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Abstract

Sulphuric acid is a highly hygroscopic substance, increasing its volume by absorbing

water from high relative-humidity environment. In this paper, we present a mathemati-

cal model that describes the hygroscopy of a uniform layer of sulphuric acid with a given

initial concentration and relative humidity of the surrounding gaseous environment. We

assume that water is absorbed across the gas–liquid interface at a rate proportional to

the difference in concentration from the equilibrium value. Our numerical results com-

pare well with asymptotic predictions for small Sherwood number, where we derive

an explicit solution. The theory agrees well with experimental data, which supports

the validity of the model, and we are able to use the model to determine the rate of

absorption, which cannot be found by a direct experimental measurement.

1 Introduction

Sulphuric acid is used in a wide range of industrial applications, including as a catalyst

in alkylation reactions, in petroleum refining, in the manufacture of detergents, and as an
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important component in lead-acid batteries1. Sulphuric acid can be produced as a by-

product, for example, when removing sulphur dioxide from flue gas. Its properties have

been extensively studied and established empirically2–4. A prominent feature of sulphuric

acid is its hygroscopy, i.e., its tendency to absorb water vapour from its surroundings1.

When water vapour is absorbed, the volume of the sulphuric acid solution increases and

consequently dilutes the acid concentration.

Water absorption into liquids has been well studied and modelled5,6 as far as the mech-

anism of the process at the gas–liquid interface is concerned. In Lewis and Whitman 5 , and

Greenewalt 6 , they describe the principles of gas absorption in terms of a “two-film” theory,

in which thin stationary films of the corresponding phase on either side of the interface are

assumed to exist which provide resistance to mass transfer. The absorptive flux depends lin-

early on the difference between the concentration of water at the gas–liquid interface and the

equilibrium value of the concentration of water in the liquid when there is no net absorption.

The hygroscopic growth of materials has been mainly considered in the context of swelling

of solid porous materials such as mortar, polymers and powders7–10 rather than aqueous

solutions such as aqueous sulphuric acid. In Delgado et al. 8 , they present a model for

the hygroscopic material that uses a non-linear expression for the rate of increase of water

content that has a power-law dependence on the difference between the amount of water at

the surface and at equilibrium. However, their model assumes that the water is well mixed

in the bulk, and so does not incorporate water transport across the material.

A conservation-of-mass type of model for hygroscopic swelling of porous spherical par-

ticles, which incorporates the diffusive transport of water, is presented in Sweijen et al. 11 .

They track the volume fraction of water and model absorption at the interface as a first-

order kinetics process. Furthermore, they investigate numerically the regimes when diffusion

and water absorption dominate, respectively, and derive a formula for the particle radius as

a function of the water volume fraction. In this model, the water fraction at the particle

surface is assumed to be independent of diffusion processes in the bulk and is solved for
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separately to obtain an exponential evolution in time. This makes the boundary condition

at the surface of the particle a time-dependent Dirichlet condition.

Hennessy et al. 12 develop a model for solvent evaporation and adsorption in thin liquid

films. They track the volume fraction of the solvent using a nonlinear diffusion model,

couple this with mass transfer across the moving interface, and fit solutions of their model

against experimental data from ternary solutions, to find the mass transfer coefficient for

their systems. We will use a simplified version of their model in this paper in which we set the

diffusivity to be constant and track the concentration, rather than volume fraction, of water

in the liquid layer. Similar models for solvent diffusion in glassy polymers are presented in

Alfrey et al. 13 , Cohen and Erneux 14 , Mitchell and O’Brien 15 .

We want to quantify the hygroscopy effect in layers of sulphuric acid produced in purifi-

cation devices that remove sulphur dioxide from flue gas. In these devices, water vapour is

absorbed from the flue gas by the sulphuric acid layers that grow around the microscopic

device surfaces. The additional volume attributed to hygroscopy further reduces device effi-

ciency and leads to swifter clogging. Understanding the amount of moisture uptake in such

devices is crucial in understanding their performance and the time it takes for them to clog.

