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A HOMOGENISED MODEL FOR A REACTIVE FILTER*

KRISTIAN B. KIRADJIEV!, CHRISTOPHER J. W. BREWARDT, IAN M. GRIFFITHST,
AND DONALD W. SCHWENDEMAN?

Abstract. Many chemical filters contain reactive components where harmful substances are
removed or transformed. In this paper, we derive a homogenised model for a flue-gas filter that con-
verts sulphur dioxide into liquid sulphuric acid. We consider a microscale domain, focused on a single
catalytic pellet, and homogenise over both the gaseous and the liquid phase to obtain macroscale
equations for the concentration of sulphur dioxide and the thickness of the liquid sulphuric acid layer
that grows around the pellets. We explore two interesting limits of the homogenised model, in which
the reaction rate at the pellet surface is small, and where the mass transfer across the gas-liquid
interface is small, respectively. We then couple the macroscale equations to an equation governing
the external gas flow through the filter. We solve the resulting model and consider asymptotic re-
ductions based on the filter geometry. We consider two distinguished limits and, for one of them,
obtain an explicit solution for the sulphur dioxide concentration and the void fraction in the filter.
We vary parameters such as the gas speed and establish the operating regimes for effective cleansing
of flue gas.
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1. Introduction. In the drive to protect the environment, reducing the con-
centrations of harmful chemicals that are released into the atmosphere has become
a priority for industry. One key example is the removal of sulphur dioxide, which is
formed in vast quantities in industrial processes and power plants as a by-product of
processing of raw materials such as crude oil and various ores [17, 38, 43|, from flue
(exhaust) gas. Sulphur dioxide is a highly toxic gas that can cause acid rain and is
linked to respiratory illnesses |7, 43]. In order to decrease its concentration in flue gas,
filtering procedures such as “gas scrubbing” (both wet and dry [15, 21, 35]), membrane
gas absorption [25], and packed-bed absorption [23] are often used. However, most
existing methods require high input power and a specifically suited operation site. In
addition, they produce a large amount of waste, such as gypsum containing impurities
[38]. This can be quite expensive and time-consuming for companies to implement.

In this paper, we derive and analyse a mathematical model for a more desirable
and cost-effective chemical filter, designed by W. L. Gore and Associates, that purifies
flue gas and, in particular, removes sulphur dioxide by turning it into liquid sulphuric
acid. The filtering device under consideration is made of stackable modules, each of
which consists of a series of open channels made of folded porous sheets that contain
multiple microscopic catalytic pellets that are held together by a network of fibres
(referred to as a sorbent—polymer composite) [26]. Flue gas flows from one end of the
filter to the other through the channels and diffuses into the sheets. When sulphur
dioxide, oxygen and water-vapour molecules come into contact with the surface of
these pellets, they react to form liquid sulphuric acid (see Figure 1 for an illustration
of the filtering device and a schematic of the filtration process). In reality, there are
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FIGURE 1. Three modules of the filter device and a schematic of the filtration process (from [26]).

multiple intermediate reactions that take place in the filter medium (see, for example,
[20, 33]) before acid is produced, but for simplicity these can be summarised by the
following single effective chemical reaction

carbon catalyst

(L.1) 28044 +2H50, + O4 2H,50,q,

where k is the overall reaction rate taking into account all intermediate steps, and
(%) denotes gaseous state (g) initially, before a liquid layer has formed around the
catalytic pellet, and aqueous solution (aq) afterwards. This method of sulphur dioxide
removal is less costly in terms of maintenance, is easy to install in a factory, does not
generate toxic waste, and produces sulphuric acid “for free” which can be easily stored
or used for other purposes, and also acts as a natural cleanser of the filter by removing
contaminant particles such as dust [26]. However, as the chemical reaction proceeds
within the filter sheets, liquid sulphuric acid accumulates in the void space (that is, the
volume that is neither solid nor liquid) between the catalytic pellets and dramatically
reduces the amount of sulphur dioxide that can be processed by the device, resulting
in a drop in the device efficiency over time. Our aim is to understand the dynamics
of the liquid and gas transport in the filter sheets during operation in order to gain
insight into the details of the efficiency reduction and to be able to advise on an
optimal operating regime.

Although various models exist for other purification methods, including gas scrub-
bing [15, 21, 24, 32| and absorption [9, 39], reactive-pellet chemical filters that involve
a phase change of the contaminant are less well studied. Mochida et al. [33] study the
removal of sulphur dioxide using activated carbon fibres, again producing sulphuric
acid. They develop a power-law model to describe the steady-state concentration
of sulphur dioxide at the outlet of the device and find that this concentration is
proportional to the weight of the catalyst and to a specific power of the starting con-
centrations of sulphur dioxide, oxygen, and water vapour. In addition, they assert
that the rate-limiting step of the reaction is the dissociation of sulphuric acid into
an aqueous solution around the carbon. Similar findings appear in Gaur et al. [19],
where they first develop a detailed kinetic model and then describe the evolution of
the gas concentration. They observe that increasing the inlet sulphur dioxide concen-
tration or decreasing the oxygen and water-vapour concentrations increases the outlet
concentration. In neither of these models is the evolution of the liquid sulphuric acid
explicitly modelled. Furthermore, in the second model the functional form of the
concentration of sulphur dioxide in the fibre pores is assumed, and, in addition, the
governing equations make use of an effective take-up rate of sulphur dioxide and are
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A HOMOGENISED MODEL FOR A REACTIVE FILTER 3

derived from a simple averaging over the pore domain. A summary of the time it
takes for the effluent gas concentration to reach a specific pre-determined value in gas
removal using catalysts for various models can be found in [49].

One approach to studying the physics and chemistry of these reactive filters would
be to solve a detailed model of the microscale throughout the filter using an appro-
priate software package. However, this would be computationally infeasible for real-
istic filter sizes. Instead, we will appeal to homogenisation theory (see, for example,
[4, 8, 22]) and upscale the equations that hold on the scale of a catalytic pellet to
obtain an averaged model on the macroscale that captures all the microscale physics.

Relevant physical situations that can be modelled using reaction—diffusion pro-
cesses occurring at the microscale in a porous medium include solute transport [1, 2,
11, 16, 18, 31, 37, 40, 45|, nutrient transport [10, 14], filtration [12, 13], decontamina-
tion [29], and dissolution and growth of materials, such as crystals [5, 6, 41, 46, 47|
and biofilms [27, 36, 44, 48]. In these situations, the microscale models often describe
conservation of mass and momentum of the phases involved, coupled with advection—
diffusion equations describing the transport of chemicals, and surface or bulk reactions
that contribute to the evolution. These microscale problems can be homogenised by
performing a multiple-scales analysis, and the resulting macroscale equations often
have a reaction—diffusion—advection form. For example, Conca et al. [11]| consider
the problem of homogenising a flow around reactive solid grains, and they derive up-
scaled equations for the cases when the reaction happens on the surface of the grains
or within the grains, and the resulting macroscale equations are of reaction—diffusion
form. A homogenised model for bacterial nutrient uptake in a bioreactor is derived
in Dalwadi et al. [14]. The reactor is modelled as a fluid medium with dissolved
nutrients that diffuse around, and into, a periodic array of spherical bacteria, where
the nutrients are absorbed. Here, the interface between the ambient medium and
bacteria is static.

