � = Lr/Nr = Lz/Nz, where Nr

and Nz are the number of grid points in r and z directions, respec-

tively. The computed magnetic field strength, H, is also shown in

Fig. 2.

Fig. 3 exhibits the convergence of the numerical method with

spatial resolution for computing the magnetic field. As illustrated,

a second-order convergence is obtained for the mesh refinement

for both L2 and L∞ error measures. The figure also reveals the

smallness of the errors even at a coarse grid resolution. Finally

the accuracy of the numerical solution is also assessed by com-

paring the computed magnetic field with the exact solution for a
r (mm)

z
 (

m
m

)

0 0.5 1 1.5
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Magnetic fluid,

Fig. 2. The computational domain, �, and the computed magnetic field strength, H,

with a drawing of a permanent magnet overlaid. The spherical magnet lies outside the

computational domain. Number of grid points in the z-direction is Nz = 240 and in the

r-direction is Nr = 120.
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pherical magnet in an unbounded region given by Eq. (8); the max-

mum errors in H are of the order 0.01%. These results confirm the

verall consistency and accuracy of the computational scheme with

he implemented numerical boundary conditions as described in

ection 3.1.

.2. Interfacial deflection and transition to jetting

Tsai et al. describe the results of experiments and mathematical

nalysis of the deformation of a free surface by a magnetic force from

spherical permanent magnet [19]. As mentioned earlier, in that

ork the system consists of both magnetic and non-magnetic regions

uch that the magnetic particles collect at the interface, causing de-

ormation of the free surface to form a hump; and when the magnet

s brought sufficiently close, the hump transitions to a jet. The system

e investigate computationally here differs from that of [19] because

ur liquid region contains a homogeneous ferrofluid. The study we

resent next therefore is not an attempt to provide quantitative com-

arisons with the experiments of Tsai et al., but an effort, for the first

ime, to reveal the essential features of experimental results by di-

ectly solving the governing equations of a model system. Despite the

ifferences between our model and the experimental set-up, here we

lso observe the same qualitative features as in the experiments of

sai et al.: when the magnet is positioned sufficiently far from the

errofluid, the deformation of the interface is static; and when we re-

uce the distance between the magnet and the undeformed interface,

he deformation destabilizes into jet formation. We also note that our

odel is able to validate and build on the scaling-law prediction for

he jetting transition presented in [19] by predicting the transition

oint free of any fitting parameter.

In Fig. 4 , we present the results of direct computations of our

ystem in the static-deformation regime. In these simulations, the

omputational domain is Lr = 15 mm by Lz = 2.5 mm and the un-

eformed film is initially located at L0 = 1 mm. A magnet of radius

m = 3.2 mm is placed at distance L = 6.33 mm (Fig. 4(a)) and 5.65

mm (Fig. 4(b)) from the undisturbed film. In Fig. 4, we also repro-

uce the experimental results of [19] to compare and contrast the two

systems.

We note that in practice it is very difficult to control or mea-

sure the magnetic susceptibility of a ferrofluid sample accurately.

We therefore use the comparison of the computed steady-state

hump height, h, with the experimental measurement to determine

he magnetic susceptibility of the ferrofluid. This comparison gives
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Fig. 4. Experimental data (not pure ferrofluid) from [19] shown alongside our com-

puted steady-state ferrofluid–air interfacial profiles for (a) L = 6.33 mm and (b) L =
5.65 mm. Black solid lines have χ = 7.5 × 10−4, chosen to match maximum free sur-

face height to data; green solid lines have χ = 5 × 10−4, chosen to fit the data as
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= 7.5 × 10−4, a value consistent with the finding in [19]. In Fig. 4,

e also demonstrate the results when using χ = 5 × 10−4, a value

hosen to fit the data as a whole rather than just fitting to the max-

mum hump height. Although the results demonstrate consistency

etween the direct numerical solutions and the experiments in cap-

uring the height of the hump, the agreement in the profile is not

uantitative, owing to fact that the experimental system is not pure

errofluid. Our study can therefore be interpreted as a way of deter-

ining the effective susceptibility of a material by, in some way, com-

aring our numerical results with the experiments. We note that even

hough neither of the parameter fits in Fig. 4 are able to reproduce

oth the maximum height and the overall shape that are observed

n the experiment, the corresponding values for the susceptibility are

onsistent with those found in [19].

