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Asymmetric multilayered filters, comprising a series of membranes with varying pore sizes stacked on
top of one another, allow filtration to be tailored in a variety of novel ways. We develop a network model
that systematically captures the complex filtration behaviour in such multilayer filters. The model allows
us to understand the response of the system when challenged with a particular feed composition,
characterized through the particle size and adhesivity to the membrane. We show how the model en-
ables comprehensive and time-efficient sweeps in parameter space to be conducted that determine the
optimal multilayered filter configuration for a given filtration challenge, classified by the number of
membrane layers, the change in pore size between each layer (filter taper angle), and the level of trans-
pore interconnectivity between each layer. The model allows us to isolate and analyse the effect of each
of the specific filter characteristics and identify the practical merits and disadvantages. In particular, we
predict that the optimal arrangement for maximizing throughput through the filter is to have pore radius
gradually decreasing with depth, and a slight level of pore interconnectivity, with the precise set-up a
function of the particle size, adhesivity and number of filter layers. The results of the analysis are used to
draw conclusions on the design of membrane filters for optimal filter performance.

& 2016 Published by Elsevier B.V.
1. Introduction

Membrane filtration can be tailored in a variety of ways by
using a multilayered structure, composed of an array of mem-
branes with different pore sizes stacked on one another. Such fil-
ters can, for example, offer a simple way of sequentially separating
cells or particles [1,2], or combined to form the filtration support
layers required in ultrafiltration, gas separation and catalysis [1]. In
other cases, by using a membrane impregnated with bacteria-
destroying medication in parallel with another that sieves parti-
cles, a greater spectrum of contaminants may be removed in one
filtration process [3].

Filters whose porosity decreases with depth, or porosity-graded
asymmetric membranes have been observed to improve efficiency
[4–8]. Their increased efficiency can be qualitatively attributed to a
decrease in porosity compensating for a reduction of contaminant
concentration with depth, owing to prior filtering. This effect is
particularly desirable, since often only a small portion of the filter
media near the surface is actually involved in the active removal of
Griffiths).
contaminants, with much of the deeper filter media left unused
when the filter clogs. This leads to premature clogging and thus
inefficient use of the filter [9].

Despite the significant merits of multilayer filters being well-
known in industry, a systematic study of the underlying me-
chanisms responsible for the superior performance that char-
acterizes the internal behaviour of such multilayer filters during
operation has yet to be explored. Currently, experimentally it is
difficult to observe the internal particle trapping within a filter
during the filtration process directly, with limited techniques only
now beginning to emerge, such as positron annihilation spectro-
scopy [10,11]. Instead, deductions are made only after dissecting
the porous medium once filtration has ceased. For these reasons,
predicting and designing the optimal multilayer filter structure via
a systematic series of experiments is impractical, and a theoretical
study is highly desired.

Mathematical and computational methods allow for in-
vestigation of filtration challenges. Computational fluid dynamics
(CFD) for modelling filtration scenarios are described in [12]. In the
same paper, the authors use scanning electron microscopy to ob-
tain a full description of a given membrane microstructure, and
implement a full CFD model of particles moving within the
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membrane. While a full CFD simulation provides excellent insight
into how an individual particle is trapped, computational costs
associated with keeping track of all the particles within a com-
plicated pore structure makes it impractical on a large scale.

Dalwadi et al. [13] use homogenization theory to explore the
improved filtration observed in a continuous porosity-graded fil-
ter. The model presented describes the motion of contaminants
within a continuous media as they are transported via advection
and diffusion. The results corroborate experimental observations,
and are able to predict the performance of a filter through a re-
duced and computationally efficient mathematical model. The
model enables large-scale parameter sweeps to explore filtration
behaviour, and assist in the selection of porosity-graded filters for
a given challenge feed solution. The model, however, is limited in
that it does not include filter blocking mechanisms.

In our previous study [14], a network model was laid out that
captures blocking in a filter composed of discrete pores through
the adhesion of particles to the internal pore structures (standard
blocking), the complete blocking of pores, and formation of a cake
layer on the surface of the membrane [15]. In particular, an em-
phasis was placed on a systematic method of coupling the inter-
play between each of these fouling routes. The model is able to
demonstrate how an understanding of this coupling was essential
to explain a series of recent experimental observations. As a con-
sequence, the model is able to predict the type of fouling beha-
viour that is occurring at a given time by simply studying mea-
surements of the volumetric flux and total throughput through the
membrane, without the need for dissecting the filter.

