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We study the flow of a thin liquid film along a flexible substrate. The flow is modelled
using lubrication theory, assuming that gravity is the dominant driving force. The
substrate is modelled as an elastic beam that deforms in two dimensions. Steady
solutions are found using numerical and perturbation methods, and several different
asymptotic regimes are identified. We obtain a complete characterization of how the
length and stiffness of the beam and the imposed liquid flux determine the profile of
the liquid film and the resulting beam deformation.

Key words: coating, lubrication theory, thin films

1. Introduction
Thin film flows are commonly studied in the Earth, engineering and materials

sciences. The driving forces for flow can include buoyancy, surface tension and
interfacial Marangoni stresses (Oron, Davis & Bankoff 1997; Craster & Matar 2009).
Theoretical studies of thin liquid films often focus on flow over planar substrates. In
the case of gravitational, or buoyant, driving of a flow over a horizontal base, the
motion is driven by the slope of the free surface (Huppert 1982b), whereas for an
inclined planar substrate the flow is principally driven by the component of gravity
parallel to the substrate (Huppert 1982a). There have also been several investigations
of flow of viscous thin films along rigid curved substrates, focusing on the influence
of a given substrate curvature on capillary-driven flow (Jensen 1997; Myers, Charpin
& Chapman 2002; Roy, Roberts & Simpson 2002; Howell 2003). In addition, there
are studies of gravity-driven flows over specific fixed shapes (Duffy & Wilson 1999;
Takagi & Huppert 2010).

However, there are physical situations where a liquid film flows over a compliant
substrate, such that the substrate deformation and film flow are closely coupled.
For example, surface-tension-driven flow of the liquid lining of the lungs has been
considered by authors including Halpern & Grotberg (1992) and Heil & White (2002),
while stability of thin-film flow over a compliant substrate has been studied by Matar,
Craster & Kumar (2007) and Matar & Kumar (2007). In this paper we analyse a
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FIGURE 1. Schematic of a thin liquid film flowing along a flexible substrate.

model two-dimensional problem in which a thin liquid film causes large substrate
deformations which in turn provide the principal driving force for the flow.

Our model set-up, illustrated in figure 1, is inspired by the example of rain water
flowing over a leaf. We use the familiar lubrication approach for gravity-driven flow of
a thin liquid film, where the hydrostatic pressure gradient depends both on the gradient
of the film depth and on the local slope of the substrate. We assume that the substrate
is a thin elastic beam whose shape is described by the Euler–Bernoulli model that
couples the beam curvature to the tension and shear (transverse) forces imposed by
the liquid film. We focus on steady flow due to a constant source at one end of the
beam, which is clamped horizontally. The net result is a fifth-order system of ordinary
differential equations, which we solve numerically and by asymptotic methods.

The problem description involves two dimensionless parameters: one (ε) measures
the film thickness and the other (`) represents the length of the substrate, both relative
to a natural length scale that balances elastic and gravitational effects. The result of
the asymptotic analysis is a complete characterization of the membrane shape and
thin-film profile for ε� 1 for all possible values of `.

In § 2 we state and normalize the governing equations and boundary conditions.
Then, in § 3 we analyse the first of three distinguished limits identified, namely the
‘small-deflection’ regime, where the substrate deflection is comparable to the film
height. In § 4 we turn to the ‘large-deflection’ regime, where the substrate deflects by
a distance comparable to its length and much greater than the film thickness. In this
regime, the flow is driven principally by the tangential component of the gravitational
body force. The various asymptotic approximations identified are summarized and
combined in § 5, and we draw our conclusions in § 6.

2. Mathematical model
2.1. Governing equations and boundary conditions

The basic set-up is illustrated schematically in figure 1. We consider two-dimensional
flow along a flexible substrate, parametrized by x∗ = x∗(s∗, t∗), y∗ = y∗(s∗, t∗), where s∗

is arclength and t∗ is time. We denote the downwards angle made by the substrate with
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the horizontal by φ(s∗, t∗), so that

∂x∗

∂s∗
= cosφ,

∂y∗

∂s∗
=− sinφ. (2.1)

For a thin film with negligible inertia, the film thickness h∗(s∗, t∗) satisfies Reynolds’
equation, namely

∂h∗

∂t∗
= g

3ν
∂

∂s∗

[
h∗3

(
cosφ

∂h∗

∂s∗
− sinφ

)]
, (2.2)

where ν is the kinematic viscosity and g is the gravitational acceleration. The two
bracketed terms on the right-hand side of (2.2) represent the transverse and tangential
components of gravity, and we have assumed that surface tension is negligible.

The substrate is treated as an inextensible elastic beam bending under the normal
and shear stresses exerted by the fluid, while the weight of the substrate itself is
neglected by comparison. The tension T∗ and shear force N∗ thus satisfy the equations

∂T∗

∂s∗
+ N∗

∂φ

∂s∗
= ρgh∗

(
cosφ

∂h∗

∂s∗
− sinφ

)
, (2.3a)

∂N∗

∂s∗
− T∗

∂φ

∂s∗
= ρgh∗ cosφ, (2.3b)

B
∂2φ

∂s∗2
= N∗, (2.3c)

representing, respectively, tangential and transverse force balances and a balance of
moments, where ρ is the density of the fluid and B is the bending stiffness of the
beam.