With this caveat in mind, we next investigate the transition to

etting with χ = 7.5 × 10−4. In Fig. 5 , we show a series of static

errofluid–air interface profiles as the distance L between magnet

enter and undeformed ferrofluid interface is reduced. As the mag-

et separation L is decreased incrementally, we find that there exists a
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hreshold for the jetting transition: for L � 5.05 mm, we no longer

ee the free surface evolving to a static configuration; instead, the

errofluid–air interface destabilizes and forms a jet. The maximum

ustainable steady interfacial deflection that we were able to com-

ute occurs at L = 5.05 mm, consistent with the experimental find-

ng in [19]. Also consistent with the experimental observations, we

nd that the steady interfacial deflection increases and the radial

preading decreases, with decreasing L, until the hump transitions

o jetting. We attribute this qualitative agreement to the fact that

ur set-up, while not identical to the experimental set-up in [19],

till possesses the main physical features that control the instability

hreshold: mainly, the characteristic interfacial deflection can be re-

ated to the dominant balance between the paramagnetic attraction

nd the surface tension.

In Fig. 6, we plot interface evolution when the magnet is suffi-

iently far away (L = 5.25 mm) that the interface reaches a static

tate (Fig. 6(a)); and when it is close enough (L = 4.95 mm) that jet-

ing occurs (Fig. 6(b)), where no sustainable static interfacial deflec-

ion can be obtained. Interestingly, for L = 5.25 mm (Fig. 6(a)), we

nd an overshoot in deformation; i.e., an initial elongation followed

y a retraction to a static state. We attribute the overshoot mainly

o the dominant competition between magnetic, capillary, and iner-

ial effects. However, we have not explored the effect of varying the

ravitational acceleration, which might also contribute to this behav-

or, and leave this for a future study. Also, as illustrated, for L = 4.95

mm (Fig. 6(b)), the interface becomes unstable and stretches until

t touches the top boundary of the computational domain while for

= 5.25 mm, a stable interface is achieved. We also note that, when

he interface destabilizes, the deflection increases very rapidly as the

errofluid–air interface approaches the magnet.

We also investigate the effect of increasing the magnetic suscep-

ibility and the magnet size. In Fig. 7(a), we plot the ferrofluid–air

nterface for χ = 1.75 as a function of time for L = 6.75 mm and

m = 1.5 mm. We also plot the case when χ = 0.75 in Fig. 7(b).

hese results indicate that increasing the magnetic susceptibility can

estabilize a previously stable interface, moving it into the jetting

egime; and that when the magnet size is reduced, a much higher

agnetic susceptibility is required to destabilize the interface into

etting. These predictions can be used to find the optimal magnet

ize for destabilizing the interface based on the susceptibility of the

agnetic fluid. For a fixed magnet distance L and magnet size Rm,

ransition to jetting occurs for a certain value of the magnetic sus-

eptibility χ . When the magnet is brought slightly closer (decreasing

), the transition occurs for a smaller χ value. Fig. 8 shows the re-

ults for increasing the magnetic susceptibility, which leads to an in-

rease in the interfacial deflection for L = 6 mm and Rm = 1.5 mm.

his figure shows that, for a sufficiently high magnetic susceptibil-

ty, the surface tension of the ferrofluid can no longer sustain the

eformation and jetting again occurs. We find that in this case, for

� 0.1, no static hump can form. We also note that for χ = 0.75

n Fig. 8, a secondary instability appears to form at the tip of the

et, although this instability will not have sufficient time to grow

most likely into a pinch-off structure) before the tip touches the

agnet.

.3. Scaling model for interfacial deflection

Finally, we investigate the maximum interfacial deformation,

(0), defined as the maximum height of the hump at r = 0, as L varies.

o characterize this behavior, it is helpful to represent the results in

erms of the following dimensionless parameters [19]: the magnetic

ond number

om = χμoM2
mRm

,

σ
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Fig. 6. The ferrofluid–air interface. (a) t = 0, 25, 50, 100, 200, 450 ms (from bottom to top) for L = 5.25 mm. The interface deforms and reaches a static state (green dashed

line); the interface undergoes a transient overshoot before settling down to a static shape. The arrow marked “Increasing t” refers only to the solid (black) curves. (b)

t = 0, 5, 25, 50, 100, 150, 200, 248 ms (from bottom to top) for L = 4.95 mm. No sustainable steady interfacial deflection can be obtained and the dynamic interface grows un-

til it touches the top boundary of the computational domain at 250 ms (not shown here). The magnet radius Rm = 3.2 mm and the experimentally fitted value of the magnetic

susceptibility χ = 7.5 × 10−4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. The ferrofluid–air interface. (a) t = 0, 12.5, 25, 37.5 ms (from bottom to top) for χ = 0.75. The interface deforms and reaches a static state (green dashed line) at around

t = 150 ms. (b) t = 0, 2.5, 5, 7.5, 10, 12.5, 15 ms (from bottom to top) for χ = 1.75. The interface touches the top boundary of the computational domain at around 16 ms (not

shown here). L = 6.75 mm and Rm = 1.5 mm. The flat interface shows the initial position of the ferrofluid–air interface. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Fig. 8. The ferrofluid–air interface when varying χ ; for χ � 0.1, no static hump can

form. Increasing χ results in transition to jetting. For χ = 0.75, the dynamic interface

stretches until it touches the top boundary of the computational domain, while the

interface reaches a static state for χ = 0.075 and χ = 0.1. In all cases L = 6 mm and