In this paper we analyse the efficiency of a multilayer filter,
composed of a series of membranes with varying pore sizes. We
derive a network model, which develops the model laid out in
[14], to simulate the transport of particles through a multilayer
filter and the trapping within. The model allows for adhesion of
particles that are able to pass within the membrane to the walls of
the pores, and for complete blocking of pores for which the par-
ticles are too large to enter. Pore interconnectivity is also included,
allowing particles that are not trapped within one layer to pass
into a choice of pores in the next filter layer. The network model
provides a predictive tool for choosing the appropriate membrane
to use, characterized by taper angle, affinity of the membrane
material to the particles, number of filter layers and the pore
connectivity, for a given feed solution.
Fig. 1. (a) Schematic diagram of a multilayer filter. Each layer, k, is initially com-
posed of an array of ×n m equal-sized pores, but whose radius R̂k may vary for
each layer. (b) Front schematic view illustrating the different pore radii at each
layer and the taper angle. At each level the particle may pass into the pore directly
beneath, or may traverse to one of four neighbouring pores. (Here two neigh-
bouring pores are shown; the additional two pores are located into and out of the
page.) The total filter thickness is ĥ .
2. Filter characterization

We consider a filter of depth ĥ composed of a series of N

membranes of equal thickness (^ )h N/ stacked on top of one other.
We label each membrane layer in succession, with layer k corre-
sponding to the kth membrane that the challenge feed will en-
counter. We consider each membrane layer to be composed of a
two-dimensional ×m n array of regularly spaced uniform pores, of

initial radii R̂k within the kth layer, as illustrated in Fig. 1. Here we
study regimes in which the difference in pore radius between any
two successive membranes is constant, but may reduce (a con-
stricting filter) or increase (a dilating filter). We characterize this
variation through the taper angle, α, defined by

α( ) =
^ − ^

^ ( )
R R

h
tan .

1
N1

To enable comparison between different filters we consider set-
ups in which the initial mean pore radius across the entire filter,

〈 ^〉R , is a constant, where
∑〈 ^〉 = ^
( )=

R
N

R
1

.
2k

N

k
1

We also classify a membrane through the interconnectivity of
pores between layers. Here we consider filters for which if a par-
ticle passes through a pore then it has the opportunity either to
pass into the pore in the layer directly beneath or to traverse to
one of the four neighbouring pores on the square grid (Fig. 1b). We
denote the hydraulic conductivity of the connection to an adjacent
pore by γ̂ : when γ̂ = 0 the particle passes directly to the next pore
in the layer beneath and we call this a non-connected filter; when
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γ̂ ≠ 0 we have a locally connected filter and the particle may tra-
verse to an adjacent pore instead of entering the pore directly
beneath. The particle is then either able to enter this new pore or
to traverse to a neighbour of this new pore site. We use a weighted
probability for the pore selection based on the fluxes through the
pores that favours pores through which there is a higher flux.
When γ̂ → ∞ the filter approaches global connectivity. In this
limiting case the connections between pores offer no resistance
and the particle enters the pore based solely on the relative pore
fluxes and not the pore proximity.
3. Mathematical model

We apply a constant transmembrane pressure difference, ΔP̂ ,
across the entire filter and examine the decline in volumetric flux,

Q̂ , with increasing throughput, V̂ , defined by

∫^ = ^( ) ( )

^

V Q s sd , 3
t

0

where t̂ denotes time.
The flow rate through a given pore (i,j) in layer k at time t̂ ,

^ (^)
( )

q tk

i j,
, is given by Poiseuille's law [16],

π

μ
^ (^) =

Δ^ ( )^ (^)
^ ( )

( )
( )

q t
N p t r t

h8
,

4
k

i j k k
i j

,
, 4

where μ is the viscosity of the feed solution (assumed constant)

and the pore radius ^( )
rk

i j,
can change with time due to the fouling

mechanisms. We note that ^ ( ) = ^( )
r R0k

i j
k

,
, and recall that the depth of

an individual membrane layer is ĥ N/ . Unlike the single-layer
model [14] we must also compute the pressure drop across each
layer, Δ^ ( )p tk , ≤ ≤k N1 . To achieve this we must determine the
fluid pressure in the region between the membrane layers. For the
region between layers k and +k 1 at pore (i,j) we denote this

pressure by ^
+

( )
pk

i j

1/2

,
for ≤ ≤ −k N1 1, ≤ ≤i m1 , ≤ ≤j n1 . We set the

outlet pressure to be zero without loss of generality, so then
=+

( )p 0N
i j

1/2
, and = Δ( )p Pi j

1/2
, . The pressure difference across pore k is

then Δ^ = ^ − ^( )
−

( )
+

( )
p p pk

i j

k

i j

k

i j,

1/2

,

1/2

,
, for ≤ ≤k N1 . The transverse flux

between layers k and +k 1 of pores (i,j) and ( + )i j1, in layer k is
given by

γ^ = ^(^ − ^ ) ( )+
( )→( + )

+
( )

+
( + )

q p p , 5k

i j i j
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,
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1,

and similarly for the flux between other neighbouring pores.
In a similar manner to Kirchoff's law for an electrical circuit, we

assume that the fluid flux entering each pore site is balanced by
the flux leaving. At pore (i,j) between layers k and +k 1 this im-
plies that

^ = ^ + ^ + ^ + ^ + ^
( )

( )
+

( )
+

( )→( + )
+
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+

( )→( + )
+
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Since each flux depends linearly on the pressures ^
+

( )
pk

i j

1/2

,
we can

express the system as a matrix problem for ^
+

( )
pk

i j

1/2

,
, ≤ ≤ −k N1 1,

≤ ≤i m1 , ≤ ≤j n1 which we solve numerically using MATLAB.