However, the fundamental parameter controlling hygroscopy, the mass transfer coefficient

associated with water transport across the interface, is not readily available in the literature.

Thus, in this paper, we will follow Hennessy et al. 12 and present a simple mathematical

model to describe the hygroscopy of a layer of sulphuric acid, compare the solutions to the

model against experimental data, and determine this coefficient. Unlike Delgado et al. 8 ,

we will incorporate diffusion of water, and, therefore, track the spatially non-uniform water

concentration in the sulphuric acid. In addition, we do not calculate the water concentration

at the gas–liquid interface separately, as in Sweijen et al. 11 , but couple it with the diffusion

process in the bulk of the solution. The plan for the paper is as follows. In §2, we will

present the governing equations and boundary and initial conditions that describe the con-

centration of water in a layer of aqueous sulphuric acid with thickness that can change as
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water is absorbed. In §2.2, we will non-dimensionalise the model, and introduce three key

dimensionless parameters. In §2.3, we consider a distinguished limit of the model in which

diffusion is the dominating process. In §3, we will describe the corresponding experiments.

We will present numerical results, compare these with asymptotic results and experimental

data, and determine the mass transfer coefficient in §4. Finally, we will draw conclusions in

§5.

2 Mathematical Model

We consider a liquid layer of sulphuric acid residing on an impermeable substrate, with its

upper surface exposed to an atmosphere containing water at a constant relative humidity,

as shown in figure 1. We suppose that the liquid film has initial thickness x̂ = ĥ0 (measured

in m) and contains water with concentration ĉ0 (measured in molm−3). Across the gas–

liquid interface, we assume that the flux of water into the film, Q̂ (measured in molm−2 s−1),

caused by the hygroscopy of the sulphuric acid, is proportional to the difference between the

concentration of dissolved water at the gas–liquid interface and the equilibrium concentra-

tion, ĉeq, which is the concentration of water in the sulphuric acid associated with a balance

in chemical potentials across the interface at a given relative humidity. For simplicity, we

assume that this relationship is linear in the concentration difference and thus we write

Q̂ = k̂(ĉ|x̂=ĥ − ĉeq), where k̂ (measured in ms−1) is the mass transfer coefficient associated

with water absorption, assumed to be constant.

In practice, ĉeq can be experimentally determined16 and depends on the relative humidity

and temperature of the surrounding air. For simplicity, we assume isothermal conditions so

that ĉeq is a constant. In the liquid film, we assume that water is transported by diffusion

with constant diffusivity D̂ (measured in m2 s−1), and that volume changes due to mixing

are negligible. In practice, the diffusivity may vary with concentration but we will find that,

for the parameter regime of interest, this does not play a role, while for other regimes, which
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we consider in the Supplementary Information, we will show that a concentration-dependent

diffusivity has a minimal effect on the behaviour.

We also note that, since the water vapour absorbed at the top of the liquid film is less

dense than the sulphuric acid, convective effects due to density variations are negligble.

Given that we expect the surface tension of the liquid layer to keep the air–liquid interface

flat, we restrict ourselves to a one-dimensional model with changes only occuring in the

vertical direction. Of course, small menisci exist at the edges of the layer, but we anticipate

that their influence will be confined to a small boundary layer near the walls and expect that

these will have negligible effect on the mass transfer. Thus, we obtain the following model

for the water concentration within the film, ĉ, and the thickness of the film, ĥ,

water absorption, −Q̂

aqueous sulphuric-acid solution

x̂
x̂ = ĥ(t̂)

x̂ = 0

Figure 1: Schematic of the model system.

∂ĉ

∂t̂
= D̂

∂2ĉ

∂x̂2
, (1)

dĥ

dt̂
= k̂V̂m(ĉeq − ĉ|x̂=ĥ), (2)

where V̂m (measured in m3mol−1) is the molar volume of water.

