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We consider the propagation of a bubble in a non-
uniform Hele-Shaw flow. We focus on a distinguished
limit in which the bubble is approximately circular in
plan view and its velocity is determined by a net force
balance incorporating the Hele-Shaw viscous pressure
and drag due to the thin films separating the bubble
from the cell walls. We find that the instantaneous
bubble velocity is the same as that for a bubble in a
uniform flow given by the background fluid velocity
evaluated at the bubble centre. We apply the model
to common microfluidic components, such as a T-
junction and injection sources and sinks. Using the
same methodology, we derive approximate solutions
for the motion of a bubble in more complicated
domains including walls or obstacles. We validate the
approximate approach with two test cases in which
we can find the full solution analytically. First, we
consider the effect of an impermeable wall on a bubble
in a stagnation-point flow. Second, we consider the
motion of a bubble around a circular obstacle. In
both cases, the bubble deviates noticeably from the
streamlines of the background flow only when it is
very close to the wall or the obstacle.

1. Introduction
Many microfluidic systems involve the propagation of
bubbles through a Hele-Shaw cell [1–4]. In this work, we
focus on the motion of a single bubble whose diameter is
much larger than the cell height, so it is flattened into a
pancake-like shape, with thin liquid films separating the
bubble from the walls of the cell [5,6]. Furthermore, we
consider regimes in which the capillary number is small
enough for the plan-view shape of the bubble to remain
approximately circular. Booth et al. [7] present a model
for the motion of such a bubble in a uniform background
velocity.
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The dynamics of bubbles in a Hele-Shaw cell is both a classical fluid dynamics problem [8–11]
and a fundamental mathematical problem due to its connection to potential theory and complex
analysis [12–16]. For example, Taylor and Saffman [8] use conformal mapping techniques to
show that a circular bubble in a uniform flow travels at twice the background flow speed in a
regime where the Laplace pressure at the bubble interface is effectively constant. Crowdy [17]
uses complex variable methods to study multiple co-travelling bubbles in an infinite Hele-Shaw
cell. Andersen et al. [18] use exponential asymptotics and complex variable techniques to explore
solution selection in the formation of viscous fingers in a wedge.

In their seminal work, Bretherton [19] shows that the presence of thin liquid films above
and below a bubble in a capillary tube or Hele-Shaw cell gives rise to an additional pressure
drop across the menisci of the bubble. Meiburg [20] incorporates this additional pressure drop
in a numerical study of the shape of a bubble in a uniform background flow. Booth et al. [7]
use the boundary condition derived by Meiburg to develop a general theory for the motion of
approximately circular bubbles in a Hele-Shaw cell.

However, most of the aforementioned work involves the study of a bubble in a uniform
background flow, while microfluidic devices generally involve a non-uniform background flow.
Such flows can be generated, for example, by a T-junction [21–23] or by injecting fluid in one
place and removing it at another [24]; the former situation can be modelled mathematically as
a stagnation-point flow while the latter may be modelled using point sources and sinks. In this
paper, we therefore extend the model derived in [7] to encompass non-uniform background flow
conditions, obtaining a general equation of motion using complex variable methods similar to the
Milne-Thompson Circle Theorem [12]. To the best of our knowledge there has been no previous
theory to describe the motion of a bubble in a general non-uniform background flow.

In many physically relevant scenarios, cell walls or obstacles are present and have a significant
impact on the bubble dynamics [4,21–23,25]. For example, Booth et al. [7] show that the presence
of a wall can either increase or decrease the speed of a bubble in a Hele-Shaw cell, depending on
the flow parameters. Shen et al. [26] show that a pair of bubbles can be reflected by a single wall,
and “bounce” between two parallel walls. We adapt our methodology to derive approximate
solutions for the motion of a bubble in these more complicated domains. Accurate prediction of
the bubble trajectories will aid the fabrication of devices for bubble sorting or microfluidic bubble
logic [4].

The structure of this paper is as follows. In §2, we present the governing equations and use
a complex variable framework to find the analytic equation of motion for a bubble in a general
unconfined non-uniform flow. Examples of the solution are presented in §3, for the experimentally
relevant regimes of stagnation-point flow, and flow driven by point sources and sinks. In §4 we
use the methodology to derive an approximate law of motion for a bubble in more complicated
scenarios including walls or obstacles. We then compare the approximate solution with the full
analytical solution in two examples. First, we explore the dynamics of a bubble near a stagnation
point on an impermeable wall. Then, we consider the flow of a bubble around a circular obstacle.
Finally, in §5 we summarise our key findings.