The total volumetric flow rate through each layer, Q̂ k, is then
given by the sum of the individual fluxes through all pores for that
layer,

∑ ∑^ = ^
( )= =

( )
Q q .

7
k

i

m

j

n

k

i j

1 1

,

Conservation of mass ensures that, at any given time, Q̂ k must

equal the flux through the entire filter, Q̂ , for all ≤ ≤k N1 . The
total volumetric throughput is given by

∫^ = ^( ) ( )

^

V Q s sd . 8
t

0

The contaminants are assumed to be solid spherical particles of
constant radius, â. On average, a particle will arrive at the mem-

brane every ^ ^CQ1/ seconds, where Ĉ is the concentration (number
of particles per unit volume). For any given experiment the par-
ticles will, in practice, arrive at times that are randomly distributed
around this expected arrival value. However, we are concerned
with the general fouling behaviour that is observed and so con-
sider the result of the average of many numerical simulations. In
doing so, any randomness in the particle arrival time that is ob-
served for a single simulation will be smoothed out, and so it is
sufficient for us to assume that particles arrive in a uniform
manner with the fluid processed. All of the results presented in
this paper are the average of 20 independent simulations for a grid
size × = ×m n 7 7; the results yielded were found to be un-
changed by increasing the number of independent simulations or
grid size further.

To enable comparison between different model experiments,
we scale the time and flux via

^ = ^ ^( )

^(^) = ^( ) ( )
( )

t
t

CQ
Q t Q Q t

0
, 0 ,

9

so that, when =Q 1, a particle will arrive on average at the
membrane every unit dimensionless time. The dimensionless
throughput is then

∫= ( ) ( )V Q s sd . 10
t

0

We also scale all lengths with the mean pore radius,

^ = 〈 ^〉 ^ = 〈 ^〉 ^ = 〈 ^〉 ( )
( ) ( )r R r h R h a R a, , , 11k
i j

k
i j, ,

so the taper angle, α, is given by

α( ) =
−

( )
R R

h
tan . 12

N 1

We define the relative hydraulic conductivity,

γ γμ

π
=

^

^ ( )R

8
,

13
3

which compares the favourability of traversing to another pore
compared with direct transmission to the pore beneath. For a
membrane comprising uniformly spaced pores of equal pore ra-
dius, the probability of traversing to and then travelling through
an adjacent pore compared with passing into the pore directly
beneath is given by

κ
γ

=
+ ( )
h N

h N
/

/
;

14

κ(≤ )1 gives a measure of the probability of a particle to progress
directly into the pore below rather than traversing to a neigh-
bouring pore before progressing to the next layer. For a membrane
whose pore structure is anisotropic it is possible that particles may
favour traversing to another pore over direct transmission to the
layer beneath. (Such an effect has been observed with PVDF
membranes by Ho and Zydney [17].)

As discussed above, the flux of fluid through each pore, and
thus the fouling rate, is affected by various mechanisms. In the
following section we detail the effect of each of these fouling
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mechanisms and how they are accounted for within the network
model.
4. Routes to membrane fouling

4.1. Standard blocking

We assume that all blocking is constrained to within the pores
and not in the pore connections. If a particle of size a arrives at
pore (i,j) in layer k and < ( )a rk

i j, then the particle enters into the
internal pore structure. Once within the pore we allow for a finite
probability of particle adhesion to the pore wall, pa. This prob-
ability will in practice be a complex function that depends on
many features, such as membrane and contaminant composition
and geometry. For simplicity, here we suppose that pa is a constant
for each layer, although the mathematical model readily gen-
eralizes to more complex adhesion laws (see, for example, [14]).

The radii of the pores will shrink in response to the internal
deposition of particles and on average, for the simplest model for
radial contraction, the pore radius following deposition of ≥n 1

particles will be −( )r na h4 /3k
i j, 2 3 , as illustrated in Fig. 2(a). Thus,

the total number of particles that may be admitted by a pore in
layer k before complete blocking occurs, Tk, is given by

( ) =
( − )

( )
T a h

R a h

a
, Ceiling

3

4
,

15k
k
2 2

3

where ( )xCeiling denotes the ceiling function that returns the
smallest integer not less than x. This mechanism of reduction in
flux is termed standard blocking.