Rm = 1.5 mm. A secondary instability (or necking that will grow into a pinch-off struc-

ture) appears to develop at the tip of the jet for χ = 0.75.
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which represents the ratio of the magnetic to surface tension force;

and

L∗ = L

R
and h∗ = h

R
,

m m
hich give the dimensionless distance between the magnet center

nd the initially undeformed ferrofluid film, and the dimensionless

eight of the hump, respectively. In Fig. 9, we present the results

f the maximum dimensionless interfacial deformation, h∗(0), pre-

icted by our computational model, versus dimensionless magnet

istance L∗, for several values of Bom. Again, we see that as the magnet

s successively brought closer to the interface, the maximum hump

eight increases. We also present the effect of the magnetic Bond

umber, showing an increase in the maximum interfacial deforma-

ion as the magnetic Bond number is increased. For all values of

om considered, the results show that the maximum interfacial de-

ection does not vary significantly prior to jetting, while the mag-

itude of the maximum deflection increases rapidly for smaller L∗.

ast the critical values of L∗, no static profile can be obtained (the

ritical points are shown by red arrows in Fig. 9). In general, the re-

ults indicate that when using a ferrofluid with a smaller suscepti-

ility, the magnet must be placed closer to the interface to produce

etting.

Analogous to the study in [19], we identify the natural scaling for

he characteristic interfacial deflection hc by
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Fig. 9. The maximum interfacial deformation, h∗(0), versus the non-dimensional dis-

tance between the magnet center and the initially flat film, L∗ , for various magnetic

Bond numbers, Bom . Rm = 3.2 mm and σ = 0.07 N m−1. Critical points are marked by

red arrows; a smaller L∗ will result in no static profiles. (For interpretation of the ref-

erences to color in this figure legend, the reader is referred to the web version of this

article.)

Fig. 10. Non-dimensional maximum interfacial deformation, h∗(0), plotted against

(Bom)
1/2

/L∗3 for the results in Fig. 9. The solid line is the scaling fit, h∗(0) ∝
(Bom)

1/2
/L∗3.
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, (13)

epresenting the dominant balance between the magnetic and sur-

ace tension forces. Numerical results in Fig. 9 suggest that, prior to

etting, the maximum interfacial deflections do not vary significantly

or different values of Bo m . Motivated by this observation, we use Eq.

13) to determine the scaling relationship between the maximum in-

erfacial deflection and the parameters that we vary in our numerical

imulations: L∗ and Bom. In Fig. 10 , we plot h∗(0) versus
√

Bom/L∗3,

redicted by the scaling model Eq. (13). Further from the transition,

he simulations results collapse remarkably well onto this single scal-

ng relationship. Close to the jetting, however, we observe a deviation

rom the scaling law, whereby the assumption of slowly varying h∗(0)

ersus L∗ breaks down.

. Conclusions

In this paper, we have carried out direct computations of the de-

ormation of a ferrofluid–air interface under an external magnetic

eld gradient generated by a spherical magnet placed at a fixed dis-

ance from the interface. We showed that, when the magnet is suf-

ciently far from the interface, the free surface deformation is static,
hile below a threshold value, the interface destabilizes and forms

jetting fluid. These features are also observed experimentally, in

different but related system in which the ferrofluid is suspended

n water [19]. Our numerical results provide data that can be used

o determine the maximum deflection of a ferrofluid in the pres-

nce of a magnetic field gradient generated by an external perma-

ent magnet and the consequent transition to jetting. Additionally, a

imple scaling law allows us to collapse our numerical results from

series of configurations onto a single power law. It is interesting

o note that, while the key features observed in the experiments

re reproduced in our pure ferrofluid simulations (i.e., static inter-

acial deformations at large magnet separation or low magnetic sus-

eptibility, with transition to jetting at small magnet separations or

igh magnetic susceptibility), the static interfacial profiles obtained

n the two systems are rather different. In particular, the interfa-

ial profiles for the water–ferrofluid mix are more “peaked” under

he same conditions than those for pure ferrofluid; see Fig. 4. This

ould be due to the water providing a lubricating “slip” layer that al-

ows the ferrofluid to be more mobile in the experiments. Investigat-

ng such mixed systems computationally will be deferred to a future

ublication.
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