2. Motion of a bubble in an infinite domain

(a) Governing equations
We consider the motion of a bubble in a Hele-Shaw cell of height ĥ parallel to the (x̂, ŷ)-plane.
Here ĥ is assumed to be much smaller than the horizontal dimensions of the cell so that we can
employ lubrication theory. The bubble is flattened by the cell walls above and below, causing it to
have a pancake-like shape and an approximately circular profile when viewed from above. The
bubble is subject to a non-uniform background flow with a characteristic background velocity Û .
The viscosity of the liquid and the liquid–air surface tension are denoted by µ̂ and γ̂, respectively.
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We non-dimensionalise the system by scaling lengths with a typical bubble radius R̂, the
depth-averaged fluid velocity û with Û , the fluid pressure p̂ with 12µ̂Û R̂/ĥ2, and time, t̂ with
R̂/Û . Dimensionless variables are denoted without hats. There are two dimensionless parameters
associated with our problem, the aspect ratio and the capillary number, defined by

ϵ=
ĥ

2R̂
, Ca=

µ̂Û

γ̂
, (2.1)

respectively, both of which are assumed to be small. Specifically, we consider the distinguished
limit in which Ca=O(ϵ3) as ϵ→ 0, so the viscous lubrication pressure balances the corrections
to the pressure drop across the menisci calculated by Bretherton [19]. In this regime, the bubble
remains circular to leading order [7].

In the Hele-Shaw approximation, we have u=−∇p, where the dimensionless pressure
satisfies Laplace’s equation and a kinematic boundary condition on the bubble surface. To close
the system we supply an effective net force balance between the Hele-Shaw viscous pressure and
the pressure drop due to the thin films above and below the bubble [7], given by

− δ

π

∮
∂Ωb

pn ds=
Ub

|Ub|1/3
. (2.2)

Here Ub = (Ub, Vb) is the bubble velocity, n denotes the unit normal, and δ is the Bretherton
parameter [7], defined by

δ=
1

η

Ca1/3

ϵ
=O(1), (2.3)

where the numerical constant η≈ 0.893 incorporates the coefficients calculated by Bretherton for
the pressure drops across the advancing and retreating menisci [19,27]. We note that the pressure
drops derived by Bretherton depend only on the normal velocity of the bubble interface relative
to the cell walls, and the equation of motion (2.2) is therefore unaffected by non-uniformity in the
background flow (see, for example, [28]).

Since the pressure, p, satisfies Laplace’s equation we can formulate the problem for a complex
potentialw(z) =−p(x, y) + iψ(x, y), where ψ is the dimensionless streamfunction and z = x+ iy.
If we denote the a priori unknown position of the bubble centre by z = c(t), then the complex
representation of the bubble velocity Ub =Ub + iVb = ċ, where the dot represents differentiation
with respect to t. Given c(t) and ċ(t) at time t, the complex potential is instantaneously determined
(up to an arbitrary real constant) by imposing the prescribed non-uniform flow in the far field and
the kinematic boundary condition on the bubble interface, namely

u · n=Ub · n on |z − c|= 1. (2.4)

Here, we have neglected leakage into the thin films because the effect is always subdominant,
contributing corrections of order Ca2/3 to the kinematic condition (2.4) (see, for example, [27,29,
30]). In complex variables, n can be represented by −idz/ds, where s denotes arc-length, and
dw/dz = u− iv. Thus we can rewrite (2.4) as

Im

[
dw

dz

dz

ds

]
= Im

[
Ub

dz

ds

]
on |z − c|= 1, (2.5)

where the over-bar represents complex conjugation. As noted above, we consider a regime in
which the bubble remains circular to leading order, and it follows that Ub = ċ is independent of s,
so we can integrate (2.5) to obtain

Im[w(z)] = q + Im
[
ċ(z − c)

]
on |z − c|= 1, (2.6a)

where q is an arbitrary real constant (or function of t). Finally, supposing that, without the bubble
present, we have a background flow with (dimensionless) complex potential f(z), we impose the
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external condition

w(z) has the same singularities as f(z) in |z − c|> 1. (2.6b)

(2.6a) (2.6b)
Assuming we have evaluated the complex potential w(z) satisfying (2.6), we find an ordinary

differential equation for c(t) by performing the effective net force balance (2.2) on the bubble,
which leads to

1

iπ

∮
|z−c|=1

w(z) dz = ċ

(
−1 +

1

δ|ċ|1/3

)
. (2.7)

(b) Equation of motion
For scenarios of interest, f(z) will have no singularities in |z − c| ≤ 1, (since we assume that the
bubble cannot intersect with any external fluid sources, sinks, or obstacles). Then we can write
w(z) = f(z) +W (z), where

• Im[W (z)] = Im
[
ċ(z − c)− f(z)

]
on |z − c|= 1, (2.8a)

• W (z) is holomorphic and bounded in |z − c|> 1. (2.8b)

Here, without loss of generality, we have set q= 0, which means that W (z), although bounded,
does not in general tend to zero as z→∞.