In cases where there are moving interfaces on the microscale, there are two main
approaches: using a level-set formulation or explicitly tracking the position of the
interface. In the level-set formulation, the moving interface is given by the zero set of
a time-dependent function f(x,t), such as f = |&| — R(x,t) in the case of an asym-
metric interface with radius R(x,t), that is evolved according to the reactions that
take place at the interface. In the homogenisation procedure, the key step is to utilise
the separation of length scales on the microscale and the macroscale level by assuming
that the variables depend on both the microscale and the macroscale independently.
This assumption means that any derivative operators will then transform to a com-
bination of derivatives with respect to the microscale and the macroscale variables.
The next stage is to asymptotically expand the governing equations together with the
boundary and initial conditions in powers of the ratio of the length scales, which is
assumed to be a small parameter. The leading-order problem normally implies that
the dependent variables are independent of the microscale variables, and thus vary
only over the macroscale. A cell problem, usually involving a system of equations that
arise from considering the first-order correction in the asymptotic expansion of the
original system, is then formulated and needs to be solved once for a given geometry
in order to extract homogenised quantities, such as effective diffusivity, that appear
in the macroscale equations. The final step in the homogenisation procedure is to
obtain the macroscale equations by averaging the microscale equations over the rele-
vant microscale domain and applying the boundary conditions, which might appear at
higher order in the asymptotic expansion. In the level-set formulation, the equation
for the level-set function that defines the interface also needs to be expanded, and
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4 K. KIRADJIEV, C. BREWARD, I. GRIFFITHS, AND D. SCHWENDEMAN

a separate equation, which evolves the level-set function according to the reactions
that take place at the interface, is necessary. The advantage of this formulation is
the ability to capture spatially non-uniform evolution of any microscale interfaces.
This approach has been used by van Noorden [46], for example, where he derives
homogenised equations incorporating fluid flow for the evolution of a solid-liquid in-
terface in crystal precipitation and dissolution. Similar modelling has also been done
in Schultz and Knabner [44] to describe the growth, around solid particles, of a biofilm
produced by mobile microorganisms that are transported in a moving fluid and can
attach to, and detach from, the biofilm. They solve their cell problem, which is used
to obtain effective diffusivity, until the time when the biofilms reach the boundary of
the cell. In some situations, the homogenisation procedure leads to a cell problem for
two variables on either side of an interface. In Bringedal et al. [5] and Bringedal and
Kumar [6], for example, they derive and numerically solve effective macroscale equa-
tions, whose cell problem includes two domains patched together with appropriate
boundary conditions.

Explicit interface tracking is often used when the evolution of the microscale inter-
face is simple, for example, if it remains spherical. Here, the homogenisation procedure
differs from the level-set formulation, because the problem can be explicitly written
down in terms of the interface location, |xz| = R(t), say. The interface evolution is
often determined by appealing to conservation of mass and incorporating the effect of
the reactions that occur on the interface. Another feature of this approach is that the
unit normal to the interface needs to be expanded in both microscale and macroscale
variables to take into account variations occurring over the macroscale. The rest of
the homogenisation procedure follows that for the level-set formulation and consists
of formulating a cell problem and averaging over the microscale domain, where the
only difference is that the relevant boundary conditions can be applied at the explicit
interface location. For example, in Luckins et al. [29], the problem of removal of
toxic contaminant in a porous medium using a cleanser is considered. The removal
is modelled using a first-order (linear) reaction between the two phases that occurs
on the interface between them. They obtain a homogenised model that describes the
effective removal of the toxic component in the case when it is surrounded by a layer of
cleanser, and in the case when there is a sharp macroscale interface between the two
phases. In van Noorden [47] and van Noorden [48], they obtain a one-dimensional
equation for deposition and detachment in a biofilm that coats a thin pore and is
subject to fluid flow.

For our filter problem, we need to solve for the sulphur dioxide concentration in
both the gas and the liquid media, along with the position of the interface between
them which moves due to the production of liquid sulphuric acid on the surface of
the pellets that eventually become submerged by the produced liquid. This is funda-
mentally different to the situation studied in [29], where the reaction occurs at the
interface, or [14], where it occurs in the whole bacterial region with a static interface.

In this paper, we will adopt a classical homogenisation-based approach in which
we treat the filter medium as an array of cubic cells each containing a spherical pellet
coated with a growing uniform layer of liquid sulphuric acid. We will exploit the
separation of length scales on the pore and the device level and use homogenisation
theory to derive averaged equations for the concentration of sulphur dioxide and
the thickness of the acid layer within the filter. In Section 2, we will present a
mathematical model for the microscale problem in the porous sheets. We will non-
dimensionalise the model in Section 3 and introduce the key dimensionless parameters
governing the behaviour of the system. In Section 4, we will use homogenisation to
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Ficure 2. Schematic cross-sectional representation of the porous structure of the filter. The
catalytic pellets (grey) are held together by a network of fibres, not shown in the schematic.

obtain averaged equations for the concentration of sulphur dioxide and the thickness
of the liquid-acid layer throughout the filter. We will identify two distinct regimes
of operation and derive the equations corresponding to each of them. In Section 5,
we will couple the macroscale equations describing the filter with an equation for
the gas flow in the filter channels. We will consider various model reductions, based
on the filter geometry, in Section 6, and present numerical solutions and comparison
with analytical results in Section 7. We will finish by discussing our results and draw
conclusions in Section 8.

2. Microscale Model. Our aim is to obtain a homogenised model for the oper-
ation of the filter device (see Figure 2 left) that incorporates the effect of the porous
microstructure of the filter sheets (see Figure 2 middle). We begin by presenting the
mathematical model that holds in a microscopic region within the filter sheets con-
taining a single spherical pellet (see Figure 2 right). We suppose that the microscale
problem is periodic in a cubic cell of size [ (taken to be the average inter-pellet dis-
tance) containing the pellet of radius R < [/2 at the centre, where we ignore the
presence of the surrounding scaffold of thin fibres. We assume that [ is much smaller
than the typical thickness, width, and length of the filter sheets, H, W, and L, respec-
tively. We represent the filter sheet as a periodic array of these cubic cells and employ
a Cartesian coordinate system (Z, §, 2) in each of them. We assume that the pellet
catalyses the reaction presented in (1.1), and a layer of thickness @ of liquid sulphuric
acid forms around the pellet. We assume that surface tension tends to keep the gas—
liquid interface spherical to a good approximation. We denote the cubic cell and its
boundary by w and dw, respectively, and the regions of gas and liquid, the interface
between the two phases, and the surface of the pellet in a single cell by wy,w;, I';, I',
respectively, as shown in Figure 2 (right). We denote the concentration of sulphur
dioxide in the gas and the liquid by 3, and 5;, respectively. We assume that sulphur
dioxide is transported by diffusion and advection induced by the liquid production at
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the surface of the pellet. Thus, we have the following governing equations

05 . . .
(2.1) 8; + V- (ig8,) = Dy, V?35, in Wy,
94
(2:2) % YV (d) =Dy, V2% i w,

where 144 and @, are the velocities of the gas and the liquid phase, respectively, Ds,
and D,, are the corresponding diffusivities of sulphur dioxide in the gas and the
liquid, respectively, and ¢ denotes time. We assume that the fluid in both phases is
incompressible but will not write in full the equations satisfied by g, 4, since, as we
shall see, the advection terms in (2.1) and (2.2) will be negligible in the physical limit
that we consider in which the liquid layer around the catalytic pellet grows slowly. We
assume that water vapour and oxygen are abundant in the system and, thus, assume
that their concentrations are constant. We use the Law of Mass Action to determine
the flux, Q, of sulphur dioxide removed from the system at the surface of the pellets,
which gives us that