4.2. Complete blocking

If the particle of size a lands on an open pore (i,j) of size ( )rk
i j, and

> ( )a rk
i j, then complete pore blocking occurs (Fig. 2). In practice this

particle may create an imperfect seal around the pore, so that fluid
continues to flow through the pore. However, the flux through a
pore following complete blocking is typically much lower than the
flux through an open pore, and so in general the filtration process
no longer becomes practical following complete blocking and fil-
tration ceases. As a result, we assume that a perfect seal is made
when a particle completely blocks a pore without losing any of the
Fig. 2. Schematic diagram of possible blocking mechanisms: (a) Standard blocking:
Here pore radius >r a1 . Upon acceptance of ≥n 1 particles the pore radius reduces

to a new radius −r na h4 /31
2 3 . (b) Complete blocking: Here the pore radius <r a2 .
features observed during a typical filtration run. (For more details
on the implementation and a study of the effect of leakage due to
an imperfectly sealed pore see [14].)

In this paper the network model we derive is used as a fra-
mework to explore the impact that the filter properties, namely
the taper angle, pore interconnectivity between the membrane
layers, and number of layers, has on the filtration efficiency. The
model will allow us to conduct extensive parameter sweeps that
are impractical, or in some cases even impossible, to achieve ex-
perimentally. The resulting data will be used to make predictions
on the strategy for optimal membrane selection based on a given
feed composition, characterized through particle size and ad-
hesivity to the membrane.
5. Influence of taper angle

5.1. An optimal taper angle

To examine the effect of taper angle on the filtration efficiency
we first consider a non-connected filter γ( = )0 , for which particles
that exit a pore in a given layer transit to the pore directly beneath.
We consider a set-up composed of five membrane layers (N¼5)
and vary the taper angle, α, defined by (12). As the taper angle
increases the rate at which the flux declines with throughput is
unchanged in the early stages, but a convex region appears in
the QV signature for larger values of V (i.e., a region where

>Q Vd /d 02 2 ), as seen in the dot-dashed line in Fig. 3. This arises
due to the reduced flux decline, which ultimately leads to a higher
total amount of fluid processed before clogging occurs, i.e., an
increase in ( → ∞)V t , which we denote by Vn. However, we find
that, as the taper angle increases further, Vn begins to fall again
and the improvements in filtration efficiency are lost (Fig. 3, dotted
line). Similarly, we find that filters with a negative taper angle
yield a reduced total throughput, and exhibit an entirely concave
downward QV signature, that is, one for which <Q Vd /d 02 2 ev-
erywhere (Fig. 3, solid line). The possibility of convex regions in
the QV signature for some taper angles prohibits self-similar col-
lapse when scaling the graphs with the final throughput.

The existence of an optimal taper angle that maximizes the
throughput is clearly seen in Fig. 4, where a continuous depen-
dence on taper angle is extracted. We may rationalize the ob-
servation of improved total throughput by examining the rate of
pore constriction in each of the membrane layers. As contaminants
enter the membrane they will adhere to the pore walls at a rate
proportional to the contaminant concentration within the fluid,
which will fall within each layer due to the adsorptive removal by
previous layers. Thus the pore radius will decrease at a slower rate
in each successive layer, and so we expect that a constricting filter
set-up will offer the filtration configuration that clogs for the lar-
gest throughput.

This hypothesis is supported by considering the decline in
mean pore radius with throughput in each layer (Fig. 5). For taper
angles below the optimal value the first layer captures a much
larger proportion of contaminant than the pores in the deeper
layers (Fig. 5a and b). Conversely, when the taper angle is larger
than the optimal value the final layer clogs before the other layers
have trapped as much material as possible (Fig. 5d). At the optimal
taper angle, the radius of each layer is approximately constant at
the point of blocking (Fig. 5c).

We note that small changes in taper angle can generate sig-
nificant differences in the final throughput. For example, a differ-
ence of less than °2 can lead to twice the final throughput before
blocking. However, although such differences appear minimal, it is
important to note that small taper angles translate to significant



Fig. 3. Flux Q versus throughput V for a non-connected γ( = )0 five-layer filter (N¼5) with particle size a¼0.5, adhesivity pa¼0.1, filter depth h¼20 and taper angle
α = − °0.5 (solid), °0 (dashed), α ≈ °⁎ 0.43 (dot-dashed), 1° (dotted) illustrating the increase and then decrease in final throughput Vn with increasing taper angle.

Fig. 4. Final throughput Vn versus taper angle α for a non-connected (γ ¼ 0) five-
layer filter (N¼5) with particle size a¼0.5, adhesivity pa¼0.1, and total filter depth
h¼20. The crosses show the data points and variance from the mean generated by
the simulations, and the black curve is a polynomial fit with optimum at α ≈ °⁎ 0.43 .
The two circled data points correspond to α = °0 and − °0.14 .
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pore variations in our filter. For example, a filter with a taper angle
of °2 corresponds to minimum and maximum radii of approxi-
mately 0.65 and 1.35 in the filter layers, respectively.

In addition to the improved total throughput offered by a
constricting filter, such a set-up has the added advantage of al-
lowing sequential filtering of a polydisperse feed, which would
also assist in ensuring that the entire depth of a filter is utilized.
While such a scenario is not studied here, the network model
readily caters for such feed compositions.