Since (z − c)(z − c) = 1 on the bubble surface, we can rewrite the kinematic boundary
condition (2.8a) as

Im[W (z)] = Im

[
f

(
c+

1

z − c

)
− ċ

z − c

]
on |z − c|= 1, (2.9)

where f(z) = f(z) is the conjugate function to f . Recall that all the singularities of f(z) are
assumed to be in |z − c|> 1, so the term in the square brackets on the right-hand side of (2.9)
is holomorphic in |z − c|> 1 and we have the solution

w(z) = f(z) + f

(
c+

1

z − c

)
− ċ

z − c
, (2.10)

up to an irrelevant constant.
Evaluating the force balance (2.7) gives

1

iπ

∮
|z−c|=1

[
f(z) + f

(
c+

1

z − c

)
− ċ

z − c

]
dz = ċ

(
−1 +

1

δ|ċ|1/3

)
. (2.11)

By Cauchy’s Residue Theorem, the first term in the integral in (2.11) evaluates to 0, and the last
term evaluates to −2ċ. To manipulate the middle term of the integral into a suitable form for
Cauchy’s Residue Theorem, we take the conjugate and use dz =−dz/(z − c)2 to obtain

1

iπ

∮
|z−c|=1

f(z)

(z − c)2
dz = ċ

(
1 +

1

δ|ċ|1/3

)
. (2.12)

The left-hand side can now be evaluated to obtain the equation of motion

2f ′(c) = ċ

(
1 +

1

δ|ċ|1/3

)
. (2.13)

Since the velocity of the background flow is given by u− iv= f ′(z), equation (2.13) implies
that the bubble goes with the flow, with its velocity proportional to the background velocity
evaluated at the centre of the bubble. Thus, the bubble travels along a streamline of the flow that
would exist if the bubble were not present. Unlike a tracer particle, however, the bubble moves at
a different speed from the background flow.
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By taking the absolute value of each side of (2.13), we obtain the universal relation

2uf = ub + u
2/3
b , (2.14)

between uf = δ3|f ′(c)| and ub = δ3|ċ|, which are the dimensionless speeds of the background
flow and the bubble at z = c, respectively, when we choose the characteristic velocity Û such that
δ= 1. We plot the prediction (2.14) for the bubble speed versus the background flow speed in
figure 1. We observe that ub is a monotonic increasing function of uf . As uf → 0 we find that
ub ∼ (2uf )

3/2, while ub ∼ 2uf as uf →∞. Thus the Taylor–Saffman prediction [8], that a circular
bubble travels at twice the background flow speed, is recovered when the background flow is
sufficiently fast.

If we define the relative speed of the bubble compared to the background velocity at the bubble
centre as Urel = ub/uf = |ċ| /

∣∣f ′(c)∣∣> 0, then (2.14) may be expressed in the form

U
2/3
rel

2− Urel
= u

1/3
f = δ

∣∣f ′(c)∣∣1/3 =:∆(c). (2.15)

First consider the simplest non-trivial case of a uniform background flow, which can be used
to describe pressure-driven flow through a Hele-Shaw channel (see, for example, [31,32]). The
dimensionless complex potential is f(z) = z, so f ′(z)≡ 1 and (2.15) reduces to

U
2/3
b

2− Ub
= δ, (2.16)

where now |ċ|=Ub is the bubble speed relative to the constant background flow speed. The
relation (2.16) was obtained by Booth et al. [7] for a bubble in a uniform flow and has now been
extensively validated experimentally [27]. The generalised relation (2.15) is equivalent to (2.16)
when the bubble velocity is measured relative to the local flow speed and ∆(c) is interpreted as
the local value of the Bretherton parameter, based on the background flow velocity evaluated at
the bubble centre z = c.

To illustrate how the general theoretical result (2.13) works in practice, in the next section we
apply it to two examples relevant to microfluidic devices: stagnation-point flow, and flow due to
a point source and sink. In both situations, the bubble trajectories can be explicitly stated, allowing
for easy calculation of Urel from (2.15) and providing physical insight into how the motion of a
bubble varies with position in these commonly encountered flows.

3. Examples

(a) Stagnation-point flow
Next, we consider stagnation-point flow, which has the complex potential f(z) = z2, with
appropriate non-dimensionalisation. This background velocity can be used to simulate the flow
in a T-junction or a cross-junction, which are common components in microfluidic systems (see,
for example, [21–23]). In this case, (2.13) becomes

4c= ċ

(
1 +

1

δ|ċ|1/3

)
. (3.1)

A streamline in the positive quadrant (without loss of generality) is given by the hyperbola
xy= a2 for some constant a≥ 0. The path followed by a bubble can thus be parametrised by

c(t) = a
(
eϕ(t) + ie−ϕ(t)

)
, (3.2)

where

ϕ̇

[
1 +

1

δa1/3|ϕ̇|1/3(2 cosh 2ϕ)1/6

]
= 4. (3.3)
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Figure 1. The normalised speed of the bubble, ub, versus the normalised speed of the background flow, uf , on log–log

axes. When uf → 0, ub ∼ (2uf )
3/2 and as uf →∞, ub ∼ 2uf .
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Figure 2. Trajectories of the bubble centre, c, in (a) a stagnation-point flow with δ= 0.5, (b) flow between a point source

and sink with s= 2 and δ= 1. The colour bars show the value of Urel, given by (2.15).