(2.3) Q = 2k (§l|\§3|=R)2a

where k is the reaction constant, with units m* mol=!s~!. We close the system using
a global conservation law that links the growth of the liquid layer to the amount of
liquid produced on the surface of the catalytic pellet, namely

d [4n . A A R
(2.4) 7 (B” (R+a)® - R3)> = /F pPVm@QdS = 47pR*V,,Q,

P

where p is the density of sulphuric acid, with units kgm=2, and V,, is the molar

volume of liquid sulphuric acid, with units m3 mol~!. We note that we can ignore the
mass of the dissolved sulphur dioxide in this calculation, because, in one cubic metre
of liquid sulphuric acid, there are approximately 16g of sulphur dioxide, compared to
the 1830kg of acid [34]. We rewrite (2.4) as

da  2Vik (% |i|:R)2

(25) di  (1+a/R)?

At the pellet’s surface, the velocity of the liquid is given by its production rate
(2.6) Ay -y = 2V kST,

where n,, denotes the outwards-pointing unit vector to the surface of the pellet, which
is in the radial direction e,. At the surface of the pellet, we balance the flux of sulphur
dioxide into the pellet with the amount being consumed by the reaction, i.e.,

(2.7) (D5, V3 — W3) - ny, = 2k37,
which we can rewrite, using (2.6), to be
(2.8) D, V3, -n, = 2k(1 + V,,81)57.

At the gas-liquid interface, we impose continuity of flux of sulphur dioxide, and
we assume local thermodynamic equilibrium (which leads to Henry’s law) and, thus,
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we write
(2.9) —D;, Vs, -m; = —D,, V5§ - n,
(2.10) 8y = Bssi,

where f; is a partition coefficient, which measures the relative solubility of the gas in
each phase, and

(2.11) n; =

denotes the outwards-pointing unit normal to the liquid layer.
To close the microscale model, we prescribe periodicity of 5, along the boundary
of each cell and also assume

(2.12) 3=25p and a=0 at t=0,

where Sy is the inlet concentration of sulphur dioxide. Once we obtain the macroscale
equations that hold over the domain of the whole device in Section 5, we will prescribe
the necessary macroscale boundary and initial conditions.

We present typical values of the physical parameters in Table 1. We note that
the sulphur dioxide concentration may be smaller than the quoted value by one or
two orders of magnitude depending on the level of contamination, and the inter-pellet
distance can be smaller by an order of magnitude, so that it is comparable to the
radius of the pellets.

Parameter Definition Value Units
Bs Henry’s law constant for sulphur dioxide 4 x 1072 -
Dy, Diffusivity of sulphur dioxide in air 1x107° m?s~?
Dy, Diffusivity of sulphur dioxide in 2x107° m?s™!
liquid sulphuric acid
Vin Molar volume of sulphuric acid 5x 1075 m? mol !
d Radius of filter channels 5x 1073 m
k Rate of chemical reaction 5x107° m*mol !s?
l Inter-pellet distance 5x 1075 m
H Thickness of filter sheet 1073 m
L Length of filter channels 3x 107! m
R Pellets radius 5x 1076 m
So Inlet concentration of sulphur dioxide in 1072 molm™3
the filter channels
U Speed of gas flow in filter channels 3x 1071 ms~!
w Width of filter sheet 1x 1072 m
TABLE 1

Parameter values (taken from [28, 30, 34, 42]). Note that k is an effective rate, and its value
is determined indirectly from experimental data.

3. Dimensionless Model. We non-dimensionalise (2.1), (2.2), (2.5)—(2.10),
and (2.12) using

(#,0) =1l(z,a), &= (B1/VmkS5)t, 54==S0sq, & = (S0/Bs)si,

(31 (Gg, W) = (mGscz)/ﬁg) (ug, wr),
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where we have chosen to nondimensionalise using the timescale over which the liquid
layer grows to fill the void space. Using the typical parameter values in Table 1 we find
this timescale is approximately equal to 3.7 days, which is longer than the timescale
for diffusive gas transport (12/D,, = 2.5 x 10~%s). The dimensionless model reads

(3.2) vy (aastg +ug - ng> =V3s, in Wy,
(3.3) V2 <%“? - Vsl> =V in w,

da 2 (Sl|\m|:)\)2

4 & O a/ap

subject to the boundary conditions and initial conditions

(3.5) Vs n, =2 (ks +17°s) s7 on Ty,
(3.6) —Vsg-n; = —ngl -, on T,
(3.7) Sg = S1 on r,
(3.8) s4 periodic on Ow,
(3.9 sg=1 at t=0,
(3.10) a=0 at t=0,

where we have introduced the following four dimensionless parameters:
(3.11)

D, . k1S, ) R V,klS2 .
= 107, kg = ~107Y, A== a~10"t, v= )220 1072,
=D, B,D,, I 32D,

Here, 7 is the ratio of the diffusivities of sulphur dioxide in the liquid and gas phase, x4
(sometimes called a Damkohler number) measures the relative strength of the reaction
on the surface of the pellet to diffusion of sulphur dioxide in the liquid sulphuric acid,
A is a measure of how densely packed the catalytic pellets are, and v is the Péclet
number,’ i.e., the ratio of the diffusive timescale in the liquid over the pore scale to the
timescale associated with the liquid-layer growth. We also introduce the ratio of the
pore length scale to the filter sheet thickness, € = [/H ~ 5 x 1072 < 1, which we will
use later in the homogenisation. We note that v = €/7, where 7 = V,,,kH?S2 /321D,
is the ratio of the diffusive timescale in the liquid over the thickness of the filter sheet
to the timescale associated with the liquid-layer growth.

4. Homogenisation. Our goal is to obtain macroscale equations, valid over the
whole filter domain, by averaging over the complicated porous microstructure of the
filter sheets, in order to obtain the effective removal of sulphur dioxide by the filter.
We introduce the macroscale spatial variables

(4.1) X = ez,

and let sg4, s, and a also depend independently on the macroscale variables. Using
(4.1) together with the Chain Rule, the gradient operator transforms as V. — V, +

1We have used v here for the Péclet number, reserving Pe for the Péclet number in the outer
flow, as described in Section 5.
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eV x. We also note that, using the fact that V,|z| = =/|z| = e,
(4.2) V(] = A—a) =e, —eVxa,

and we see that, due to the dependence on the macroscale variables, n;, defined by
(2.11) is not equal to e,. Rewriting (3.2)—(3.8), we have

0
627'17 (Sg +ug - (Vy+€eVy) sg)

ot
(4.3) =V2s,+¢(Vy - Vx +Vx - V) s, +Vis, in Wy,
d
er (;tl +ur - (Ve +eVy) sl>
(4.4) =Visi+€(V,-Vx +Vx - V,)s + Vs in wy,

da  2(silain)”
ot~ (L+a/N?’

subject to the boundary conditions

(4.5)

(4.6) (Ve+eVx)s -e. =2 (fis + 627'81) s?  on r,,
(4.7)

*(VI+EVX)SQ'(ET7€VXCL):*Bﬂ(vz+€VX)Sl'(6T7€VXa) on Iy,
(4.8) sg=s5 on I}y,
(4.9) sg is periodic  on  Ow,

and the initial conditions (3.9) and (3.10), which we will not explicitly mention again
until we derive the macroscale equations.