We assume that the substrate is clamped horizontally at the origin, where a flux q of
fluid is injected. Hence, we impose the boundary conditions

φ = 0,
gh∗3

3ν
∂h∗

∂s∗
=−q at s∗ = 0. (2.4)

We denote the length of the substrate by L. The end s∗ = L is assumed to be free,
with no applied forces or moments, so that

T∗ = N∗ = ∂φ

∂s∗
= 0 at s∗ = L. (2.5)

If the substrate is initially dry, then a thin film will spread from the source at s∗ = 0,
eventually covering the entire substrate. Thereafter, we assume that the film falls
directly from the end of the beam, i.e. that h∗ (L, t∗) = 0. Although the film thickness
is assumed to be zero, there will still be a non-zero flux of liquid flowing over the end
of the beam. When the film has reached a steady state, this flux from the end must
exactly balance the flux q injected at s∗ = 0, so that

h∗ = 0,
gh∗3

3ν
∂h∗

∂s∗
=−q at s∗ = L. (2.6)

These conditions imply weakly singular local behaviour with h∗ ∼ (12νq(L− s∗)/g)1/4

as s∗→ L. Presumably there is an inner problem near s∗ = L where other physical
effects become important, for example surface tension and two-dimensionality, and we
are effectively assuming that (2.6) are the effective boundary conditions that would
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result from matching with such a region. An analogous boundary condition of zero
film height has been employed in previous studies of gravity currents on horizontal
substrates, for example Boussinesq (1904), Rupp & Selker (2005) and Zheng et al.
(2013). The applicability of this boundary condition when the substrate is significantly
deflected from the horizontal will be discussed below.

2.2. Non-dimensionalization
It is useful to non-dimensionalize the steady-state equations using the intrinsic length
scale

a=
(

B

ρg

)1/4

, (2.7)

rather than the plate length L. The variables are then scaled as follows:

s∗ = as, h∗ = εah, φ = εψ, (2.8a)

T∗ = ε2ρga2T, N∗ = ερga2N, (2.8b)

where

ε =
(

3νq

ga3

)1/4

. (2.9)

The dimensionless steady governing equations are

h3

(
cos(εψ)

dh

ds
− sin(εψ)

ε

)
=−1, (2.10a)

dT

ds
+ N

dψ
ds
= h

(
cos(εψ)

dh

ds
− sin(εψ)

ε

)
, (2.10b)

dN

ds
− ε2T

dψ
ds
= h cos(εψ), (2.10c)

d2ψ

ds2
= N, (2.10d)

while the boundary conditions are

ψ = 0 at s= 0, (2.10e)

h= T = N = dψ
ds
= 0 at s= `, (2.10f )

where

`= L

a
(2.11)

is the dimensionless beam length.

3. Small-deflection regime
3.1. Leading-order equations

The problem involves two dimensionless parameters: ε and `. We assume that ε� 1,
implying that the film is thin compared with the characteristic length scale a for beam
deformation. In scaling φ with ε in (2.8a), we are considering a distinguished limit
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where the lateral deflection of the beam is comparable to the film thickness. This limit
will occur if the beam is relatively short, specifically if ` = O(1). In this regime, the
tangential and transverse components of gravity in (2.2) and (2.3a) balance. In § 4,
we will consider an alternative distinguished limit that applies for longer beams where
φ = O(1) and large beam deflections are possible.

To facilitate numerical solution, it is helpful to define

z= `− s. (3.1)

Then taking ε→ 0 in (2.10), we obtain the leading-order equations

dh

dz
= 1

h3
− ψ, d3ψ

dz3
=−h, (3.2)

with errors of O(ε2). In this reduced model, the beam undergoes purely transverse
bending under the weight of the liquid film, while the flow is driven by both tangential
and transverse components of gravity. The corresponding boundary conditions are

h= dψ
dz
= d2ψ

dz2
= 0, ψ = Ψ at z= 0, (3.3a)

ψ = 0 at z= `, (3.3b)

where we have introduced Ψ = ψ |s=` = ε−1φ|s=`. This variable represents the
(unknown) scaled rotation of the free end of the beam, which will be used as a
net measure of the deflection.

For each value of Ψ , equation (3.2) has a unique solution satisfying the initial
conditions (3.3a), with asymptotic behaviour

h∼√2z1/4 − 4Ψ
7

z+ 24
√

2Ψ 2

245
z7/4 + 64Ψ 3

3185
z5/2 + · · ·, ψ ∼ Ψ − 64

√
2

585
z13/4 + · · ·

(3.4)

as z→ 0 (or s→ `). We solve this initial-value problem numerically for each value of
Ψ and read off the corresponding value of ` from the condition (3.3b). The result of
this procedure is plotted in figure 2, which shows that there is a monotonic one-to-one
relationship between the end deflection Ψ and the dimensionless beam length `.

An additional characteristic of the flow is provided in figure 3, where we plot the
dimensionless film thickness at the origin, h0 = h|s=0, versus the dimensionless beam
length `. Not surprisingly, the film height tends to zero as the beam length tends
to zero. However, h0 takes a maximum value ≈ 1.3718 when ` ≈ 1.1643, before
then decreasing again as ` tends to infinity. As the length of the beam increases, its
downwards deflection increases and the component of gravitational acceleration along
the beam therefore also increases. Hence, fluid is transported away from the origin at
an enhanced rate and, thus, the film height eventually starts to decrease.