In figure 2(a) we overlay trajectories of (3.1) on a density plot of the relative bubble speed Urel,
given by (2.15). We observe that Urel → 2 as |c| →∞, i.e., where the background flow is very fast,
the bubble travels approximately twice as fast. On the other hand, Urel → 0 as |c| → 0, i.e., as the
background flow speed approaches zero, the bubble speed decreases to zero even more rapidly.
In particular, for a bubble travelling along x= 0, the bubble centre will approach the origin but
not reach it in finite time.



7

royalsocietypublishing.org/journal/rspa
P

roc
R

S
oc

A
0000000

..................................................................

(b) Point source and sink
In many microfluidic devices, fluid is injected into the Hele-Shaw cell via a syringe and then
removed similarly at some point downstream [24]. The resulting flow can be modelled using a
point source and sink of equal strength some distance apart. Without loss of generality, we may
place the singularities at z =±s∈R, so the complex potential for the flow is given by

f(z) = log(z − s)− log(z + s), (3.4)

with suitable non-dimensionalisation. For this system, (2.13) becomes

2

(
1

c− s
− 1

c+ s

)
= ċ

(
1 +

1

δ|ċ|1/3

)
. (3.5)

The streamlines are circular arcs on which

c(t) = hi +
√
h2 + s2eiϕ(t), (3.6)

for constant h∈R, and where ϕ(t) satisfies

2s

(h2 + s2)(h+
√
h2 + s2 sinϕ)

= ϕ̇

[
1 +

1

δ|ϕ̇|1/3(h2 + s2)1/6

]
. (3.7)

In figure 2(b) we overlay trajectories of (3.5) on a density plot of Urel. In contrast with the
stagnation-point example, now the background flow velocity tends to zero far from the source–
sink pair, so likewise Urel tends to zero and hence the bubble velocity tails off even more rapidly
in the far field. We also observe that Urel → 2 as c→±s, so the bubble travels faster than the
background flow in a neighbourhood of the source or sink.

4. Flows with boundaries

(a) Approximate solutions
So far, all of our solutions are for a bubble in an infinite Hele-Shaw cell. In many physical
situations, cell walls or obstacles are present and have a significant impact on the bubble dynamics
(see §1). In these situations, the solution found in §2(b) is no longer valid. Furthermore, an
analytical solution is no longer possible in general due to the more complicated geometry.
However, we can use the methodology developed in §2(b) to derive an approximate equation of
motion for a bubble in a more complicated domain, including cell walls or obstacles. We construct
the approximate solution as follows:

(i) find the complex potential f(z) of the flow without the bubble present;

(ii) use (2.13) as an approximate equation of motion for the bubble.

This approximation is equivalent to assuming that the image contributions due to the presence
of the bubble are negligible, so the bubble follows but does not affect the streamlines of the
background flow. Similar approximations are employed to study the dynamics of a large number
of bubbles in a uniform background flow using dipole models (see, for example, [26,31,33]).

The advantage of such an approximation is that one only needs to find the complex potential
of the background flow once, from which the equation of motion for the bubble is found once
and for all. In contrast, for the full solution, one needs to calculate the complex potential in the
evolving multiply-connected domain at each time step, which is much more laborious.

In the next two subsections, we will compare the approximate solution described above
with two scenarios in which we can find the full solution analytically. First, we consider a
stagnation-point flow with an impermeable wall. Then we consider the flow of a bubble around a
circular obstacle. In both cases, we compare the instantaneous bubble velocities predicted by the
approximate and the full solution, as well as the transit times of a bubble (until either collision
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c
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Im z
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-ζ = f(z)

1
X

Re ζ

Im ζ

Figure 3. Schematic of the conformal map ζ = f(z) (4.2) from the fluid region, Ω, to the annulus {ζ :X ≤ |ζ| ≤ 1}.

with the wall or successful navigation around the obstacle). The instantaneous bubble velocities
provide local information about the effect of the boundaries on the bubble motion, while the
transit times provide a useful diagnostic of the global influence of the boundaries on the bubble
dynamics. In particular, we will see that small local errors in the instantaneous velocity when the
bubble is close to an obstacle do not in general accumulate to significantly affect the global bubble
trajectory. In practice, accurate control of bubble transit times is essential in complex microfluidic
components such as logic gates [4].

(b) Bubble near a stagnation point on a wall

(i) Solution

Returning to the stagnation-point flow introduced in §3(a), we now include an impermeable wall
along the real axis through the stagnation point. This setup provides a simple model for a bubble
passing through a T-junction in a microfluidic device. The presence of the wall does not affect the
background complex potential f(z) = z2, so the approximate equation of motion for the bubble,
as described in §4, is still given by (3.1).