At the gas–liquid interface, we conserve flux relative to the moving interface and write

−D̂ ∂ĉ

∂x̂
− ĉdĥ

dt̂
= k̂(ĉ− ĉeq) at x̂ = ĥ(t̂). (3)

At the surface of the substrate, x̂ = 0, we impose no flux of water, and, thus, we write

−D̂ ∂ĉ

∂x̂
= 0 at x̂ = 0. (4)
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We assume that, initially, the concentration of water is known and uniform, and that the

thickness of the film is given, and, thus, we write

ĉ = ĉ0, ĥ = ĥ0 at t̂ = 0. (5)

We note that, for situations of practical interest, ĉ0 < ĉeq. To summarise, equations (1) and

(2) with boundary conditions (3) and (4), and initial conditions (5) form a closed system for

the concentration of water and the height of the film.

2.1 Steady State

Before proceeding, we look for the steady-state solutions ĉss= ĉss(x̂) and ĥss= ĥss(x̂) to

(1)–(5). Equation (2) tells us that

ĉss|x̂=ĥ = ĉeq, (6)

which we use to solve (1) along with (4) to find that

ĉss = ĉeq. (7)

We appeal to conservation of mass of sulphuric acid in order to find the final thickness of

the liquid layer. Denoting by N̂ the total initial moles of substance present in the layer, and

the total number of moles of sulphuric acid by Ŝ, we have that

Ŝ = N̂ − Âĉ0ĥ0 at t̂ = 0, (8)

where Â is the cross-sectional area of the layer, measured in m2.

Once the system has settled into the steady state, since the change in thickness of the

water layer is due purely to the increase in water molecules, the total number of moles of
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sulphuric acid is given by

Ŝ = N̂ − Âĉeqĥss +
Â(ĥss − ĥ0)

V̂m
. (9)

Equating (8) and (9) and rearranging, we find that

ĥss =
ĥ0(1− V̂mĉ0)
1− V̂mĉeq

. (10)

We note that the steady-state layer thickness is independent of the mass transfer coefficient k̂.

2.2 Dimensionless Model

In order to find the key parameters that determine the behaviour of the system, we non-

dimensionalise (1)–(5) using the following scalings

ĉ = ĉeqc, (x̂, ĥ) = ĥ0(x, h), t̂ = (ĥ20/D̂)t, (11)

where we have chosen to scale with the timescale associated with diffusion across the layer

(rather than the timescale associated with the interface motion). This proves useful when

comparing our model with experimental results as we have a good estimate of both ĥ0 and D̂.

Furthermore, we have chosen ĉeq as the scale for ĉ, since this parameter remained the same

in our experiments (we maintained the same relative humidity). The resulting dimensionless

equations, together with the boundary and initial conditions, are

∂c

∂t
=
∂2c

∂x2
, (12)

dh

dt
= σ Sh(1− c|x=h), (13)
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subject to

− ∂c
∂x
− cdh

dt
= Sh(c− 1) at x = h(t), (14)

− ∂c
∂x

= 0 at x = 0, (15)

c = δ, h = 1 at t = 0, (16)

where we have introduced three dimensionless parameter groups, namely,

Sh =
k̂ĥ0

D̂
, σ = ĉeqV̂m, δ =

ĉ0
ĉeq
. (17)

Here, Sh is the Sherwood number for water absorption, which compares the mass transfer

across the interface with the rate of water diffusion, σ represents the thickness change asso-

ciated with the equilibrium concentration, and δ is the ratio of the initial concentration to

the equilibrium concentration, assumed to be less than one (since the initial concentration

is lower than the equilibrium concentration). We also note that σ < 1, since the equilibrium

concentration of water is less than the molar concentration of water.

2.3 The Case of Small Sherwood Number

Although the problem (12)–(16) is not very difficult to solve numerically, it is nonetheless a

moving-boundary problem that requires a careful treatment. Before solving numerically, we

would like to gain insight into the qualitative behaviour of the solutions for limiting values

of the Sherwood number, since this is the number that we do not know a priori. To that

end, we consider the limit in which Sh � 1, which will provide substantial simplifications

to the problem. This limit corresponds to the situation when the rate of diffusion of water

is much faster than the rate of water absorption, respectively. We treat both σ and δ as

O(1) parameters, so that our model has the richest structure. We also briefly discuss the

large-Sherwood-number limit in the Supporting Information, where we are also able to make
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some simplifications.