For the richest asymptotic limit, we begin by assuming that 7 = O(1) and n =
O(1). The case when these parameters are small, which is the case for the physical
experiments (see (3.11)), corresponds to a sub-limit that can easily be obtained from
our more general results. At the end of the section, we will also mention another
physically less relevant limit when 7 > 1 and n < 1. However, in this case little
analytical progress can be made due to the non-linearity in the system of equations and
boundary conditions. The parameters that most significantly control the behaviour
of our system are 7/8; and kg, as they dictate respectively how much and how fast
sulphur dioxide can be transported to the pellets in order to produce liquid sulphuric
acid that eventually clogs up the filter. There is a rich underlying asymptotic structure
associated with the order of magnitude of these parameters. In particular, we will
find later on that, if the product of these parameters, osxs (where oy = 1/8;) is not
sufficiently small, then sulphur dioxide is completely consumed in the filter medium,
and non-zero solutions appear as higher-order corrections only. This, for example,
corresponds to the case when the dimensionless rate of mass transfer of sulphur dioxide
into the liquid is O(1) and comparable to the rate at which it is being consumed by
the reaction. It transpires that, when o4k, = O(e?), we have a non-trivial behaviour
at leading order in the sulphur dioxide concentration in both the gas and the liquid
phases. We, therefore, first present two distinguished limits when o4k, = O(€?), and
then briefly discuss what happens when ok, > €2.

4.1. Limit I: o, = O(€?) and ks = O(1). We begin by exploring the case
when the mass transfer of sulphur dioxide into the liquid o5, = O(€?), but the di-
mensionless reaction rate ks = O(1). For convenience, we write o5 = €25, where
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s = O(1). We expand each of the dependent variables in (4.3)—(4.9) as

(4.10) FofO pefr® 4 2r@ 4
and obtain the following leading-order problem for sg, s;, and a:
(4.11) Vs =0 in w®,
(4.12) Visl(o) =0 in wl(o),
(4.13) 00 _? GRS

ot (1+a®/X)2 "
subject to the boundary conditions
(4.14) Vos” e, =2k, on T,
(4.15) ~Vos” e, =0  on T\,
(4.16) s;o) = sl(o) on I‘z(-o),
(4.17) Sgo) is periodic on Ow,

where w{” = w\{|z| < A+ a©®}, wl(o) = {A < |z < A+a®}, and TV = {|z| =
A+a(®}. We first solve the problem in the liquid layer. We rewrite (4.12) in spherical
polar coordinates, assume radial symmetry, integrate, and apply (4.14) to find that

2
9s® 222k (sl(o)|r=>\>
(4.18) L — ,
or r2

where we note that, due to radial symmetry, sgo) lr=x is a function of the macroscale
variables only.
Integrating once again and using (4.16), we obtain

0 0 2 1 1
(4.19) 17 =20 (5" o) (5 — 7 ) + 58 b

Evaluating (4.19) at » = A yields a quadratic equation for sl(o)|7~:,\ that has one
physically relevant solution, which is non-negative and bounded as ks — 0. Rewriting
(4.19), evaluated at r = A, in the form

1/2
0 A+ a©® 0 1/2
(4.20) sl( )|T»:,\ = <m (Sgo)‘r:A+a<0) - Sl( )‘7‘:>\> )

and substituting the solution to (4.19) in the right-hand side of (4.20) yields
(4.21)

1
2

1+a©®/x UNk,a @O 8Aka®sO| _
S§O)|T:>\: +al%/ 1+ ksa\Vsg |T,_>\+a(0)_ L+ k500 sy |, _\fa

2v/2k5a(0) A+ a® A+ a©®

) (0)

Now considering (4.11), we multiply both sides by sgo , integrate over wq ’, use

the Divergence Theorem and rearrange to obtain

? )9 (0)
(4.22) ///w“)) dV = //aw“” sy Vs, -dS.

Ve Sgo)
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(0)
g

Since sg’ is periodic on the boundary of the unit cell w, the surface integral in (4.22)

over Jw evaluates to zero. On FZ(-O) = {|z| = A+ a9}, we use (4.15) to obtain

2
(4.23) ///@ ‘szgo)’ av =o.

Thus,
(4.24) s = s0(X 1),

ie., sgo) depends only on the macroscale spatial variables. We manipulate (4.21)
(utilising the formula A — B = (4% — B%) /(A + B)) to find

(0) - (0) 2AsT 09
(425) Sy |r:)\ - \/589 1+ M+ a(O) A+ Q(O) ’

Arrsa® s \/ 8\rsa® s ’
where we have rationalised sl(o) lr=x to further simplify it.
We now consider the O(e) terms in (4.3)—(4.9) in order to determine the problem

for sél). We have

2. (1) _ . 0

(4.26) szg ) =0 in wé )
subject to the boundary conditions
(4.27) — (Vs + VasV) e =0 on T,
4.28 s is periodic on ow.
( g

We use the linearity of the problem for s_gl) to write the solution in the form
(4.29) s =@ Vxs?,
where the function ®(x,t) = (®1, Po, P3) satisfies the cell problem
(4.30) VI, =0 in wl,
subject to
(4.31) (VP +e;)-e.=0 on I‘EO)7
(4.32) ®, is periodic on Oow,

for i = 1,2, 3, and where e; is the unit vector in the x,y, z direction, respectively.
We now look at the O(€?) terms in (4.3)—(4.9) in order to determine the problem

for s§2). We have

950
(4.33) m% =V2sP + (Ve Vx +Vx - Vo) stV +VXs? in wl?,

subject to the boundary conditions

— (V$s§2) + Vngl)) -ep + VXa(O) . (stgl) + VX3§O)>

2
265K (sl(o) |r:)\>

4.34 = —5’SVIS(O) -e, = — on F(O),
( ) l (1 + a(o)/)\)2 [
(4.35) s(?) is periodic on dw,
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where we have used (4.18) and (4.27) to simplify (4.34) and remove the terms that

come from expanding s, on the boundary F(O) ={lz| = A + a®}.

We now integrate (4.33) over wéo), remembering that sg ) does not depend on the

microscale variables, and use the Divergence Theorem to obtain
(4.36)

9 (0)
T??Vg 89 ///(0> VX 55]1) +VX5§O)) dV+/A © (szgl) —+ Vx(g;?)) dS,

where

) [l

is the volume of the gas phase in the unit cell. To rewrite the volume integral in
(4.36), we use a generalisation of Leibniz’ Rule in the form
(4.38)

Vy - /// g(X,z,t)dV = /// Vx-gdV — // Vxa® . gds.
(X 1) {lz|=A+a®}

With g =V, s +sz(0) we obtain

///@ Vx - (Vs + Vxsl?) dV = Vi ///@ VsV + Vxs® dv
Wy Wy

O . (v,sD 0)
+/p<.0> Vxa® - (Vs + Vs(V) ds

1
o (sl o))

(4.39) / Vxal® v s + Vs °>) ds,

where I is the identity matrix, and we have used (4.29) to obtain the final line in

(4.39). Since sgl) and s( ) are periodic on Ow, the surface integral in (4.36) can be

0)

reduced to an integral over l"g only and so, using (4.34), we find that

2
255,%5 (Sl(o) |r:)\) Sgl

Vs + v, s?).dSs =—

//awgw( e ?) (1+a©/))