To find the full solution, we seek a complex potential w(z) which is a holomorphic function
that satisfies the boundary conditions

Im[w(z)] = q + Im
[
Ub(z − c)

]
on |z − c|= 1, (4.1a)

Im[w(z)] = 0 on Im(z) = 0, (4.1b)

w(z)∼ z2 as z→∞, (4.1c)

where the complex bubble velocity is again denoted by Ub = ċ. We adapt the approach used by
Booth et al. [7] by conformally mapping the solution domain, Ω, onto a concentric annulus (see
figure 3), where the problem becomes solvable with standard techniques. Following the mapping

ζ = f(z) =
z − α− i

√
β2 − 1

z − α+ i
√
β2 − 1

, (4.2)

where c= α+ iβ, the solution domain in the ζ-plane is A= {ζ :X < |ζ|< 1}, where

X = β −
√
β2 − 1. (4.3)
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If we write the complex potential in the form w(z) = z2 +W
(
f(z)

)
, then W (ζ) is a

holomorphic function on the annulus A and satisfies the boundary conditions

Im[W (ζ)] = 0 on |ζ|= 1, (4.4a)

Im[W (ζ)] = q + Im

[
ρ

(
1 + ζ

1− ζ

)
+ ν

(
1 + ζ

1− ζ

)2
]

on |ζ|=X, (4.4b)

where ρ= (2α− Ub)i
√
β2 − 1 and ν = β2 − 1. We expand W (ζ) as a Laurent series to obtain

W (ζ) =−
∞∑

n=1

X2n

1−X2n

[
(4nν + 2ρ)ζn + (4nν + 2ρ)ζ−n

]
. (4.5)

Evaluating the left-hand side of the force balance (2.7) and using Cauchy’s Residue Theorem we
find

1

iπ

∮
∂Ωb

w(z) dz =−4i
√
β2 − 1

∞∑
n=1

nX2n

1−X2n
(4nν + 2ρ), (4.6a)

=−2
√
β2 − 1

(logX)3

(
(β2 − 1)iΨ ′′

X2(1) + (2α− Ub)
√
β2 − 1Ψ ′

X2(1) logX
)
, (4.6b)

where we have rewritten the sums in terms of the q-digamma function, Ψ [34]. The equation of
motion (2.7) can then be written as

F1(c) = Ub

(
F2(β) +

1

δ|Ub|1/3

)
, (4.7)

where

F1(α+ iβ) =−
2i
(
β2 − 1

)3/2
(logX)3

Ψ ′′
X2(1) +

4α
(
β2 − 1

)
(logX)2

Ψ ′
X2(1), (4.8a)

F2(β) =−1 +
2
(
β2 − 1

)
(logX)2

Ψ ′
X2(1). (4.8b)

(ii) Results

One can verify that F1(c)∼ 4c and F2(β)→ 1 as Im[c] = β→∞, and thus the full equation of
motion (4.7) is indeed approximated by (3.1) when the bubble is sufficiently far from the wall.
As demonstrated in figure 4, we find that the bubble trajectories continue to closely follow the
streamlines of the background flow until the bubble is extremely close to the wall. Recall that the
bubble has unit dimensionless bubble radius, so the bubble intersects the wall when β = 1. The
trajectory shown in figure 4 therefore departs noticeably from the corresponding streamline only
when the bubble is less than about a quarter radius from the wall. We note that the Hele-Shaw
model will ultimately break down and three-dimensional effects will become important when
β − 1 =O(ϵ).

To distinguish between the full and approximate solutions, we denote by Ub =Ub + iVb and
Uapprox =Uapprox + iVapprox the bubble velocities predicted by (4.7) and by the approximate
equation (3.1), respectively. We compare the directions of motion predicted by the two theories by
computing the velocity ratio

Uratio =
Vb/Ub

Vapprox/Uapprox
=−αVb

βUb
=

√
β2 − 1Ψ ′′

X2(1)

2βΨ ′
X2(1) logX

. (4.9)

This ratio is solely a function of the distance β from the wall, and is plotted in figure 5. It is a
monotonically increasing function of β withUratio → 1 as β→∞, andUratio → 6Z(3)/π2 as β↘ 1,
where Z(s) is the zeta-function. The former limit means the trajectories follow the streamlines of
the background flow far away from the wall; deviations of over 5% occur only when the bubble is



10

royalsocietypublishing.org/journal/rspa
P

roc
R

S
oc

A
0000000

..................................................................

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

y

x

(a)

0.6 0.7 0.8 0.9 1.0 1.1
1.0

1.1

1.2

1.3

1.4

1.5

y

x

(b)

Figure 4. (a): A trajectory of (4.7) (black) with δ= 1 and the corresponding streamline of the background flow (red,

dashed). (b) The trajectory zoomed into the range x∈ [0.6, 1.1].
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Figure 5. Velocity ratio Uratio given by (4.9) versus distance of the bubble centre from the wall, β.

less than approximately 0.3 radii away from the wall. The latter limit means the bubble still has a
non-zero velocity perpendicular to the wall as it approaches the wall and thus will always collide
with the wall in finite time.

In figure 6 we plot the time for collision against δ for initial bubble positions of the form
k(0.1 + 10i) with three different values of k. In each case, the bubble starts far enough from the
wall to closely follow a streamline initially, and k labels which streamline it is on. We observe
that the time taken for collision decreases with δ, because the bubble speed increases with δ.
We also observe that the approximate solution ignoring the wall underestimates the time taken
for a collision to occur. The presence of the wall thus provides some repulsive influence on the
approaching bubble (also indicated by the weak singularity as β↘ 1 in figure 5), but not strong
enough to prevent finite-time collision.