When Sh � 1, we see from (13) that, in this case, the right-hand side becomes small,

and, to a good approximation, the film does not grow. This is not surprising since, in this

limit, the diffusion timescale is much shorter than the absorptive timescale. Moreover, if we

solve (12)–(16) neglecting the terms multiplied by Sh, equation (14) tells us that the flux of

water from the atmosphere is zero, and, thus, the concentration remains at its initial value.

In order to explore the film growth, we rescale time by t = τ/Sh, where τ = O(1), which

corresponds to using the absorptive timescale, on which diffusion happens very fast. With

this scaling, the model becomes

Sh
∂c

∂τ
=
∂2c

∂x2
, (18)

dh

dτ
= σ(1− c|x=h), (19)

subject to

− ∂c
∂x
− Sh c

dh

dτ
= Sh(c− 1) at x = h(τ), (20)

− ∂c
∂x

= 0 at x = 0, (21)

c = δ, h = 1 at τ = 0. (22)

Neglecting terms of O(Sh), we see that (18), (20), and (21) yield a spatially uniform solution

c = c(τ). (23)

Thus, diffusion acts fast enough that the water concentration is uniform in the bulk liquid,

but is not in equilibrium, and this gives rise to film growth. In order to solve for c(τ), we

integrate (18) across the layer, and apply (20) and (21) to find that

d(ch)

dτ
= 1− c|x=h =

1

σ

dh

dτ
. (24)
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Integrating (24) and applying (22) gives a relationship between c and h, namely,

c =
h− 1 + δσ

σh
. (25)

Substituting from (25) into (19), we arrive at an ordinary differential equation for h,

dh

dτ
=

(σ − 1)h+ 1− δσ
h

, (26)

which has to be solved subject to (22). The implicit solution for h reads

τ =
1

σ − 1

(
h− 1− 1− δσ

σ − 1
log

(
(σ − 1)h+ 1− δσ

(1− δ)σ

))
. (27)

From (26), we see that, as τ →∞, h tends to a steady-state thickness given by

heq =
1− δσ
1− σ , (28)

and, consequently, that c → 1. We note that (28) is the dimensionless version of (10)

presented in §2.1. Equation (28) further simplifies to heq = 1/(1−σ) when δ � 1, providing

a simple formula for the equilibrium film thickness in this regime. Since the leading-order

result is independent of the Sherwood number and the behaviour is limited by mass transfer,

any concentration dependence in the diffusivity would not affect the system behaviour.

3 Experimental Set-Up

We now describe the experiments that we have carried out in order to help us determine

the crucial unknown parameter k̂. The experimental set-up shown in figure 2a, consists of a

cylindrical glass vial with a flat bottom and a O-ring seal joint at the top connected to an

open tube with a O-ring seal joint at the bottom. The diameter of the vial is 2.5 cm and its

height is approximately 4.5 cm. An ePTFE membrane is secured between the vial and the

10



tube using the O-ring and a metal clamp, which partitions the vial from the tube. A small

Glass tube

Water reservoir

ePTFE membrane

Vial with aqueous
sulphuric-acid film

Glass tube

Water reservoir

ePTFE membrane
constant relative
humidity

water vapour
diffusion &
absorption

ĉ
ĥ(t̂)Vial with aqueous

sulphuric-acid film

(a) (b)

Figure 2: (a) Picture of the experimental set-up before filling it with liquid juxtaposed with
(b) a schematic of the experiment.