(4.40) - / Vxa® - (v 5§ —i—VXs(O) ds,
r©

where

(4.41) Sy (FEO)) - / / . ds
F'L'

is the surface area of the gas-liquid interface. Rewriting (4.36), using (4.39) and

(4.40), we obtain the macroscale equations that govern the evolution of Sgo) and a(©),
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which, dropping the superscripts, read

0s 1 Q&SK/S (Sl|7‘:A)2S l
4.42 m—2 = _—Vyx-(V,DVys,)— <,
( ) n at Vg X ( g X g) Vg (1+a/)\)2
da 2 (silr=n)?
4.4 — = R
(4.43) ot~ A+ a/N?
where

1 0P
4.44 D, =6;; + — J
( ) =0t Vg ///wq Ox; v,

is the macroscopic diffusivity tensor which depends on the microscale structure, d;; is
the Kronecker delta,

4
(4.45) Vy=1-3m(A+ a)’, Sy=4r(A+a)?,
and s;|,—»x is given by (4.25). Due to the spatial symmetry of the cubic cell, D is
proportional to the identity matrix, i.e., D = DI. We solve for D numerically using
COMSOL Multiphysics. In Figure 3, we plot D as a function of A+ a, and we observe

that D decreases as the liquid layer increases in thickness, as expected.

0.95
0.9
Q 0.85
0.8
0.75
0.7

0 0.1 0.2 0.3 0.4 0.5

Ata

Ficure 3. Effective diffusivity, D, as a function of the dimensionless radius of the pellet and
thickness of the liquid layer around it.

We conclude with a remark about the physical significance of the variable s.
Since s, is independent of the microscale, it can be related to the volume average
of the sulphur dioxide concentration over the gas phase (which is an experimentally
measurable quantity), by

1
(4.46) 5g = Vg///wg s4dV.

Another useful quantity is the volume-averaged concentration over the whole space,
defined as

wm sy ([ s [ff ) v fff v

since V = 1 is the volume of w. S, is important when we are interested in the total
amount of sulphur dioxide in the filter, in both gaseous and dissolved form.
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4.2. Limit II: 0, = O(1) and ks = O(€?). The second distinguished limit
is the case when the mass transfer of sulphur dioxide into the liquid happens at an
O(1) rate and the dimensionless reaction rate is small. For convenience, we write
ks = €2fg, where s = O(1). In this case, the O(1) problem for s4, s;, and a becomes

(4.48) VZs®W =0 i w0,
(4.49) v =0  in W,

pa® (s’ )lr:A)Q

(4:50) ot (1+a/))2’

subject to the boundary conditions

(4.51) Vg;sl(o) e, =0 on r,,
(4.52) —Vg;s_(qo) -e, = —asvxsl(o) - e on FZ(.O),
(4.53) sO =52 on 1,
(4.54) Sgo) is periodic on ow.

Returning to (4.48) and using (4.52) in an identical way as in Subsection 4.1, we
obtain

/// ’V 5(0)‘ dV = //( (O)V s -e,dS = // Usslo)szl -e,dS
r 0

(4.55) // 065 "V,5" . e,d5 =0,
r,

where we have used the Divergence Theorem twice, together with (4.51) and (4.53).

We conclude that s( ) is a function of the macroscale variables only. Solving the
problem in the liquid layer given by (4.49), together with (4.51) and (4.53), we obtain

(4.56) 5 = 50,

We now consider the O(¢e) problem of (4.3)—(4.9) for s§1> and sl(l), namely
(0)
g )
(0)
1

(4.57) Visgl) =0 in w
(4.58) Vi =0 i w

)

subject to the boundary conditions

(4.59) (szl + VXS ) e, =0 on r,,
(4.60) — (VXS!(JO) + szél)) -e, = —0, (szl(o + Vmsll)) - e, on I‘EO),
(4.61) 35(71) = sl(l) on 1"50),
(4.62) sgl) is periodic on Ow,

again evaluating to zero the terms involving szl( ) on the right-hand sides of (4.60)

and (4.61) that arise from expanding the variables around the moving boundary.
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In this limit, we use the linearity of the problem for both sgl)

the solution in the form

and sl(l) to write

(4.63) stV = Vsl
(4.64) sV =0.vxs,

where the functions Q(x,t) = (Q1,Q2,Q3) and O(x,t) = (©1, O, O3) satisfy the cell
problems

(4.65) V20, =0 in w
(4.66) V20, =0 in w

subject to, for i = 1,2, 3,

(4.67) (VoQi+e) e, =0, (V,0,+e)-e, on T
(4.68) Q,=0;, on T
(469) (VxG)z + ei) -e, =0 on ry,
(4.70) 2, is periodic on Ow.

We now look at the O(e?) problem of (4.3)—(4.9) for s ) and sl(g), which becomes

(0)

Os .
(4.71) ™ 8!2 = Visf) + (Vs -Vx+Vx -V, sgl) + Vg(sgo) in wflo),
R W o2 (0 (©)
(4.72) T prale Vs, + (Ve -Vx +Vx -Vi)s; ' + Vis, in W,

subject to the relevant boundary conditions

- (vxs@) +Vxsl) e+ Vxa® - (Tysl) + vxs@))

(4.73) =0, (= (Vas? + Vxs") - e, + Vxa® - (Tosf? + V")) on T,

(4.74) (Vast® + VxsfV) -er =2 (R +75(7) 5{7% on T,
(4.75) s(?) is periodic on duw,

where we have used (4.60) to simplify (4.73).
Integrating (4.71) and (4.72) over wé ) and wl(o), respectively, and applying first
the Divergence Theorem and then Leibniz’ Rule together with periodicity of sg,l) and
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55(]2) we obtain
3520) 1
= = . I+ — 0 (0)
Vg ot Vx Vy + Vg //wém V. .QdV Vng
(4.76) + //F(O) Vyal® . (szgl) + VX5§0)> - (szgl) + szf)) e, dS,

vaSEO)—v v+ 2 v,0dV | Vs
Vg = Vx| W +Vz L x XS

—/ o Vxa® (szl(l) + va§0>) + (szl(l) + vmsl@) e, dS
I

(4.77) f//r (VXS§1>+sz§2>>~erd57

where V; = 1 — V, — 47A3/3 is the volume of the liquid phase. We now multiply
(4.77) by o, combine with (4.76), and use the boundary conditions (4.73) and (4.74)
together with (4.56) to obtain the macroscale equations that govern the evolution of

5_5,0) and a®) which, dropping the superscripts, read

(4.78) T% ~ Vilvx - (DVxsy) - 2asle++sz)Aj§Sgl,
where

aso oy (fff Savie ff] )
(4.81) Vi =nV, + 0oV, Vo = V4 + 0V

In this limit, since the mass transfer of sulphur dioxide between the gas and the
liquid phase is O(1), we must solve two cell problems, and the diffusivity tensor takes
account of the diffusivities in both the gas and the liquid domain (unlike the previous
limit, which only depended on the diffusivity in the gas domain).