To further quantify the difference between the full and approximate solutions we define the
relative error as

Error(β) =max
α∈R

|Ub − Uapprox|
|Ub|

. (4.10)

We plot the error defined by (4.10) versus δ in figure 7, for various values of β. The maximum
error is found to occur when β = 1, as expected because in this limit the bubble is touching the
wall. However, as β is increased the error quickly decreases, with the error being at most 0.1 when
β = 2. We find three regions of interest: as δ increases from zero, the error initially decreases, then
remains constant for intermediate values of δ, before increasing again at large δ.
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Figure 7. The maximum error in the bubble velocity for stagnation-point flow versus δ at fixed values of β = 1 (solid),

1.5 (dashed), 2 (dotted).

To explain this behaviour, in figure 8 we plot the bubble velocity components (Ub, Vb) and the
corresponding approximations (Uapprox, Vapprox) versus α, with β = 1 and three different values
of δ in each of the three regions identified above. In each case, because we keep β = 1 constant,
the error is dominated by the behaviour of |Ub − Uapprox|, and the errors in Vb are much smaller,
except near α= 0, because Ub ≫ Vb as α→∞ (see (4.7) and (4.8)). In the small δ regime (see
figure 8(a)) we find that Uapprox <Ub for small values of α. However we can calculate the limit

Uapprox

Ub
→ 2− 6

π2
> 1 as α→∞, (4.11)

so the two graphs must cross over at some value of α= α∗, say. For small values of δ, the
maximum error occurs within the region 0<α<α∗. However, as δ is increased (see figure 8(b)),
the value of α∗ decreases until the maximum error occurs at α=∞ (and is therefore constant).
Finally, as δ is further increased, α∗ reaches zero so Ub <Uapprox everywhere (see figure 8(c)), and
the largest relative error now occurs at α= 0.

(c) Motion of a bubble past a circular obstacle
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Figure 9. Schematic of the flow of a bubble past a circular obstacle (shown in grey).

(i) Solution

In this next example, we consider the flow of a bubble past a circular obstacle in a uniform outer
flow of dimensionless magnitude 1. Again suppose the bubble centre is at c∈C with radius 1,
and the obstacle is centred at the origin with radius R. The problem setup is shown schematically
in figure 9.

It is straightforward to construct an approximate equation of motion for the bubble using the
methodology laid out in §4. Without the bubble present, the complex potential f(z) for flow
around a circular obstacle is given by

f(z) = z +
R2

z
. (4.12)

The approximate bubble velocity Uapprox is then given by (2.13), i.e.,

2

(
1− R2c2

|c|4

)
= Uapprox

(
1 +

1

δ|Uapprox|1/3

)
. (4.13)
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The complex potential w(z) for the full solution is a holomorphic function in the fluid domain,
Ω, and satisfies the boundary conditions

Im[w(z)] = q + Im
[
Ub(z − c)

]
on |z − c|= 1, (4.14a)

Im[w(z)] = 0 on |z|=R, (4.14b)

w(z)∼ z as z→∞. (4.14c)

To solve (4.14) we adapt the methodology of [35] and conformally map from the solution domain,
Ω, onto the concentric annulus A= {ζ :X ≤ |ζ| ≤ 1} using the mapping

ζ =
1− p(z − c)e−iϕ

(z − c)e−iϕ − p
, (4.15)

where ϕ= π + arg(c) and

p=
|c|2 −R2 + 1−

√
(|c|2 −R2 + 1)2 − 4|c|2
2|c| , (4.16a)

X = p2 +
(R− 1)p(p+ 1)(|c|−R− 1)

|c|(|c| −R− p)
. (4.16b)

We then define w(z) = z +W (ζ), so that W (ζ) is holomorphic on A, and satisfies the boundary
conditions

Im[W (ζ)] = q + Im

[
(Ub − 1)

(
1 + pζ

ζ + p

)
eiϕ
]

on |ζ|= 1, (4.17a)

Im[W (ζ)] =− Im

[(
1 + pζ

ζ + p

)
eiϕ
]

on |ζ|=X . (4.17b)

We expand W (ζ) as a Laurent series to obtain

W (ζ) =
(1− p2)e−iϕ

p

∞∑
n=1

Xn

1−X 2n

[(
(Ub − 1)

(−p
X

)n
− e2iϕ

(
−X
p

)n)
ζn

+

(
(Ub − 1)e2iϕ (−pX )n −

(
−X
p

)n)
ζ−n

]
. (4.18)

Evaluating the left-hand side of the force balance (2.7) and using Cauchy’s Residue Theorem we
thus find

1

iπ

∮
|z−c|=1

w(z) dz =
2(1− p2)2

p2

∞∑
n=1

nX 2n

1−X 2n

[
(1− U1)

( p
X

)2n
− e2iϕ

]
. (4.19)

We can then write the equation of motion (2.7) as

f2 − f1c
2

|c|2
= Ub

(
f2 − 1 +

1

δ|Ub|1/3

)
, (4.20)

where

f1 =
2(1− p2)2

p2
Ψ ′
X 2(1)

4 log2 X
, (4.21a)

f2 =
2(1− p2)2

p2

Ψ ′
X 2

(
log p
logX

)
4 log2 X

(4.21b)

are functions of |c| and R.
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Figure 10. (a): A trajectory of (4.20) (black) with δ= 5 and R= 1 and the corresponding streamline of the background

flow (red, dashed). (b) The trajectory zoomed into the range x∈ [−0.5, 0.5].