In figure 4 we plot the beam deflection and the film height obtained by solving
(3.2)–(3.3) numerically, for different values of ` = 0.5, 1, 2, 4. In the small-deflection
regime, the leading-order beam and film profiles are given by

y(x)= ε
∫ x

0
ψ(s) ds and y(x)= ε

∫ x

0
ψ(s) ds+ εh(x), (3.5)

respectively. As ` increases from 0.5 to 1, the film thickness increases while also
exhibiting the expected 1/4-root singularity at the edge of the substrate x = `.
However, further increase in ` gives rise to significantly larger beam deflections, which
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FIGURE 2. (Colour online) The scaled rotation Ψ of the free end of the beam plotted versus
dimensionless beam length ` using logarithmic axes. The dashed curves show the asymptotic
limits (3.9) as `→ 0 and (3.15) as `→∞.
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FIGURE 3. (Colour online) The dimensionless film height h0 at the origin plotted versus
dimensionless beam length ` using logarithmic axes. The dashed curves show the asymptotic
limits (3.10) as `→ 0 and (3.28) as `→∞.

in turn lead to a decrease in the film thickness. As ` becomes larger still, a boundary
layer at the free edge x = ` becomes evident, and a boundary layer at the origin also
starts to form, with the film thickening noticeably close to x= 0.

To understand the behaviours observed in figures 2–4, we will next explore the
asymptotic behaviour of the system (3.2)–(3.3b) as Ψ → 0 (small deflections) and as
Ψ →∞ (large deflections).
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FIGURE 4. (Colour online) The beam deflection and film profile given by the problem
(3.2)–(3.3) plotted in the (x, y/ε)-plane for ` = 0.5, 1, 2, 4. The inset focuses on the cases
where `= 0.5, 1, 2.

3.2. Small-Ψ limit
For small Ψ , we perform the rescaling

ψ = Ψψ ′, h= Ψ 1/13h′, z= Ψ 4/13z′, (3.6)

before letting Ψ → 0 to obtain the leading-order equations

dh′

dz′
= 1

h′3
,

d3ψ ′

dz′3
=−h′. (3.7)

Here the film profile h′(z′) behaves as if the beam were completely flat, and the small
transverse displacement is determined a posteriori. After applying the initial conditions
(3.3a), we find the leading-order solutions

h′ =√2 z′1/4, ψ ′ = 1− 64
√

2
585

z′13/4
. (3.8)

Hence, ψ ′ = 0 at z′ =
(

585/64
√

2
)4/13

, and we infer that the free-end rotation is given

by

Ψ ∼ 64
√

2
585

`13/4 as `→ 0. (3.9)

This result is plotted as a dashed curve in figure 2.
We also obtain the film height at the origin by evaluating h′ when ψ ′ = 0, which

leads to the result

h0 ∼
√

2 `1/4 as `→ 0. (3.10)

This is the film height expected for a fixed horizontal substrate of length `, since the
beam becomes effectively rigid as its length tends to zero. As shown by a dashed
curve in figure 3, the numerical results agree well with (3.10) for `. 0.5.
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FIGURE 5. (Colour online) The function ψ̃ (z̃) satisfying the problem (3.13). The asymptotic
behaviour (3.20) is shown as a dashed curve.

3.3. Large-Ψ limit
At the other limit where Ψ →∞, we return to the problem (3.2), (3.3) and perform
the rescaling

ψ = Ψ ψ̃, z= Ψ 4/9z̃, h= Ψ −1/3h̃, (3.11)

to obtain the system

Ψ −16/9 dh̃

dz̃
= 1

h̃3
− ψ̃, d3ψ̃

dz̃3
=−h̃. (3.12)

For large beam deflection, the tangential component of gravity becomes dominant, and
the film thickness depends only on the slope of the substrate: h̃ = ψ̃−1/3 to leading
order as Ψ →∞. Hence, ψ̃ satisfies the nonlinear third-order differential equation

ψ̃1/3 d3ψ̃

dz̃3
=−1, (3.13a)

and the initial conditions

ψ̃ = 1,
dψ̃
dz̃
= d2ψ̃

dz̃2
= 0 at z̃= 0. (3.13b)

A numerical solution of the problem (3.13) is plotted in figure 5. We find
numerically that ψ̃→ 0 at a finite value of z̃, namely

z̃= ˜̀ ≈ 1.804915. (3.14)

By reversing the scaling (3.11), we infer that Ψ ∼
(
`/ ˜̀
)9/4

, that is,

Ψ ∼ 0.2648 `9/4 as `→∞. (3.15)

As indicated by a dashed curve in figure 2, this result agrees well with our numerical
solution.
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However, this leading-order solution fails to satisfy the boundary condition h̃ = 0 at
z̃= 0 (i.e. at the free end of the beam). This observation is explained by the existence
of a boundary layer, where h̃ adjusts to the imposed value of 0 over an increasingly
narrow region as Ψ increases. The film thickness h̃ = ψ̃−1/3 also appears to tend to
infinity as ψ̃ → 0 (i.e. at the clamped end). This occurs because the assumption that
the tangential component of gravity is dominant ceases to apply when ψ̃ is sufficiently
small, and is resolved by examining a boundary layer at z̃ = ` where the transverse
component of gravity regains its importance.