amount of sulphuric acid with prescribed initial thickness and water concentration is placed

in the vial (see table 1). The section above the membrane is filled with water to create a

reservoir. The ePTFE membrane properties are such that liquid water does not penetrate

and wet the membrane, but molecules of water vapour are free to diffuse through the porous

structure. This set-up creates a constant-relative-humidity boundary at the bottom of the

membrane surface. The overall set-up is shown schematically in figure 2b. The layer of

sulphuric acid absorbs water vapour and, thus, creates a gradient in the bottom section of

the vial that drives further diffusion of water molecules. Two experiments, each performed

in two trials and lasting six months, were conducted at 95% relative humidity with the

same thickness ĥ0 = 1.9 × 10−3m, but with two different starting concentrations, namely

(a) ĉ0 = 3.6× 103molm−3 (concentrated acid) and (b) ĉ0 = 4.0× 104molm−3 (dilute acid).

The water uptake was quantified by periodically measuring the weight of the acid solution

in the vial (the measurements were taken 2–3 times a week in the first two months, and

then once a week for the remaining four months of the experiment). Each measurement took
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2–3 minutes and consisted of emptying the water from the glass tube (the acid was never

removed from the vial), removing the top section, and weighing the bottom section (glass

vial and liquid). The weight of the liquid is determined as the difference of the measured

weight and the weight of the empty vial. The quantities of interest, namely, the sulphuric

acid concentration and the film thickness, are then calculated from the initial concentration

and weight uptake.

We list the known dimensional and dimensionless parameters for the two experiments

in table 1 and table 2, and note that the absorption coefficient k̂ and thus the Sherwood

number Sh are unknown a priori.

Table 1: Dimensional parameters, taken from Wilson 16 , Brini et al. 17 , Leaist 18 .

Parameter Definition Value Units
ĥ0 Initial liquid thickness 1.9× 10−3 m
ĉ0 Initial water concentration (a) 3.6× 103, (b) 4.0× 104 molm−3

Â Cross-section of glass vial 4.9× 10−4 m2

ĉeq Equilibrium water concentration16 5.4× 104 molm−3

m̂ Molar mass of water17 1.8× 10−2 kgmol−1

D̂ Diffusivity of water 1.6× 10−9 m2 s−1

in aqueous sulphuric acid18

V̂m Molar volume of water17 1.8× 10−5 m3mol−1

Table 2: Dimensionless parameters.

Parameter Value
σ 0.97
δ (a) 0.067, (b) 0.74

4 Numerical Results

We now solve the full system (12)–(16) numerically and compare the results with the asymp-

totic reductions presented in §2.3. In order to solve the problem numerically, we map the

time-dependent spatial domain 0 ≤ x ≤ h(t) to the fixed domain 0 ≤ ξ ≤ 1 using the

transformation x = h(t)ξ, discretise the system in space, and solve the problem using the
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method of lines. In figure 3, we present the solutions for h and c for sample parameter

values Sh = 1, σ = 0.5, δ = 0.1 in order to visualise the generic behaviour of the system,

and, in particular, the saturation of the film thickness with time. We see that, in figure 3a,

the film thickness evolves to an equilibrium value of 1.9, which agrees with the prediction

from (28), while in figure 3b, we see that the water concentration first develops a moderate

gradient near the gas–liquid interface due to water absorption before smoothing out as the

concentration becomes uniform across the liquid film due to diffusion.

5 10 15 20 25 30

1.2

1.4

1.6

1.8

(a)

t

h

0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

(b)

x

c

Increasing t

Figure 3: Graphs showing (a) the temporal profile of h, satisfying (12)–(16) and (b) the spa-
tial profile of c for various times: t = 0 (red), 0.1 (orange), 1 (green), 10 (blue), 30 (purple).
The position of the gas–liquid interface is shown with a dashed line. The parameters are
σ = 0.5, Sh = 1, and δ = 0.1.

Having seen the general behaviour of the system, we now explore how the solution changes

as the parameters change. Firstly, we vary ĉeq, which changes both σ and δ, and the results

are shown in figure 4a. We see that increasing ĉeq results in a larger equilibrium film thickness.

This is because the larger the ĉeq the more water uptake is required to reach equilibrium.