(ii) Results

One can verify that f1 ∼ 2R2/|c|2 and f2 → 2 as |c|/R→∞, and the full equation of motion (4.20)
thus reduces to the approximate version (4.13) when the bubble is far from the obstacle. However,
similarly to §4(b), the solutions to (4.14) do not precisely follow the streamlines of the background
flow, as is observed in figure 10. Here, the bubble deviates noticeably from its initial streamline
only when the bubble is very close to the obstacle (see the close-up in figure 10(b)).

We can quantify the deviation from a streamline by defining a velocity ratio in the same
manner as (4.9), that is,

Uratio =
Vb/Ub

Vapprox/Uapprox
=F

Re
[
1− R2c2

|c|4
]

Re
[
1− f1c2

f2|c|2
] , (4.22)

where the prefactor is given by

F =
f1|c|2

f2R2
. (4.23)

From the above estimates for f1 and f2, we have that F → 1 and thus Uratio → 1 as |c|/R→∞,
confirming that the bubble closely follows the streamlines of the background flow far from the
obstacle. Indeed, we can use the quantity F as a measure of how closely the bubble follows the
streamlines of the background flow, which is more useful than (4.22) because it is only a function
of the distance |c| (and the obstacle radius R).

We plot F versus |c| in figure 11 for three different values of R. As |c| decreases from +∞,
F increases from its limiting value of 1, approaching a finite limit as the bubble approaches the
obstacle, namely

F → π2(1 +R)2

3R2Z
(
2, R

1+R

) > 1 as |c| → 1 +R, (4.24)

where Z(s, b) is the Hurwitz zeta-function [36], defined by

Z(s, b) =

∞∑
n=0

1

(n+ b)s
. (4.25)

Thus we observe significant deviations from the background flow streamlines only when the
bubble is close to the obstacle, as is seen in figure 10(b). Furthermore, those deviations are more
noticeable for smaller values of the obstacle radius R.

As in §3(a), we observe a mild (square root) singularity in the function F as the distance |c| −
R− 1 of the bubble from the obstacle tends to zero, but this repulsive effect is too weak to prevent
a finite-time collision. However, for suitably chosen initial conditions, it is possible for the bubble
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Figure 11. Velocity ratio function F versus centre–centre distance from the bubble to the obstacle, |c|, for R= 1 (black),

2 (red), 4 (blue).

to safely navigate past the obstacle. In figure 12(a), we plot the time, T , taken for the bubble to
traverse around the obstacle versus δ for two such cases, starting at z =−x0 + iy0 and ending at
z = x0 + iy0. Specifically, we choose (x0, y0) = (4, 1.6) when R= 1, and (x0, y0) = (5, 1.95) when
R= 2. We find that T is a monotonically decreasing function of δ, as expected, since the bubble
speed increases with δ. We also observe that the approximate solution (4.13) closely matches the
full solution (4.20), slightly over-predicting T for δ < 1 and under-predicting for δ > 1. (Similar
qualitative changes in behaviour as δ passes through 1 were found by [7]).

In figure 12(b) we plot the normalised difference, (T − Tapprox)/TC , between the full solution
and the approximate solution, versus δ. The characteristic time-scale is taken to be the time for
a bubble to travel the diameter of the obstacle if the obstacle was not present, i.e., TC = 2R/Ũb,
where Ũb is given by the solution of (2.16). This normalisation takes into account variations in
the transit time arising solely from the dependence of the isolated bubble speed on δ, and we
observe in figure 12(b) that it approximately collapses the data for different values of the obstacle
radius R. We also observe that the switch from the approximate solution under-estimating to
over-estimating the transit time occurs close to but not precisely at δ= 1. Overall, despite the
significant deviations between the approximate and full solutions for the velocity when the
bubble is very close to the obstacle, the total transit time T is affected only slightly, because
the bubble is very close to the obstacle only briefly. In both examples considered here, we find
that the bubble is within 0.1 radius of the obstacle less than 15% of the time, regardless of the
value of δ.