First considering the boundary layer at the free end z̃= 0, we let

z̃= Ψ −16/9z̄, (3.16)

which results in the leading-order inner equations

dh̃

dz̄
= 1

h̃3
− ψ̃, d3ψ̃

dz̄3
= 0, (3.17)

and the matching conditions h̃→ 1, ψ̃ → 1 as z̄→∞. We therefore have ψ̃ ≡ 1
to leading order, and the film height in this boundary layer satisfies the differential
equation

dh̃

dz̄
= 1

h̃3
− 1. (3.18)

The solution satisfying the boundary condition h̃ = 0 at z̄ = 0 is given by the implicit
equation

z̄= 1
6

log

1+ h̃+ h̃2(
1− h̃

)2

− h̃+ 1√
3

tan−1

(√
3 h̃

2+ h̃

)
. (3.19)

As pointed out above, the outer solution plotted in figure 5 also appears to imply
that h̃→∞ as z̃→ ˜̀, and there is yet another boundary layer in which this growth is
cut off. To assist with matching, which will establish the film height h0 at the origin,
we note that

ψ̃ ∼ A0

( ˜̀ − z̃
)

as z̃→ ˜̀, (3.20)

as illustrated in figure 5, where

A0 ≈ 1.70799 (3.21)

is determined numerically. Thus, following the further rescaling

z̃= ˜̀ − A−4/7
0 Ψ −16/21ẑ, ψ̃ = A3/7

0 Ψ −16/21ψ̂, h̃= A−1/7
0 Ψ 16/63ĥ, (3.22)

we obtain the leading-order equations

dĥ

dẑ
= ψ̂ − 1

ĥ3
,

d3ψ̂

dẑ3
= 0, (3.23)

as Ψ →∞, subject to the matching conditions

ĥ∼ ẑ−1/3, ψ̂ ∼ ẑ as ẑ→∞. (3.24)
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FIGURE 6. (Colour online) The solution ĥ
(
ẑ
)

to the differential equation (3.25) and the
matching condition (3.24), plotted using logarithmic axes. The limiting behaviours (3.26) as
ẑ→ 0 and (3.24) as ẑ→∞ are plotted as dashed curves.

Hence, ψ̂ ≡ ẑ and ĥ satisfies the equation

dĥ

dẑ
= ẑ− 1

ĥ3
, (3.25)

and the matching condition (3.24). A numerical solution of this problem is plotted in
figure 6. We discover numerically that the solution satisfies

ĥ→ B0 ≈ 1.26772 as ẑ→ 0, (3.26)

and we deduce that the film thickness at the origin is given asymptotically by

h0 ∼ B0A−1/7
0 Ψ −5/63 as Ψ →∞. (3.27)

Using the relation (3.15), we therefore obtain

h0 ∼ 1.30499 `−5/28 as `→∞. (3.28)

This result is plotted as a dashed curve in figure 3, which confirms that (3.28) agrees
with our numerical solution.

4. Large-deflection regime
4.1. Distinguished limit

The above analysis of small deflections suggests that the plate may undergo
an unbounded deflection as `→ ∞. However, if ` is sufficiently large, a new
distinguished limit emerges in which the plate suffers an O(1) deflection. To examine
this regime, we return to (2.10) and rescale the variables as follows:

s= ε−4/9S, h= ε1/3H, T = ε−10/9T , N = ε−1/9N , (4.1)
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where ε is again defined by (2.9). The problem is thus transformed to

H3

(
δ cosφ

dH

dS
− sinφ

)
=−1, (4.2a)

dT

dS
+N

dφ
dS
= H

(
δ cosφ

dH

dS
− sinφ

)
, (4.2b)

dN

dS
−T

dφ
dS
= H cosφ, (4.2c)

d2φ

dS2
=N , (4.2d)

with boundary conditions

φ = 0 at S= 0, (4.2e)

H =T =N = dφ
dS
= 0 at S= λ, (4.2f )

where we introduce the shorthand

δ = ε16/9 =
(

3νq

ga3

)4/9

and λ= ε4/9`= ε
4/9L

a
. (4.3)

4.2. Leading-order equations

As δ→ 0, (4.2a) implies that

H = 1

sin1/3φ
. (4.4)

As is standard for gravity-driven thin-film flow on a curved surface, the transverse
component of gravity is subdominant and the leading-order film thickness is
determined purely in terms of the local substrate inclination (as in, for example,
Duffy & Wilson 1999). We anticipate that there will be a boundary layer at S = 0 to
prevent H from tending to infinity and a second boundary layer at the free end S = λ,
so that the imposed boundary condition H(λ)= 0 may be satisfied.

Equations (4.2b) and (4.2c) thus reduce to

dT

dS
+N

dφ
dS
=−sin2/3φ, (4.5a)

dN

dS
−T

dφ
dS
= cosφ

sin1/3φ
, (4.5b)

which may be combined to give

d
dS
(T cosφ +N sinφ)= 0, (4.6)

which represents a horizontal force balance. From the boundary conditions (4.2f ) we
deduce that the bracketed term in (4.6) is identically zero and, hence, that

T = F sinφ, N =−F cosφ, (4.7)
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for some function F(S), representing the vertical stress component in the beam.
Equations (4.2b)–(4.2d) thus reduce to the system

dF

dS
=−sin−1/3φ,

d2φ

dS2
=−F cosφ, (4.8)

subject to the boundary conditions

φ(0)= 0,
dφ
dS
(λ)= 0, F(λ)= 0. (4.9)

To facilitate numerical solution, we introduce the beam curvature

κ = dφ
dS

(4.10)

and rewrite the system (4.8) in the form

dF

dφ
=− 1

κsin1/3φ
,

dκ
dφ
=−F cosφ

κ
. (4.11)

We shoot from φ =Φ, using the local behaviour

F ∼ 61/3(Φ − φ)1/3
cos1/3Φsin2/9Φ

{
1+ 7 cotΦ − 6 tanΦ

90
(Φ − φ)