Secondly, we vary ĉ0 by varying δ as shown in figure 4b. We see that increasing ĉ0 leads

to a decrease in the equilibrium film thickness. This is to be expected, since increasing ĉ0

means that the initial concentration becomes closer to the equilibrium value ĉeq, and so less

water needs to be absorbed until equilibrium is reached. Thirdly, in figure 5, we present

the film thickness versus time for various values of Sh between 1 and 0.1, and we see that

there is excellent agreement between the numerical results and our asymptotic prediction
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from §2.3, shown as a dashed line, as Sh → 0. We note that we have plotted the results

versus the scaled time τ to be consistent with the result in §2.3. Since changing Sh only

alters the relative strength of reaction over diffusion, variations in this parameter determine

the approach of the thickness to its equilibrium, including the time it takes to reach it, but

not its actual value, which is given by (28).

5 10 15 20 25 30

2

3

4

5

(a)

t

h

Increasing ĉeq

5 10 15 20 25 30

1.2

1.4

1.6

1.8

(b)

t

h

Increasing ĉ0

Figure 4: Graphs showing the temporal profile of h varying (a) ĉeq by varying both (σ, δ):
(0.1, 0.5) (red), (0.5, 0.1) (blue), (0.9, 0.06) (purple) and (b) ĉ0 with δ = 0.1 (red), 0.5 (blue),
0.9 (purple), with σ = 0.5. Here, Sh = 1.

5 10 15 20 25 30

1.2

1.4

1.6

1.8

τ

h

Decreasing Sh

Figure 5: Graph showing how h varies with time for various values of Sh: Sh = 1 (purple),
0.5 (blue), 0.1 (red), asymptotic result from §2.3 (dashed). The other parameters are σ =
0.5, δ = 0.1.

We also investigate the behaviour of the water concentration in the film in the limiting

case of small Sh using the asymptotic reductions in §2.3. When Sh � 1, we see in figure 6

that, as discussed in §2.3, the concentration is spatially uniform across the film for all time

under the influence of the dominating diffusion process, and equilibrium at the interface is
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reached over a longer timescale.

0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

x

c

Increasing τ

Figure 6: Graph showing how c varies with x for the small-Sh limit from §2.3 for various
times: τ = 0 (red), 0.1 (orange), 1 (green), 10 (blue), 30 (purple); the position of the
gas–liquid interface is shown with a dashed line. The other parameters are σ = 0.5, δ = 0.1.

Finally, we compare our numerical results against experimental data. We use the exper-

iments with initial water concentration ĉ0 = 3.6 × 103molm−3 to determine the Sherwood

number, which we find by fitting the experimental values of the mass, M̂ , of water in the

liquid layer against

M̂(t̂) = m̂Â

∫ ĥ(t̂)

0

ĉ dx̂ = m̂Âĉeqĥ0

∫ h(t)

0

c dx, (29)

where m̂ is the molar mass of pure water (measured in kgmol−1). Using least squares, our

fitting procedure gives that Sh = 0.1, and we show the comparison between the dimensional

data, the output of our model, and our small-Sh formula in figure 7a. We then use the

fitted value of Sh to make a prediction when ĉ0 = 4.0 × 104molm−3, and we show the

results from the model, the small-Sh approximation, and the dimensional experimental data

in figure 7b. We see excellent agreement, which validates our model. We use the fitted value

of the Sherwood number to determine the value of the parameter k̂, which we find to be

k̂ = 8.8×10−8ms−1 (at this value of the relative humidity). A similar order of magnitude was

found for the equivalent coefficient for ternary systems of aluminium chlorohydrate, glycerol

and water in Hennessy et al. 12 .
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Figure 7: Graphs showing how M̂ , measured in g, varies with time, measured in days, (red)
compared with the asymptotic result from §2.3 (dashed) and experimental data (blue dots)
for (a) ĉ0 = 3.6× 103molm−3 with σ = 0.97, δ = 0.74, and (b) ĉ0 = 4.0× 104molm−3 with
σ = 0.97, δ = 0.067. We fit the data to the model to find Sh = 0.1.