In the same manner as (4.10) we define the maximum relative error as

Error(|c|, R) = max
arg c∈[0,2π)

|Ub − Uapprox|
|Ub|

. (4.26)

We plot (4.26) versus δ, for R= 1 and various values of |c| in figure 13(a) and for |c|= 1 +R

and various values of R in figure 13(b). We find that the maximum error occurs at |c|= 1 +R, as
expected, and it quickly decreases with increasing |c|. Also, the error increases with the obstacle
radius, R. For small values of δ, the error is a decreasing function of δ, while for large values it
is an increasing function, with a non-smooth transition between the two behaviours. Similarly
to §4(b)ii, this switch in behaviour occurs when the location of the maximum error jumps from
arg c=±π/2 to arg c= 0.
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Figure 12. (a) Time taken, T for the bubble to travel around the obstacle at |z| ≤R for the full solution (black) and the

approximate solution (red) versus δ, with (solid) R= 1 and the bubble centre initially at z =−4 + 1.6i, and ending at

z = 4 + 1.6i, (dashed) R= 2 and the bubble centre initially at z =−5 + 1.95i, and ending at z = 5 + 1.95i. (b) The

normalised difference, (T − Tapprox)/TC , between the full solution and the approximate solution, versus δ, for R= 1

(solid) and R= 2 (dashed). The normalisation constant TC = 2R/Ũb, where Ũb is given by the solution of (2.16).

0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Er
ro

r

δ

?

Increasing |c|

(a)

0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

Er
ro

r

δ

6

Increasing R

(b)

Figure 13. The maximum error in the bubble velocity versus δ for flow past a circular obstacle: (a) with R= 1 and |c|= 2

(solid), 2.1 (dashed), 2.5 (dotted); (b) with |c|= 1 +R and R= 1 (solid), 2 (dashed), 4 (dotted).

5. Conclusions
In this paper, we model the motion of a bubble in a non-uniform flow in a Hele-Shaw cell. We
consider the distinguished limit where the bubble aspect ratio, ϵ, and the capillary number, Ca,
are both small, with the so-called Bretherton parameter δ=Ca1/3/ηϵ=O(1) (where η≈ 0.893 is
a constant) In this regime, the bubble is approximately circular and its velocity is determined by
a net force balance. We thus find a general equation of motion for such a bubble in an arbitrary
external flow. We apply the theory to study the motion of a bubble in a stagnation-point flow, and
between a source and a sink, situations that occur abundantly in microfluidic devices.

For the simplest nontrivial case of a uniform external flow, the theory reproduces the result
obtained previously by Booth et al. [7]: the bubble travels parallel to the background flow, and
its relative speed is determined as a function of δ. We find that the same holds true for a
general background flow: the bubble travels parallel to the local velocity, and its relative speed
is determined by the same function of the local Bretherton parameter, which is defined using
the external flow speed evaluated at the bubble centre. Hence, the bubble centre travels along a
streamline of the background flow that would exist if the bubble was not present. The bubble
thus acts somewhat like a tracer particle, albeit one that travels at a speed different from the
background flow speed.

Next, we use the same methodology to derive an approximate equation of motion for a bubble
in a more complicated domain including walls or obstacles. The strategy is to find the complex
potential of the background flow without the bubble present and then simply substitute this
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potential into our general equation of motion. This approximation ignores second-order image
effects from interaction between the bubble and any boundaries present, similarly to the dipole
approximations used to study the motion of bubbles in a uniform background flow [26,31,33]. In
this approach, the complex potential of the background flow, and hence the equation of motion
for the bubble, can be derived once and for all, whereas, in the full solution, one would need to
recalculate the complex potential at each time step.

We compare the approximate solution with the full analytical solution in two test cases: a
stagnation point on a wall, and flow around a circular obstacle. In both cases, the approximate
solution for the bubble velocity proves to be remarkably accurate unless the bubble is extremely
close to the obstacle. We devise the diagnostic functions Uratio and F that allow the accuracy of
the approximate solutions to be quickly assessed. As shown in figure 5, the approximate and full
solutions for the stagnation point flow are within 5% of each other provided the bubble is more
than 0.3 radii away from the wall. Similarly, figure 11 shows that the approximate solution for
flow past a circular obstacle differs from the full solution by less than 5% provided the bubble
is more than 0.2 radii from the obstacle. Furthermore, the bubble tends to be that close to the
obstacle only briefly (if at all). We can thus obtain generally good approximations for the bubble
trajectories and, e.g., the time taken for the bubble either to hit or to pass by the obstacle (see
figures 6 and 12).

Our model neglects the leakage of fluid into and out of the thin films between the bubble and
the cell walls. This effect causes small corrections to the kinematic boundary condition (2.4), which
can be incorporated into our model as shown in [30]. We note also that, as the bubble approaches
a wall or an obstacle, the Hele-Shaw model will ultimately break down when the distance from
the boundary becomes comparable to the cell height. To describe the final stages of collision or a
near-miss, a three-dimensional analysis would need to be conducted in the thin gap between the
bubble and the boundary.

The results presented in this paper provide a framework to study the dynamics of bubbles in a
wide variety of background flows found in microfluidic devices. In principle, the technique could
be extended to include multiple bubbles, by following the conformal mapping techniques used
in [35] for the motion of two bubbles or the Schottky-Klein prime function approach developed
by Crowdy [17,37,38] for a general number of bubbles.
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