+ 54sec2Φ + 97cosec2Φ − 79
3240

(Φ − φ)2 + · · ·
}
, (4.12a)

κ ∼ 32/3cos1/3Φ(Φ − φ)2/3
21/3sin1/9Φ

{
1+ cotΦ + 12 tanΦ

45
(Φ − φ)

+31cosec2Φ − 246sec2Φ − 246
5400

(Φ − φ)2 + · · ·
}

(4.12b)

as φ→ Φ, integrate to φ = 0, then read off the corresponding values of κ(0)= A, say,
and

λ=
∫ Φ

0

dφ
κ(φ)

. (4.13)

By following this procedure, we can back out the dependence of Φ and A on
the dimensionless beam length λ, and the resulting functions are plotted in figures 7
and 8, respectively. The dashed curves show the small- and large-λ asymptotic limits,
which will be derived below. We note that the local expansions (4.12) are evidently
non-uniform if Φ is very close to π/2, and we return to this limit in § 4.6.

In figure 9, we show typical profiles of the beam and the film obtained by solving
(4.11) and (4.12) numerically with dimensionless beam length λ = 1, 2, 3. In plotting
the film thickness, given by (4.4), we use a value ε = 0.05 for the aspect ratio. We
see that, as expected, a longer beam suffers a greater deflection and carries a thinner
film. It is evident that this outer solution predicts an unbounded film thickness at
the origin, and this is resolved below by analysing a boundary layer at S = 0. It is
also clear that the assumed condition of zero film thickness at the free end S = λ
is not satisfied. This boundary condition is not strictly appropriate when the beam is
no longer approximately horizontal, and anyway the leading-order outer solution is
independent of the boundary condition applied for H. Nevertheless, for completeness
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FIGURE 7. (Colour online) Deflection angle Φ plotted versus dimensionless beam length
λ using logarithmic axes. The dashed curves show the asymptotic limits (4.24a) as λ→ 0
and (4.32) as λ→∞. (The tick marks on the vertical axis are at Φ = nπ/4m, where
n ∈ {3, 4, 5, 6, 7, 8} and m ∈ {2, 3, 4}.)
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FIGURE 8. (Colour online) Beam curvature at the origin A = κ(0) plotted versus
dimensionless beam length λ using logarithmic axes. The dashed curves show the asymptotic
limits (4.24b) as λ→ 0 and (4.33) as λ→∞.

we will also demonstrate that it is possible to specify H(λ) = 0 by considering a
boundary layer at S= λ.

4.3. Boundary layers
As in § 3.3, the tangential component of gravity dominates the flow in the body of
the film where the beam deflection is large. However, at the clamped end S = 0 where
φ = 0, this is no longer the case, and a balance between the tangential and transverse
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FIGURE 9. (Colour online) The beam deflection and film profile obtained by numerical
solution of (4.11)–(4.12) plotted in the (x, y)-plane with ε = 0.05 and λ= 1, 2, 3.

components of gravity is obtained through the rescalings

S= A−1(δA)3/7ẑ, H = (δA)−1/7ĥ, φ = (δA)3/7ψ̂,
T = (δA)3/7T̂ , N = ˆN

}
(4.14)

which results in the leading-order equations

dĥ

dẑ
= ψ̂ − 1

ĥ3
,

dT̂

dẑ
+ ˆN

dψ̂
dẑ
= 0,

d ˆN

dẑ
= 0,

d2ψ̂

dẑ2
= 0, (4.15)
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with corrections of order δ2/7. These equations are to be solved subject to the boundary
condition ψ̂(0)= 0 and the matching conditions

ĥ∼ ẑ−1/3, ψ̂ ∼ ẑ, T̂ ∼ F0ẑ, ˆN ∼−F0 as ẑ→∞, (4.16)

where F0 = F(0). Hence, to leading order we have

ψ̂ = ẑ, T̂ = F0ẑ, ˆN =−F0, (4.17)

and the film thickness in the boundary layer satisfies the problem

dĥ

dẑ
= ẑ− 1

ĥ3
, ĥ∼ ẑ−1/3 as ẑ→∞. (4.18)

This is identical to the problem (3.24), (3.25) solved above, and we can read off the
value ĥ(0)= B0 ≈ 1.26772. Hence, the scaled film thickness at the origin is given by

H(0)∼ B0(δA)
−1/7, (4.19)

where A is given in terms of the dimensionless beam length λ by the function plotted
in figure 8.

The boundary layer at the free end S = λ and φ = Φ is analysed by performing the
rescalings:

S= λ− δ cosΦ

sin4/3Φ
z̄, H = ĥ

sin1/3Φ
, φ =Φ + δ

3cos3Φ

sin11/3Φ
φ̂, (4.20)

T = δ cosΦ

sin2/3Φ
T̂ , N = δ cosΦ

sin5/3Φ
ˆN . (4.21)

At leading order, we then find that ĥ (z̄) satisfies the initial-value problem

dĥ

dz̄
= 1

ĥ3
− 1, ĥ(0)= 0. (4.22)

Again, we have encountered this problem before, and the solution is given by the
implicit (3.19); then φ̂, T̂ and ˆN may be determined a posteriori from decoupled
differential equations.