5.2. The effect of particle size

While we were able to draw a continuous polynomial curve
through the data in Fig. 4 to emphasize a continuous dependence
of total throughput on taper angle, on closer inspection the data
actually varies discontinuously with taper angle. This is especially
apparent for the two data points at α = °0 and α = − °0.14 , for
which the final throughput is seen to be approximately equal in
both cases. While we might be tempted to attribute this to sto-
chasticities within the system, any such randomness would be
smoothed out by averaging over multiple runs. In fact, the feature
actually arises due to an inherent discrete nature of the system.
Specifically, the total number of particles that may be admitted by
a pore before it blocks varies discretely with pore radius, governed
by Eq. (15). Thus, as the taper angle varies, the number of particles
that may be accepted by each individual layer will vary in a dis-
crete manner (decreasing for layers whose pore radii are de-
creasing and increasing for layers whose pore radii are increasing).
In particular, the total number of particles that can be accepted by
the entire filter is given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑= × ×

( ( ) − )

( )=

m n
R a h

a
Ceiling

3 0

4
.

16k

N
j

1

2 2

3

Crucially, the taper angle at which one additional particle can be
accepted by each pore in a layer whose pore radii are increasing
with increasing taper angle will not coincide with the point at
which one less particle will be accepted by each pore in the layer
whose pore radii are decreasing.

We plot the total number of particles that may be accepted by a
filter per pore, ( × )m n/ , in Fig. 6, which highlights the seemingly
irregular behaviour, and hence the expected irregularities in the
total throughput observed for a given filter. This discrete effect is
particularly apparent when the particle size is comparable with
the pore radii (cf. Figs. 4 and 7). In this case, ‘windows’ emerge
within which changes in the taper angle have no effect on the total
throughput. We are still able to approximate a curve through the
data in this case, signifying that an optimum taper angle still exists
for which the total throughput is maximized. However, in this case
a range of taper angles now yields a similar total throughput close
to the maximum. This feature may be useful in practice, where
external considerations (such as design or financial factors on the
taper angles that can be achieved) impose additional constraints
on the system.

5.3. The optimum taper angle for small particles: a continuum approach

Having identified the behaviour when particles become com-
parable with the pore size, we now turn our attention to the



Fig. 5. Variation of mean pore radius 〈 〉 = ∑ ∑= =
( )R rk i

n
j
m

k
i j

1 1
, versus throughput V in a

non-connected five-layer filter (N¼5) for ≤ ≤k1 5 with taper angle (a) α = − 0.5,
(b) α = 0, (c) α α= ≈⁎ 0.43, (d) α = 1 when filtering particles of size a¼0.5 and
adhesivity pa¼0.1. For the optimal taper angle the final radius of pores in each layer
is approximately equal indicating optimal filter usage. (Note that the axes scaling
differs in each case.) The inset in (a) compares the evolution of 〈 〉R1 with throughput
V for the four different taper angles shown in (a)–(d).
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opposite limit, in which the particles are very small. In this case,
filter clogging will be dominated by standard blocking, with
complete blocking being an insignificant final feature in the QV
signature. At each layer, a fraction pa of particles will adhere to the
pore wall and a fraction ( − )p1 a will be transmitted. Thus, for our
scaling choice such that one particle enters the membrane for each
unit of throughput, a total of ( − )p V1 a

k particles will be trans-
mitted through to layer k with throughput V, of which a total

( − )p p V1a a
k will adhere. The radius of a pore in layer k is therefore

given by

( ) = ( ) − ( − )
( )

−r t r
a N

h
p p

V
mn

0
4

3
1 ,

17k k a a
k2

3
1

where, for a uniformly tapered N-layer filter,

α( ) = + ( ) + − ( )r
h
N

N k0 1
2

tan 1 2 . 18k

The relationship (17) is indeed obeyed for sufficiently small
particle sizes (Fig. 8), where the results for a¼0.2 and the con-
tinuum description as →a 0 are almost indistinguishable. How-
ever, we observe deviation from the predicted linear relationship
between rk

2 and throughput V as the particle sizes increases
(Fig. 8).
Fig. 6. Total number of particles of size (a) a¼0.7 and (b) a¼0.2 that can be ac-
cepted per pore ( × )m n/ versus taper angle α for a non-connected (γ ¼ 0) five
layer filter N¼5 with total membrane depth h¼20. The (red) vertical dashed lines
in (a) indicate the taper angles where a discrete change in the number of particles
that may be accepted occurs. The approximately continuous dependence for
smaller particles is apparent in (b). Note that the plots are symmetric about α = 0.