4.3. Uniformly Valid Equations. We combine the results from the limits in
Subsections 4.1 and 4.2 into a uniformly valid set of macroscale equations to obtain

2
205 (ks/€% + Tsy) (Sl(0)|7‘:/\) Sgi

0s 1
4.82 %99 _ ¥y (VoDVys,) — ,
(4.82) T =y, VX (VaDVxsg) Yy (Lt /)’
2
0
(4.83) 0 _° (sl( )|T:A)

ot (1+a/N?
where sl(o)|T:,\, D, Vi, and V, are defined as in (4.25), (4.80), and (4.81), respec-

tively. Setting either o, or K, to be O(e?) recovers the previous limits, while further
simplifications can be made if both o4, ks < 1.
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4.4. A Comment on the Limit When o, ks = O(1). In this limit, sulphur
dioxide will be depleted at a much faster rate than in the previous two limits. The

leading-order governing equations for 55(,0) and sl(o) in this case are

(4.84) Visih =0 in wi®,

(4.85) Vi =0 i W,

subject to the boundary conditions

(4.86) szl(o) e, = 2/—13550)2 on r,,
(4.87) fvxsgo) ‘e, = fasvxsl(o) e, on FZ(-O),
(4.88) Sgo) = sl(o) on FZ(-O),
(4.89) Sgo) is periodic on ow.

Applying the Divergence Theorem to (4.84) and (4.85), and using (4.86), (4.87), and
(4.89), we conclude that

(4.90) sP=0 on T,
Then, solving (4.85), with (4.86), (4.90) and the radial symmetry of sl(o), we obtain
(4.91) sl(o) =0 in wl(o).

Following the previous arguments in (4.22)—(4.24) (where (4.87) and (4.91) reduce to

(4.15)), we see that sgo) is independent of the microscale variables and, thus, using
(4.88), we establish that

(4.92) s=0 in W,

i.e., all the sulphur dioxide is consumed. This suggests that, in this case, sulphur diox-
ide consumption happens on a faster timescale than the liquid-layer-growth timescale
we have used to non-dimensionalise the model, and, in fact, we need to rescale time
by €2 so that the time derivative in (4.85) enters the leading-order equation for sl(o).
As in [14], in this regime, there is a limit in which n = O(€?), which simplifies the
leading-order version of (4.3), but retains the time derivative in the leading-order
version of (4.4). However, unlike in [14], the resulting equations cannot be solved
explicitly due to the non-linearity in the boundary conditions on the surface of the
catalytic pellet and the moving boundary that is present.

We note that we obtain the same conclusions if we assume o465 = O(e) and one
of ks or og is O(1). In these limits, the combined effect of the mass transfer and
reaction is strong enough to consume all the sulphur dioxide to leading order on our
chosen timescale.

4.5. Physically Relevant Limit. It is clear that the limits in which osxs =
O(€?) provide the largest values of the parameters for which we obtain non-trivial
solutions for the sulphur dioxide concentration on our timescale. Furthermore, the
values of the physical parameters also suggest that these are the physically relevant
regimes, since otherwise the device would fill with liquid and lose efficiency much
faster than the experiments indicate. In fact, using actual parameter values, the most
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relevant limit is k5,05 = O(e). This is a sub-limit of the other two considered in
Subsection 4.1 and 4.2, and the governing equations in this case can be obtained, for
example, by letting ks — 01in (4.42) and (4.43) or using the equations in Subsection 4.3
with ks,05 = O(€). Writing ks = €Rs, 05 = €75, where Rg,05 = O(1), we find that

ds 1 20 5FsSqi5?
4.93 M= = _—Vyx- -(V,DVxsy) — ——9"9__
(4.93) Tor Ty, (VaDVx5,) V, (1+a/))?
2
(4.94) da 2%

ot (1+a/N?
where D, Vg, and S,; are as defined in (4.44) and (4.45), respectively.

5. Device-Scale Model. Now that we have derived the macroscale equations
for the sulphur dioxide concentration and the thickness of the liquid acid layer within
the filter sheets, we need to incorporate these in a model for the whole device. We
consider the filter as shown on the left in Figure 1, which we reproduce with the
relevant coordinate system (with macroscale variables X , Y, Z ) and length scales in
Figure 4. The flue gas flows up through a channel of half-width d and length L
alongside a filter sheet of thickness H, width W, and length L. In the filter channel,
since the gas flow is uniform in the Z-direction and we assume no flux of gas at
Yy = :I:W/ 2, we anticipate negligible variation in the X-direction and no variation
in the Y-direction. We note that, on the surface of the filter sheet, we could have
applied the boundary condition found in Beavers and Joseph [3] to account for the
transmission of longitudinal flow from the channel into the porous medium. This
would introduce a thin layer, near the surface, across which the gas velocity is reduced
to zero. Since our focus is on the generation of liquid inside the filter sheet, for
simplicity we assume the channel wall provides no retardation to the flow. Thus,
conservation of mass of sulphur dioxide with cross-sectionally averaged concentration
S(2,1) reads

S 9S\ | Vy(a) 5, 03
(5.1) d<a£+UaZ> [ D@ )aX

)

X=d

where U is the constant speed of the gas flow, f/g (a) /13 =V, is the void fraction in the
filter sheets (defined in (4.45)), and D(a) = D, ,D(a) with D defined in (4.44). The
right-hand side of (5.1) accounts for the uptake of sulphur dioxide by the filter device
at X = d, while we have assumed zero flux at X =0 and ¥ = +W/2. We note that
we have neglected diffusion along the channel, which is justifiable, since the Péclet
number Pe = UL/D,, = 10* > 1. In the filter sheet, we track the concentration,
34, of sulphur dioxide and the void fraction V,. The dimensional forms of (4.93) and
(4.94), in which we have replaced @ with V, using the dimensional form of (4.45), read

95, 1 o STR%k\ 82
(5.2) RS (ngvag) - ( = ) 5
Vy  (8nVmR%k

At the surface of the sheet, we assume that the concentration is continuous, and
so we write

(5.4) 5,=28 at X =d.
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symmetry line X=0 W
\ /j filter sheet
r

outlet Z = L (
filter channel/i' L
§ 7
g Y
. | ue gas >
inlet Z =0 s I LX
d H

FiGURE 4. Schematic of the filter.

We note that the void fraction does not appear in (5.4), since 34 is the concentration
of sulphur dioxide averaged over the gas phase and not the whole space. At the back
of the filter sheet, we assume that no sulphur dioxide can escape and write

08 N
(5.5) 7 =0 at X =d+H.

0X
At the inlet of the filter, both the channels and the filter sheets are exposed to the
incoming gas stream. We assume that sulphur dioxide of constant concentration Sy
is supplied to the filter

(5.6) 3,=5=5 at Z=0.

At the bottom of the sheet, the filter is open, and, thus, we assume that the two
concentrations are the same, and so we have that

(5.7) 8,=25 at Z=1L.