4.4. Small-λ limit
When the scaled beam length λ is small, the deflection angle Φ is also small, and the
scalings

S= λ−Φ4/9z̃, φ =Φψ̃ (4.23)

transform the outer problem (4.8) into the problem (3.13) found previously for ψ̃ (z̃).
This confirms that the small- and large-deflection solutions match for intermediate
values of Φ and λ. We can thus infer the small-λ asymptotic limits of the present
large-deflection solutions, namely

Φ ∼
(
λ

˜̀
)9/4

≈ 0.264833 λ9/4, (4.24a)

A∼ A0

(
λ

˜̀
)5/4

≈ 0.816422 λ5/4 (4.24b)
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as λ→ 0. The dashed curves in figures 7 and 8 demonstrate the accuracy of these
estimates.

4.5. Large-λ limit
Next we consider the opposite extreme where the scaled beam length λ→∞. In this
limit, the beam sags until it is almost vertical, so that Φ→ π/2, and gravity causes the
vertical stress F to scale with the beam length λ. We therefore perform the scalings

S= λζ, φ = π
2
− χ, F = λf , (4.25)

and it transpires that χ is exponentially small, so that the film thickness H is
approximately uniform (and equal to 1), as would be expected for flow down a
vertical substrate. The model (4.8) is therefore transformed into

df

dζ
=−1

1
λ3

d2χ

dζ 2
= fχ, (4.26)

to lowest order, with boundary conditions

f = dχ
dζ
= 0 at ζ = 1. (4.27)

The leading-order solutions are therefore

f (ζ )= 1− ζ, χ(ζ )= 31/6Γ (2/3)C
2

{√
3Ai
(
λ(1− ζ ))+ Bi

(
λ(1− ζ ))} , (4.28)

where C = χ(1) is an integration constant and Ai, Bi denote Airy functions.
This solution must match with an inner region near ζ = 0 where φ adjusts from π/2

to 0. To analyse this region, we return to the system (4.8) and perform the rescaling

ζ = λ−3/2ξ that is, S= λ−1/2ξ, (4.29)

to get the leading-order inner equations

df

dξ
= 0,

d2φ

dξ 2
=−f cosφ. (4.30)

By applying the boundary condition φ(0) = 0 and matching with (4.28), we deduce
that f = 1 and

φ = π
2
− 4tan−1

((√
2− 1

)
e−ξ
)

(4.31)

in the inner region. Finally, by matching the inner and outer solutions for φ, we
evaluate the integration constant C and, hence, deduce the asymptotic behaviour

Φ ∼ π
2
−

8
(√

2− 1
)√
π

31/6Γ (2/3)
λ1/4e−2λ3/2/3 as λ→∞. (4.32)

We also find from (4.31) that dφ/dξ =√2 at ξ = 0 and deduce that

A∼√2λ as λ→∞. (4.33)

The approximations (4.32) and (4.33) are shown as dashed curves in figures 7 and 8.
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When we substitute (4.33) into (4.19) we find that H(0) ∼ B0

(
δ
√

2λ
)−1/7

as

λ→∞. This implies that the film thickness at the origin decreases towards zero
as the length of the beam increases, which seems physically implausible. This result
is explained in the following section by a more careful examination of the combined
asymptotic limits λ→∞ and δ→ 0.

4.6. New distinguished limit
The analysis above demonstrates that, as the beam becomes longer, an increasing
proportion of it is approximately vertical. Equation (4.29) shows how the region over
which the deflection adjusts from φ = 0 to φ ≈ π/2 becomes smaller as λ increases,
with S∼ λ−1/2. On the other hand, the width of the boundary layer over which the film
thickness h adjusts is given by (4.14) as S ∼ δ3/7A−4/7 ∼ δ3/7λ−2/7 as λ→∞. A new
distinguished limit emerges in which these inner regions overlap when

∆= δ√λ= 3ρνqL

B
= O(1). (4.34)

In this limit, the scaled film thickness Y(ξ)= H(S) in the inner region satisfies

Y3

(
∆ cosφ

dY

dξ
− sinφ

)
=−1, (4.35)

subject to the matching condition Y → 1 as ξ →∞, while the deflection angle φ is
still given by (4.31).

This problem may be helpfully reformulated as

∆
dY

dw
= sec w+ cosec w cosec(2w)

1− Y3

Y3
, (4.36)

where w= π/4− φ/2. For each value of ∆, this is easily solved numerically subject to
the initial condition

Y ∼ 1+ 2w2

3
− 8∆w3

9
+ 2

(
3+ 8∆2

)
w4

9
+ · · · as w→ 0. (4.37)

Some numerical results for the film height Y(ξ) = H(S) obtained by following this
procedure are plotted in figure 10. For each value of ∆, we see that Y is a
monotonically decreasing function of distance ξ from the origin, tending to 1 as
ξ →∞. The film thickness at the origin Y0 = Y|w=π/4 is a decreasing function of ∆,
as shown in figure 11. Here we plot the difference between the film thickness Y0 at
the origin and the thickness H = 1 in the outer region. This difference tends to zero as
∆→∞ and the boundary layer at the origin shrinks to zero.

If we perform the scalings

ξ = 2−2/7∆3/7ẑ, Y = 2−1/14∆−1/7ĥ, (4.38)

before taking the limit ∆→ 0, then (4.35) reduces to the previously solved problem
(4.18). It is readily verified that (4.38) is consistent with the rescaling (4.14) when
A∼ (2λ)1/2. This allows us to read off the asymptotic behaviour

Y0 ∼ B0

21/14∆1/7
as ∆→ 0, (4.39)

as indicated by a dashed curve in figure 11.
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FIGURE 10. (Colour online) The film thickness Y(ξ) satisfying the inner (4.35) and Y→ 1
as ξ →∞, with ∆ ∈ {0.01, 0.1, 1, 10}.