Fig. 7. Final throughput Vn versus taper angle α for a non-connected γ( = )0 five-
layer filter (N¼5) with particle size a¼0.7, adhesivity pa¼0.1, and total filter depth
h¼20. The black curve is a polynomial fit to the data. The discrete variation in
throughput with taper angle is much more apparent than when a¼0.5 (Fig. 4) due
to the discrete variations in the number of particles that may be accepted by the
filter (Fig. 6). The (red) vertical dotted lines denote the taper angles that correspond
to a change in the number of particles that can be accepted by the filter and se-
parate the data into the expected discrete regions. The arrows show the region over
which the throughput is approximately constant and maximal.

Fig. 8. Layer 1 pore radius squared ( )r t1
2 versus throughput V for a non-connected

(γ ¼ 0) five-layer filter (N¼5) with filter depth h¼20, angle α = 0, adhesivity
pa¼0.4 and particle size =a 0.2, 0.25, 0.3, 0.4. The continuum limit →a 0 is shown
by the dashed line, and is indistinguishable from the result for particle size a¼0.2.

Fig. 9. Optimal taper angle α⁎ for a non-connected γ( = )0 five-layer filter (N¼5)
with total membrane depth h¼20 versus: (a) particle size, a, when adhesivity
pa¼0.4; (b) adhesivity, pa for particle size a¼0.5. The continuum limit for small
particles, (19), is shown as a dashed curve in (b).
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Having validated our continuum theory, we now use this to
predict the taper angle that maximizes the throughput. Guided by
Fig. 5, we observe that the throughput is maximized if the filter
clogs when each of the filter layers has the same mean pore radius
(see in particular Fig. 5c). Furthermore, we observe in Fig. 8 that as
the particle size tends to zero, the mean pore radius at which
blocking occurs will be zero. Thus, for a fixed taper angle, the
throughput will be maximized when = =r r 0N1 at blocking, which
gives an optimal taper angle

α( ) =
( − )

− ( − )
+ ( − ) ( )

⁎
( − )

( − )
N

N h
k

k
tan

2
1

1 1
1 1

.
19

N

N

1 /2

1 /2
This prediction is compared with numerical results in the case of
finite particle sizes in Fig. 9.

5.4. Parametric dependence of optimal taper angle

The results of the analysis in Sections 5.1 and 5.2 are unified in
Fig. 9 in which the optimal taper angle is expressed for a given
feed composition, characterized through particle size (Fig. 9a) and
adhesivity with the membrane (Fig. 9b). The ability to map out the
complete parameter landscape in this way reveals how the opti-
mal taper angle increases with decreasing particle size and in-
creasing adhesivity, and demonstrates how the network model is
able to offer a strategy for selecting the appropriate membrane for
a given filtration challenge.
6. Influence of pore interconnectivity

Having quantified the effect of taper angle for non-connected
filters we now relax this condition to allow pore interconnectivity.
As we might expect, allowing for interconnectivity increases the
total volume of fluid that can be processed before the filter clogs.



Fig. 10. Flux Q versus throughput V for a five-layer filter (N¼5) with particle size
a¼0.5, adhesivity pa¼0.1, filter depth h¼20, taper angle α = 0 and connectivity
γ = 0 (solid), × −1 10 4 (dashed), × −7 10 3 (dot-dashed), 0.02 (dotted). Only a small
amount of connectivity is required to increase the throughput, which is achieved
through a region of convexity in the QV signature. When γ is increased beyond
approximately × −7 10 3 the convex region begins to disappear while the final
throughput Vn remains the same. The QV signature is unchanged by increases in
connectivity beyond γ ≈ 0.02.

Fig. 11. Final throughput Vn versus pore interconnectivity γ for a five-layer filter
(N¼5) with particle size a¼0.5, adhesivity pa¼0.1, total filter depth h¼20, and
taper angle α = 0. The crosses show the data points generated by the simulations
and the black curve is a fit to the data.

Fig. 12. Variation of mean pore radius 〈 〉 = ∑ ∑ ( )= =
( )R r tk i

n
j
m

k
i j

1 1
, versus time in a five-

layer filter (N¼5) for ≤ ≤k1 5 of depth h¼20 with connectivity γ = 0.01 and taper
angle α = 0 when filtering particles of size a¼0.5 and adhesivity pa¼0.1. The mean
pore radius in layer 1 reaches zero when the final throughput is attained, indicating
blocking of every pore.
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The network model elucidates the route by which this is achieved,
through the appearance of a convex tail region in the QV signature
as γ increases (Fig. 10). When γ ≈ 0.02 the region of convexity
begins to disappear, but the final throughput, Vn, remains ap-
proximately constant, enhanced by approximately 15% over the
non-connected case. The subsequent QV signatures are then un-
changed for pore connectivities that exceed γ ≈ 0.02. This informs
us that, while allowing for pore interconnectivity in the filter is
advantageous in improving the capacity of the filter before clog-
ging, only a small amount of interconnectivity is needed to reap
the benefits (Fig. 11). Thus, while it is worthwhile designing a filter
with pore interconnectivity, this suggests that it may not be ne-
cessary to focus efforts on maximizing the interconnectivity
within a filter. For a given γ, Eq. (14) provides a measure of the
probability of a particle to progress directly into the pore below
rather than traversing to a neighbouring pore before progressing
to the next layer. For a polytetrafluoroethylene (PTFE) membrane,
a typical value of κ is 0.3 [17]. For a five-layer membrane with total
depth h¼20 as examined here, this corresponds to a value of
γ ≈ 0.18, which we observe to be within the region where pore
connectivity is maximized in Fig. 11.