At the two ends along the width of the sheet, we assume no flux of sulphur dioxide
08 N w

(5.8) Do at V=t
oY 2

Finally, we assume no sulphur dioxide or liquid sulphuric acid are initially present in

the filter; these conditions read

A . 4 .
(5.9) 8=5=0, V,=101- gwRS at

>
Il
<o

We non-dimensionalise (5.1)—(5.9) using

X=d+HX, Y=WY, Z=LZ i=(L*/D)t,

(5.10) N . . .
S =508, V,=1V,, D=D,D,

where we have picked the timescale based on diffusion along the length of the filter

sheet. We note that the diffusive timescale in the transverse, X, direction is much

smaller than this timescale and not of particular interest with regards to the long-

term operation of the device. In addition, since the flue gas flows uniformly along
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the channel, and we prescribe zero flux of sulphur dioxide at Y = £1/2, there are no
variations in the Y-direction of s, or S. The dimensionless equations are

(5.11) e (85 +peas> _ (V Dasg)

ot 0z 70X ’
X=0
ds 1 0] Js 0 0s 527 s?
12 52229 — — | DZ2e 52 pZ -~ g
(5.12) a v, <aX (Vg ax) Y (Vg az)) av,
oV, 9
(5.13) =Tk,
subject to
(5.14) s,=S at  X=0,
Js
1 2 = X=1
(5.15) X 0 at ,
(5.16) sg=8=1 at Z =0,
(5.17) sg=25 at Z =1,
(5.18) sg=8=0 at  t=0,
47 \3
(5.19) Vy=1-—3 at  t=0,

where we have the following six dimensionless parameters with corresponding orders
of magnitude

H d
a=V,,Sy~ 1079, 5:fz10*2, s:zzl(r?, Az?%lO’l,
(5.20) o STVWRRIASE L LU
=~ Ep,  ~ , =D, .

Here, a measures the change in volume in the gas-to-liquid transition in the chemical
reaction, ¢ is the aspect ratio of the filter sheet, ¢ is the aspect ratio of the filter
channel, A is the ratio of the catalytic pellet radius to the inter-pellet distance (as
introduced in (3.11)), T is a ratio of the diffusive timescale to the timescale over which
the liquid layer grows, and Pe is the Péclet number.

6. Asymptotic Results for a Slender Filter Device. As seen in (5.20),
0 < 1. Furthermore, under normal operating conditions, the gas flow is advection-
dominated, so that Pe > 1. We exploit these facts to further simplify the system of
equations presented in the previous section. In particular, we systematically explore
two physically relevant distinguished limits by varying « and ¢ which control the
system behaviour. In all the limits, based on experimental evidence, we assume
Pe = O(1/6%) and, for the richest asymptotic limit, we assume T = O(1).

6.1. Limit I: « = O(462) and € = O(§). We first study the case when the
reaction rate and the diffusive rate are in balance, the channel thickness and sheet
thickness are similar, and the concentration of sulphur dioxide supplied at the entrance
of the channel is small. We set a = §a, and ¢ = 0z, where &,z = O(1). Expanding
the dependent variables as power series in powers of §2, the leading-order versions of
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(5.12) and (5.11) become quasi-static, and we find that

~8S Osq
X=0
1[0 s, Ts,
(62) 0=5. (ax <V9D6X>> T &,
oV,
(6.3) aTg =—Ts,

where Pe = §2Pe = O(1). Equations (6.2)—(6.1) must be solved subject to (5.14)—
(5.19). We will solve these numerically in Section 7 and will find a monotonically
decreasing quasi-static solution for the sulphur dioxide concentration that agrees well
with the solution to the full numerical solution as ¢ decreases.

6.2. Limit II: « = O(d) and € = O(6%). We now turn our attention to
the case when reaction is slower than diffusion, the channel width is much thinner
than the sheet width, and there is a moderate amount of sulphur dioxide entering
the device. We write a = d@, and ¢ = §%&, where &, & = O(1). After asymptotically
expanding the dependent variables in powers of ¢ (and dropping the superscripts on
the leading-order variables), the leading-order version of (5.12) becomes

(6.4) 0= ;g <£{, (Vgpgig)) :

This can be readily integrated, and using (5.15), we obtain
(6.5) sq = 8¢(Z,1).

The O() versions of (5.11) and (5.12) read

508 _ as)
X=0
19 oS Ts?

Multiplying (6.7) by V, and integrating it with respect to X from 0 to 1, and using
(5.14), (5.15) and (6.6) we obtain

T —~ 05
6.8 0=——52_¢Pe
(6:8) a c e@Z
which we solve alongside
YV,
6.9 -2 =-75%
(6.9) ot
together with the conditions
(6.10) S=1 at Z=0,
4t \3
(6.11) V,=1- 7; at  t=0
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Writing 8 = Y /& € Pe, the solution is

1 47 )\3 Tt
S=1ypz VeT1l-

(6.12) T

In this limit, we see that S has reached a steady state, while V; evolves linearly
in time. Furthermore, using (6.12), we can calculate the first time when liquid layers
around the pellets adjacent to the inlet of the channel touch each other, after which
moment we will need a different model to account for the coalescence. The critical
void fraction at which this happens is Vg . =1 — 7/6 (the largest sphere that can fit
in the unit cube has radius 7/6), and, therefore, using (6.12) evaluated at Z = 0, the
asymptotic value of the critical time ¢¢ is calculated to be

(6.13) £0 =

= &7 (1—8X%).

7. Numerical Results. We solve (5.12)—(5.19) numerically using a second-
order-accurate finite-difference scheme, implemented in MATLAB. In Figure 5, we
show plots of the spatial profiles of S in the channel and V, at the edge of the filter
at X = 0 for various times (the parameter values are shown in the figure caption).
We stop the simulations at the time when two neighbouring liquid layers adjacent
to the inlet of the channel coalesce (t. ~ 0.52 in this simulation). After this point,
our model becomes unphysical, and we would need to consider transport through a
fully flooded microstructure, but this is beyond the scope of this paper. We see that,
as time increases, the concentration of sulphur dioxide increases and approaches a
quasi-steady state, which can be more easily seen in Figure 6 (left), where we plot a
temporal profile of S at the outlet of the channel Z = 1. In Figure 6 (left), we can
also see the breakthrough curve that describes the steep increase in the concentration
of sulphur dioxide and the point in time when the gas initially fills up the channel.
The slow increase in concentration at the end of the channel is due to the gradual
accumulation of liquid sulphuric acid in the filter sheets. In Figure 5 (right), we see
that, as time increases, the void fraction decreases and is smallest near the channel
inlet, as expected. In Figure 7, we plot the temporal profile of the ratio, F', of the
total amount of sulphur dioxide that has exited the channel at Z = 1, compared to
the total amount of sulphur dioxide that has entered the channel at Z = 0, calculated
according to

(71) po b Ss)ds
fot S(0,5)ds

We see that, similar to Figure 6 (left), F' is initially zero until the channel is filled
with gas. We also see that F' then rises steeply as sulphur dioxide exits the channel
then levels off. In Figure 6 (right), we show spatial profiles of S and V; in the filter
sheet at the middle of the channel at ¢ = t.. As anticipated, the concentration of
sulphur dioxide decreases deeper into the sheet, and the void fraction increases.