1

7

1

1

1.000

0.500

0.100

0.050

0.010

0.005

10–2 10–1 100 101 102 103

FIGURE 11. (Colour online) The excess film thickness at the origin, Y0 − 1, plotted versus
∆ = δ√λ using logarithmic axes. The dashed curves show the asymptotic limits (4.39) as
∆→ 0 and (4.41) as ∆→∞.

On the other hand, we observe that Y ∼ 1 when ∆� 1, and we find that

Y ∼ 1+ 1
∆

log
(

1+ tan(w/2)
1− tan(w/2)

)
= 1+ 1

∆
log

1+
(√

2− 1
)

e−ξ

1−
(√

2− 1
)

e−ξ

 (4.40)
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as ∆→∞. Hence, we obtain the asymptotic behaviour

Y0 ∼ 1+
log
(

1+√2
)

∆
as ∆→∞, (4.41)

which is also plotted in figure 11 using a dashed curve. Hence, when the beam
becomes extremely long and flexible, the film thickness ultimately becomes completely
uniform and H(0)→ 1.

5. Summary
Now we collect all of the asymptotic predictions obtained above and compare them

with numerical solutions of the complete model with small but finite values of ε. It is
helpful to pose the steady governing equations (4.2) as the first-order system

dH

dφ
= H3 sinφ − 1
ε16/9H3κ cosφ

, (5.1a)

dT

dφ
=−N − 1

H2κ
, (5.1b)

dN

dφ
= T + H cosφ

κ
, (5.1c)

dκ
dφ
= N

κ
, (5.1d)

dS̃

dφ
=−1

κ
, (5.1e)

where S̃ = λ − S and again κ = dφ/dS is the curvature. We shoot from φ = Φ, where
H = T =N = κ = S̃ = 0. The singularity is handled by using local expansions for
the dependent variables, given in Appendix. We can then read off the values of
λ= S̃(0) and H0 = H(0) corresponding to each choice of ε and Φ.

In plotting our numerical results, we characterize the beam deflection by the angle
Φ and the film thickness by the dimensionless variable

h0 = ε1/3H0 = h∗0
εa
=
(

ρg5

81Bν4q4

)1/16

h∗0, (5.2)

where we recall the notation h∗ for the dimensional film thickness. The problem
statement (5.1) makes it clear that h0 and Φ depend on two independent dimensionless
parameters, which we choose to be

`= L

a
=
(ρg

B

)1/4
L, (5.3a)

ε =
(

3νq

ga3

)1/4

=
(

81ν4q4ρ3

gB3

)1/16

, (5.3b)

characterizing the normalized beam length and the aspect ratio of the liquid film,
respectively. In figures 12 and 13, we plot numerical results for the dimensionless film
thickness h0 at the origin and the beam deflection angle Φ, respectively, versus the
dimensionless beam length `, for two fixed values of ε = 0.1 and ε = 0.01.
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FIGURE 12. (Colour online) Dimensionless film thickness h0 at the origin plotted versus
dimensionless beam length ` using logarithmic axes, with ε = 0.01 and ε = 0.1. The dashed
curves show the asymptotic approximations (5.4).
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FIGURE 13. (Colour online) Beam deflection angle Φ plotted versus dimensionless beam
length ` using logarithmic axes, with ε = 0.01 and ε = 0.1. The dashed curves show the
asymptotic approximations (5.5). (The tick marks on the vertical axis are at Φ = nπ/22m+1,
where n ∈ {2, 3, 4} and m ∈ {1, 2, 3, 4, 5, 6}.)

The small-deflection model analysed in § 3 gives leading-order approximations
of the form h0 = h0(`) and Φ = εΨ (`) when ` = O(1). The large-deflection
model from § 4 is valid when ` = O

(
ε−4/9

)
and gives us the solution in the

form h0 = ε1/3H0

(
ε4/9`

)
and Φ = Φ (ε4/9`

)
. This approximation for Φ persists for

arbitrarily large values of `, but a different approximation for h0 is found in § 4.6
when `= O

(
ε−4
)
, namely h0 = ε1/3Y0

(
ε2`1/2

)
.
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In §§ 3–4 we have verified that the solutions match in intermediate asymptotic
regimes, and, for ε� 1, we can infer the following simplified approximations:

h0 ∼



√
2 `1/4, `� 1,

1.30499 `−5/28, 1� `� ε−4/9,

1.20648 ε1/21 `−1/14, ε−4/9� `� ε−4,

ε1/3 + log(1+√2)ε−5/3`−1/2, `� ε−4,

(5.4)

and

Φ ∼



64
√

2
585

ε `13/4, `� 1,

0.26483 ε `9/4, 1� `� ε−4/9,

π

2
−

8
(√

2− 1
)√
π

31/6Γ (2/3)
ε1/9 `1/4 exp

(
−2

3
ε2/3`3/2

)
, `� ε−4/9.

(5.5)

The dashed curves in figures 12 and 13 show how these estimates are manifested as
` varies. As expected, the different intermediate asymptotic regimes are more clearly
distinguished when ε is decreased.