The reason behind the improved throughput can be identified
by studying the constriction of the pore radii in each layer during
filtration. Unlike in the case of a non-connected filter where the
entire filter is able to clog without any individual layer being
clogged (Fig. 5), a connected filter only blocks when every pore in
one of the filter layers is blocked, so that the mean pore radius in
this layer reaches zero. When the taper angle α = 0 it is layer 1 that
blocks first, as seen in Fig. 12.

As the connectivity is increased, the throughput is found to
vary more strongly with taper angle, so that the optimum taper
angle is more prominent when the connectivity is suitably large
while a range of taper angles that maximize throughput emerge as
the connectivity is reduced (Fig. 13). This suggests that, while gains
are made by increasing the throughput, design accuracy also be-
comes more important when maximizing the filter efficiency.
7. Influence of number of filter layers

Increasing the number of layers while holding the total filter
thickness constant leads to a decrease in the final throughput (Fig. 14).
This arises as a result of local layer blocking: the pore in a thinner
layer will block sooner due to its reduced capacity for adsorbed par-
ticles. This therefore exposes a trade-off between the advantage of-
fered by increasing the number of layers in selective sieving of par-
ticles and the decrease in throughput that is achieved when opting for
thinner membrane layers. The final throughput attained depends
approximately inversely on the number of layers, ∝⁎ −V N 1, and is
unaffected by the taper angle or connectivity within the filter.
8. Influence of pore irregularity

In all of the modelling so far we have considered filters com-
posed of layers with initially uniformly sized regularly arranged



Fig. 13. Final throughput Vn versus taper angle α⁎ for a five-layer filter (N¼5) with
total membrane depth h¼20 when filtering particles of size a¼0.5 and adhesivity
pa¼0.4. The black crosses (þ) correspond to a filter with zero connectivity and the
red crosses (� ) corresponds to a filter with connectivity γ = 0.01. The connected
and unconnected filters behave similarly away from the maximum but a more
prominent and localized maximum exists when the filter has connectivity. (For
interpretation of the references to colour in this figure caption, the reader is re-
ferred to the web version of this paper.)

Fig. 14. Flux Q versus throughput V for a non-connected γ( = )0 filter with N¼1
(solid), 3 (dashed) 5 (dot-dashed) and 11 (dotted) layers, of constant total filter
thickness h¼20 when filtering particles of size a¼0.5 and adhesivity pa¼0.1.

Fig. 15. (a) Flux Q versus throughput V for a random array fully connected γ( = )1
five-layer filter (N¼5) with mean number of pores 〈 〉 =M 50, particle size a¼0.9,
adhesivity pa¼0.1, and total filter depth h¼20. The results are averaged over 40
simulations of independent random arrays. The number of pores in each layer
varies linearly with depth, with the difference from the mean between the top and
bottom layers being Δ = − −M 1.36, 0.56, 0 (solid) and Δ =M 0.08, 1.28, 1.44 (da-
shed). Numbers on the graph indicate the corresponding values of ΔM . The
throughput is maximal for a positive choice in ΔM , corresponding to a set-up in
which the number of pores decreases with depth. The equivalent fully connected
model for a periodic array of pores is shown by the dotted line, which is in
agreement with the scenario where each layer has the same number of pores but
arranged in a random array. (b) Total throughput Vn versus difference in pore
number ΔM (black crosses ×) and versus taper angle α (red crosses þ). The shaded/
unshaded regions show the range for which a greater throughput is achieved by
varying the pore size/pore number on each layer. The axes are aligned such that the
corresponding variation in pore area achieved by either varying pore number or
pore size is the same in each case. A polynomial curve of best fit is also shown for
the data expressing the variation in throughput with ΔM . (For interpretation of the
references to colour in this figure caption, the reader is referred to the web version
of this paper.)
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pores, allowing only the pore radius between layers to differ, as
exhibited, for example, by a track-etched membrane. However, in
practice, filters can be composed of pores that are irregular in their
size, position and number on each layer. In this final section we
consider a generalized model that allows for randomly placed
pores on each surface, whose size may differ across any single
layer, and whose total number may vary from layer to layer. We
retain the previously discussed network structure by assuming
that each pore is connected to the five nearest neighbouring pores
in the subsequent layer. The favourability of selecting pores that
are closer in the layer below is accounted for by generalizing the
hydraulic conductivity model proposed in Section 3 so that re-
sistances scale linearly with the distance between a pore and a
neighbour in the layer beneath. As before, we balance the in-
coming and outgoing fluxes through each junction to compute the
pressure at each end of the pore. Particles can still traverse side to
side across the structure (depending on the magnitude of the
fluxes) before entering a pore in the layer beneath.