5 Discussion and Conclusions

In this paper, we derived a one-dimensional model to describe the tendency of sulphuric

acid to absorb water from its environment. We considered a uniform liquid film of aqueous

sulphuric acid residing on an impermeable substrate which absorbs water through its surface

from a constant-relative-humidity environment above. We assumed that the rate of absorp-

tion of water vapour is proportional to the difference between the water concentration at

the surface and the equilibrium concentration. We identified three dimensionless numbers.

Two of these correspond to properties that are easily measured experimentally, and involve

the initial and equilibrium water concentrations. The third, the Sherwood number, is the

ratio between the absorption rate and the diffusion rate, which cannot be extracted from

a direct experimental measurement without using a model. We used the model to make

a simple prediction about the final thickness of the liquid layer. In the small-Sherwood-

number regime, we found that diffusion dominates over the reaction, and the concentration

of water is spatially uniform across the liquid layer. We obtained an explicit solution for

the film thickness and concentration in this regime. We solved the full system of equations

numerically, explored the behaviour of the system as the parameters vary, and observed an

excellent agreement with our asymptotic prediction in the appropriate limit.
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We compared our results to experimental data from two experiments, namely, high and

medium initial concentration of sulphuric acid at close to 100% relative humidity. The

mathematical model gave excellent agreement in both cases for a fit to a single absorption

coefficient, k̂ = 8.8 × 10−8ms−1 = 0.1 mm day−1, validating the model and determining

the previously unknown value of k̂. The model can now be used, with this value of k̂, with

confidence in other settings.

The diffusivity of water in sulphuric acid in our experiment varies between 1.2 × 10−9

and 2.0× 10−9 m2s−1, according to Leaist 18 , Umino and Newman 19 . If we use these values

of D̂ along with the fitted value for Sh, our range of estimates for k̂ is 6.6× 10−8− 11× 10−8

ms−1. The associated Sherwood number was small, and the data was also well fitted using

the small-Sherwood-number results. This suggests that our simple analytical solution (27)

can be used to predict the amount of absorbed water without having to solve any differential

equations numerically. To test the model predictions further it would be useful to perform

more experiments with different values of the relative humidity, but we acknowledge that

these are difficult to carry out.

A simplifying assumption we made was that the water diffusivity was constant through-

out an experiment. In practice this diffusivity can vary with sulphur dioxide concentration.

However, we found that concentration-dependent variations in diffusivity play no role in the

small-Sherwood-number limit of interest, since here the behaviour is limited by mass trans-

fer. In the Supplementary Information, our preliminary study shows that a concentration-

dependent diffusivity also has little effect on the system behaviour for larger Sherwood num-

bers. However, a more comprehensive study of the effects would be worthwhile. Further,

since the absorption of water is an exothermic reaction, we are also interested in relaxing our

isothermal assumptions and incorporating heat transfer into our model. In both these cases,

small changes may become important if lateral temperature or concentration gradients are

established at the liquid-gas interface, since these can generate significant Marangoni flows.

In such cases, our one-dimensional approximation would break down and we would need to
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consider the two-dimensional analogue and incorporate the fluid flow.

The generality of Our simple model means that it can be readily used for other systems

where water or indeed other substances are absorbed from the environment before diffusing

through a liquid film. Examples include alcohols, such as ethanol, methanol, glycerol, and

also sodium hydroxide, paints, and coatings.

Our experimental results showed that there was a seven-fold increase in the thickness of

the sulphuric acid layer by the end of our six-month-long experiment (figure 6), confirming

the severity of volume change by this mechanism and that hygroscopy will play a key role

in sulphuric acid layer growth in industrial settings. Our future aim is to use the model

presented in this paper to incorporate the effect of hygroscopy into our model20 for chem-

ical filtering devices for suplhur dioxide, in order to understand the importance of water

absorption on device performance.
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