6. Conclusions
In this paper, we have studied a model problem in which the flow of a thin liquid

film and the deformation of an elastic substrate are intrinsically coupled. The substrate
is a flexible beam whose weight is assumed to be negligible, so that its deflection is
solely due to the liquid film on its upper surface. On the other hand, the principal
driving force for the liquid film is the tangential component of gravity created by
the deflection of the substrate. This strong mutual coupling gives rise to a fascinating
range of possible behaviours as the dimensionless liquid flux and beam length are
varied. For example, for a fixed liquid flux, we find that the thickness of the resulting
film first increases and then decreases as the length of the beam increases. With the
benefit of hindsight, this is a clear consequence of the fluid–elastic coupling: a longer
beam suffers a greater deflection which enhances the gravitational forcing experienced
by the fluid and therefore promotes flow away from the applied source. Thus, the
deflection of a leaf in the rain facilitates the removal of water from its surface.

Our mathematical model is based on several simplifications whose validity is open
to question. For example, we have assumed that lubrication theory is valid and that
the effect of the surface tension γ is negligible throughout. On the face of it, these
assumptions are valid provided the slenderness parameter ε and the reduced Reynolds
number Re = εq/3ν are sufficiently small, and the Bond number Bo = ρga2/γ is
sufficiently large. For example, the data given by Gibson, Ashby & Easterling (1988)
imply that the bending stiffness of a leaf is in the range 0.1–1 N m and, hence,
that the characteristic bending length scale a is around 6–10 cm (interestingly, this is
also a reasonable length scale for a typical leaf). For a substrate with similar elastic
properties, ε and Re are small for all values of the flux such that q� 1 cm2 s−1, and
the Bond number is at least 500.

However, the potential effects of both two-dimensionality and capillarity may be
amplified when there are boundary layers in the solution. In particular, there will
certainly be a neighbourhood of the free end where the approximations made herein
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fail. Our simplified boundary condition of vanishing film thickness as the liquid falls
from the end of the beam appears to be a reasonable matching condition at least while
the deflection angle remains small. For larger deflections, although this condition is no
longer physically realistic, it has negligible influence on the outer solution.

In practice, rather than immediately detaching from the free end of the beam, the
liquid film would form a viscous jet that accelerates away from the beam under gravity.
By dimensional analysis, one may estimate that this jet exerts a tension on the end of
the beam of order ρq(νg)1/3. Our zero-stress boundary conditions applied at the free
end of the beam are valid provided this tension is much smaller than the scaling (2.8b)
used for the tension in the beam. The relevant dimensional parameter is found to be
qν1/3/ε2a2g2/3 = (εRe/3)1/3� 1, so the influence of the falling jet is indeed negligible
at leading order whenever lubrication theory is valid for the film on the beam. (We are
grateful to an anonymous referee for suggesting this analysis.)

The time-dependent version of this problem promises intriguing dynamics, with the
various asymptotic regimes discovered in this paper being encountered in turn as the
film spreads along the substrate, and we intend to explore this in future work. We
note also that the simple physical situation considered in this paper appears relatively
straightforward to study experimentally; indeed we are currently pursuing experimental
validation of our results. It would also be interesting to generalize the geometrical
set-up, for example by considering a naturally curved substrate or by varying the angle
at which it is clamped.
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Appendix. Local expansions near the end of the beam
To solve the system (5.1) numerically, we use the following local expansions:

H ∼ 8

sin1/3Φ
µ

{
1− 71µ3 + 2699058

1045
µ6 + · · ·

}
, (A 1a)

T ∼ 32ε16/9

sin2/3Φ
µ2

{
1+ 314

5
µ3 + 3175401

1045
µ6 + · · ·

}
, (A 1b)

N ∼−32768ε16/9cos2Φ

5sin5/3Φ
µ5

{
1− 35µ3 + 150588

209
µ6 + · · ·

}
, (A 1c)

κ ∼ 134217728ε32/9

45tan3Φ
µ9

{
1− 15µ3 + 32958

209
µ6 + · · ·

}
, (A 1d)

S̃ ∼ 1024ε16/9 cosΦ

sin4/3Φ
µ4

{
1+ 60

7
µ3 + 28134

1045
µ6 + · · ·

}
(A 1e)

where

φ =Φ − 549755813888ε16/3cos4Φ

585sin13/3Φ
µ13 (A 1f )

and 0< µ� 1. As Φ→ 0, we require µ� (Φ/ε)16/39.
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As Φ → π/2, the boundary layer in H at φ = Φ makes the problem very stiff
numerically, and we instead apply the matching condition H = cosec1/3Φ when φ =Φ.
In this case the appropriate local expansions are

H ∼ cosec1/3Φ + 31/3sin1/9Φ

25/3ε16/9cos1/3Φ
(Φ − φ)4/3 + · · ·, (A 2a)

T ∼ 61/3sin7/9Φ

cos1/3Φ
(Φ − φ)1/3 − 49+ 41 cos(2Φ)

20 · 62/3cos4/3Φsin2/9Φ
(Φ − φ)4/3 + · · ·, (A 2b)

N ∼−61/3cos2/3Φ

sin2/9Φ
(Φ − φ)1/3 − 14 · 21/3sin7/9Φ

5 · 32/3cos1/3Φ
(Φ − φ)4/3 + · · ·, (A 2c)

κ ∼ 32/3cos1/3Φ

21/3sin1/9Φ
(Φ − φ)2/3 + 25/3sin8/9Φ

5 · 31/3cos2/3Φ
(Φ − φ)5/3 + · · ·, (A 2d)

S̃ ∼ 61/3sin1/9Φ

cos1/3Φ
(Φ − φ)1/3 − 21/3sin16/9Φ

5 · 32/3cos4/3Φ
(Φ − φ)4/3 + · · · (A 2e)

as φ→Φ.
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