We consider filters where the number of pores in each suc-
cessive layer alters by a constant amount, and we characterize the
variations in the number of pores between each layer by



I.M. Griffiths et al. / Journal of Membrane Science 511 (2016) 108–118 117
Δ =
−

〈 〉 ( )
M

M M
M

,
20

N1

where Mi is the number of pores in layer i and

∑〈 〉 =
( )=

M
N

M
1

21i

N

i
1

is the mean number of pores in each layer of the filter.
We explore the effect of varying the porosity with depth but

now achieve this by changing the pore density while holding the
initial pore size fixed. As observed for variations in taper angle, the
throughput is maximized when the porosity of each successive
layer decreases (Fig. 15a dotted curve). A reassuring result is that
the typical QV signature when we average over a series of 40
different random arrays amounts to a near identical QV signature
to that of a regular array of pores arranged on the same pore area
(Fig. 15a dotted curve). This validates our assumption that our
regular-array model corresponds to the average behaviour of a
series of many filters with the same number of randomly arranged
pores.

As we vary the porosity gradient by changing the number of
pores in each successive layer we find that the throughput is
maximized for a multilayer configuration in which the porosity
decreases with depth (Fig. 15b). This highlights a clear analogue
with the set-up when we vary the porosity by changing the pore
size in each layer for a filter composed of a periodic array
(Figs. 4 and 7). However, we also find that, for two filters with
equal porosity gradient, the characteristic behaviour of the filter
differs significantly depending on whether we choose to grade
porosity by varying the number of pores on each layer or by
varying the pore size. In particular we find that by keeping the
pore size fixed we no longer observe the discrete jumps in
throughput that arise when the pore size and obstructing particle
become comparable in size (as shown in Fig. 7). This leads to re-
gimes in which the throughput for a given porosity gradient is
larger when we change the pore size (shaded regions in Fig. 15b)
and others where the largest throughput is achieved by changing
the number of pores (unshaded regions in Fig. 15b). This effect
would be reduced as the particle size decreases and the effect of
changing the pore size becomes more continuous, as seen in
Figs. 4 and 7. It is clear that if we have the manufacturing flex-
ibility to change both the pore size and number density then its
throughput can be significantly improved.
9. Conclusions

The improvements in filtration offered by multilayer filters are
well-known experimentally, for example in allowing for selective
sieving. However, a systematic study that examines the underlying
mechanisms that lead to this sequential particle removal, and thus
the optimal design requirements for such a filter, was lacking. We
have developed a network model that allows for extensive and
time-efficient parameter sweeps to determine the optimal filter
structure for a given challenge feed and thus tackle this question.
The model characterizes the filter (via taper angle, number of filter
layers, and layer connectivity) and the feed composition (through
the size of the particles and their adhesivity to the membrane).
Both standard and complete blocking are catered for by the model
in a systematic manner.

The existence of an optimal taper angle was found that
corresponds to a filter whose mean pore radius decreases with
depth (Fig. 5). For smaller taper angles than this the upper layer of
the filter blocks before the lower layers have trapped comparable
amounts of material; for larger taper angles the bottom layer of
the filter blocks before the upper layers. When either the size of
the particles or their adhesivity to the filter increases, the optimal
taper angle increases, and we are able to map this systematically
in parameter space (Fig. 5).

Designing a filter that permits connectivity between pores of-
fers a significant advantage over non-connected filters, but we
have shown that only a small amount of connectivity is needed to
provide these gains. This suggests that additional effort in im-
proving pore connectivity may not be worth the extra efforts. The
total throughput that can be achieved by the filter was shown to
be approximately inversely proportional to the number of layers in
the filter, as a result of local blocking in the individual layers. This
offers a trade-off between the merits of multilayer filters, such as
their selective sieving properties, and the reduced throughput that
they offer per unit membrane depth.

We concluded by presenting a generalized model that allows
for a more physically realistic random array of pores on each filter
layer in which each pore in a layer is connected to the five
neighbouring pores in the subsequent layer. We showed that the
periodic-array model provides a prediction for the average beha-
viour of such a random filter, but that the ability to alter the
porosity of each layer by changing both the pore density and pore
size provides an additional level of flexibility that allows us to
maximize the throughput and thus efficiency of a given porosity-
graded filter.

The results we present in this paper offer a strategy for the
design of a multilayer filter to maximize their longevity and fil-
tration efficiency. The comprehensive network model is easily able
to simulate a multitude of filtration scenarios, and provides a
framework for simple addition to accommodate more complex
and specific filtration situations. A generalization of the model to
account for blocking in the pore connections, polydisperse feed
solutions, and a comprehensive analysis of the parameter space for
random pore distributions and sizes are areas that are likely to
offer further stimulating results to the membrane community.
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