In Figure 8, we show the temporal evolution of S at the channel outlet Z = 1
as we vary four of the dimensionless parameters, namely «, e, T and Pe. We see that
decreasing « decreases the concentration of sulphur dioxide at the outlet, since this
corresponds to lower amounts of sulphur dioxide being fed into the device. However,
increasing ¢ increases the concentration, since this corresponds to wider channels,
which contain more sulphur dioxide. Increasing Y, though, decreases the critical time
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Ficure 5. (Left) Spatial profile of S in the channel at t = 0.52 and (right) Vg on the channel
wall at X = 0 for various times t: 0 (red), 0.001 (orange), 0.005 (brown), 0.01 (green), 0.1 (blue),
0.3 (magenta), 0.52 (black). In these plots, § = 0.1, = 0.1,T = 1,Pe = 100, = 0.01, A\ = 0.1.
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Ficure 6. (Left) Temporal profile of S at the outlet of the channel Z = 1. (Right) Spatial
profiles of sq (blue) and Vg (dashed red) in the sheet at the middle of the channel Z = 0.5. In these
plots, 8 = 0.1,e = 0.1, = 1, Pe = 100, = 0.01, A\ = 0.1.

for liquid coalescence, t., and the sulphur dioxide concentration, which is expected,
as this corresponds to increasing the reaction rate k. Increasing Pe increases the
concentration, as this corresponds to increasing the speed of the gas. Furthermore,
in Figure 9, we show the temporal profile of F' for different values of Pe. We see that
increasing Pe increases F' and thus decreases the efficiency of the filter. Thus, we can
use these results to calculate the maximum flow speed of the gas in order to remove
a given proportion of the incoming sulphur dioxide, or keep the outlet concentration
of sulphur dioxide below a given threshold. We note that we have used a different set
of base parameter values for § and Pe than in (5.20), since the simulations become
computationally challenging in this case. The aim here is to illustrate the general
qualitative behaviour of the system, and then to use asymptotic reductions (when
d < 1), thus enabling a quicker solution.

In Figure 10, we show spatial profiles of the numerical solution to (5.12)—(5.19) for
decreasing ¢ compared to the solution of the asymptotically reduced equations (6.2)—
(6.1) and the asymptotic result (6.12), respectively. When we vary 4, we also vary «
and ¢ according to the limits considered in Subsections 6.1 and 6.2, respectively. We
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Ficure 7. Temporal profile of the ratio, F', of the total amount of sulphur dioxide that has
exited the channel at Z = 1, compared to the total amount of sulphur dioxide that has entered the
channel at Z = 0. In this plot, § = 0.1, =0.1,T = 1,Pe = 100, « = 0.01, A = 0.1.
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FIGURE 8. Plots of the temporal profile of S at the channel outlet Z = 1 varying (top left)
a=1 (red), 0.1 (green), and 0.01 (blue) keepinge =1, = 1,Pe = 10, (top right) e = 0.1 (red), 0.2
(green), and 1 (blue) keeping o = 0.1, T = 1,Pe = 10, (bottom left) T = 0.5 (red), 1 (green), and 2
(blue) keeping o = 0.1, = 1,Pe = 10, and (bottom right) Pe = 5 (red), 10 (green), and 100 (blue)
keeping a = 0.1, = 1, = 1. In these plots, § = 0.3, A = 0.1.

768 see a very good agreement even at moderate values of §, noting that the convergence
769 in Figure 10 (right) is slower. We note that, in order to obtain the asymptotic results
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Ficure 9. Temporal profile of the ratio, F, of the total amount of sulphur diozide that has
exited the channel, compared to the total amount of sulphur dioxide that has entered the channel,
varying Pe =5 (red), 10 (green), and 100 (blue) keeping o« =0.1,e =1,T =1, 6 = 0.3, A =0.1.

in Figure 10 (left), we start the numerical simulation with the early-time asymptotic
solution of (5.12)—(5.19) when t = O(6?).
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Ficure 10. Plots of the spatial profile of S at t = 0.52 for (left) 6 = 0.3 (red), 6 = 0.1 (blue),
and the corresponding asymptotic results in Subsection 6.1 and for (right) 6 = 0.3 (red), 6 = 0.1
(blue), § = 0.03 (green) and the corresponding asymptotic results in Subsection 6.2 (dashed black).

8. Discussion and Conclusions. In this paper, we developed a mathematical
model to describe the operation of a device that converts gaseous sulphur dioxide into
liquid sulphuric acid through a chemical reaction that occurs on the surface of catalytic
beads contained in a filter. Our aim was to track the spatial and temporal evolution
of the concentration of sulphur dioxide and the local amount of acid in the filter along
with the concentration of sulphur dioxide in the gas to be purified. Furthermore,
we assumed that other chemical species (oxygen and water vapour) participating in
the reaction are abundant in the system and, hence, of constant concentration. We
began by describing the model that holds on the scale of a single catalytic pellet in
the filter sheets, around which a uniform layer of liquid sulphuric acid forms. We then
systematically homogenised these equations and derived a set of macroscale equations
that describe the whole filter that captures the effect of the porous microstructure via
(i) an effective “sink” term in the macroscale equation for the concentration of sulphur
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dioxide in the filter, and (ii) an effective diffusivity. We presented two distinguished
limits based on the order of magnitude of two dimensionless numbers, ks and o,
which measure the relative strength of reaction to diffusion and the relative mass
transfer on either side of the gas—liquid interface, respectively. In the first limit, when
ks = O(1) and o, = O(€?), the sink term for sulphur dioxide was a complicated
non-linear function of the concentration of sulphur dioxide and the thickness of the
sulphuric acid. In the second limit, when ks = O(e?) and o5 = O(1), this term
simplified considerably but the effective diffusivity became more difficult to calculate.
We identified a physically relevant sub-limit, in which both k4 and o4 are both small,
which simplified the governing equations in the filter sheets.

In the second part of the paper, we coupled the macroscale equations emerging
from the homogenisation with a reaction—-advection equation for the gas flow in the
filter channels between the sheets. We then assumed that the aspect ratio of the
filter is small and studied two asymptotic regimes based on the orders of magnitude
of two dimensionless numbers, o and ¢, which measure the change in volume in the
gas-to-liquid transition in the chemical reaction, and the aspect ratio of the channel,
respectively. In the first limit, when a = O(6%) and € = O(J), we obtained a quasi-
static equation for the concentration of sulphur dioxide both in the filter sheets and
in the channel. In the second limit, when o = O(§) and & = O(§?%), we were able to
obtain an explicit solution (6.12) for the concentration of sulphur dioxide and the void
fraction. In particular, we found an estimate for the time at which two neighbouring
liquid layers around catalytic pellets adjacent to the inlet of the channel will coalesce,
which is proportional to the ratio of the timescale over which the liquid layer grows
and the diffusive timescale of sulphur dioxide along the channel. From this formula,
we see that increasing the inter-pellet distance in the porous sheet increases the time
until coalescence, and, thus, increases the device operation time. We solved the full
system of macroscale equations numerically and investigated the effect of changing
various parameters. Given a target concentration of sulphur dioxide at the outlet,
our model can be used to find the maximum speed of the gas that achieves this. We
compared the numerical results to our asymptotic predictions and found an excellent
agreement and thus, in the relevant limit, the reduced system of equations may be
used to approximate the performance of the filter in the given regimes.

Our model captures the initial stage of operation of the filter device before neigh-
bouring liquid layers in the filter sheets coalesce. Once this happens we need to
develop another model that accounts for the change in diffusive pathway in the liquid
and involves a moving front of liquid inside the filter sheet (see Figure 11). In addi-

outlet | ‘ ‘ ‘ ‘

moving front

©
©
flue o oN@©| ©®

gas -

inlet —— ! ! ! ‘ ‘

Figure 11. Schematic of a moving liquid-acid front in a porous filter sheet.
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tion, we want to incorporate the effect of the fibre network in the porous sheet, since
these fibres can be manufactured to be either hydrophilic or hydrophobic, which may
enhance or inhibit the liquid transport within the filter. Our model provides the basis
for exploration of the performance of reactive filters and for optimisation in order to
minimise the amount of sulphur dioxide released by the device into the atmosphere,
while ensuring longevity.
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