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Abstract. Many chemical filters contain reactive components where harmful substances are4
removed or transformed. In this paper, we derive a homogenised model for a flue-gas filter that con-5
verts sulphur dioxide into liquid sulphuric acid. We consider a microscale domain, focused on a single6
catalytic pellet, and homogenise over both the gaseous and the liquid phase to obtain macroscale7
equations for the concentration of sulphur dioxide and the thickness of the liquid sulphuric acid layer8
that grows around the pellets. We explore two interesting limits of the homogenised model, in which9
the reaction rate at the pellet surface is small, and where the mass transfer across the gas–liquid10
interface is small, respectively. We then couple the macroscale equations to an equation governing11
the external gas flow through the filter. We solve the resulting model and consider asymptotic re-12
ductions based on the filter geometry. We consider two distinguished limits and, for one of them,13
obtain an explicit solution for the sulphur dioxide concentration and the void fraction in the filter.14
We vary parameters such as the gas speed and establish the operating regimes for effective cleansing15
of flue gas.16
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1. Introduction. In the drive to protect the environment, reducing the con-19
centrations of harmful chemicals that are released into the atmosphere has become20
a priority for industry. One key example is the removal of sulphur dioxide, which is21
formed in vast quantities in industrial processes and power plants as a by-product of22
processing of raw materials such as crude oil and various ores [17, 38, 43], from flue23
(exhaust) gas. Sulphur dioxide is a highly toxic gas that can cause acid rain and is24
linked to respiratory illnesses [7, 43]. In order to decrease its concentration in flue gas,25
filtering procedures such as “gas scrubbing” (both wet and dry [15, 21, 35]), membrane26
gas absorption [25], and packed-bed absorption [23] are often used. However, most27
existing methods require high input power and a specifically suited operation site. In28
addition, they produce a large amount of waste, such as gypsum containing impurities29
[38]. This can be quite expensive and time-consuming for companies to implement.30

In this paper, we derive and analyse a mathematical model for a more desirable31
and cost-effective chemical filter, designed by W. L. Gore and Associates, that purifies32
flue gas and, in particular, removes sulphur dioxide by turning it into liquid sulphuric33
acid. The filtering device under consideration is made of stackable modules, each of34
which consists of a series of open channels made of folded porous sheets that contain35
multiple microscopic catalytic pellets that are held together by a network of fibres36
(referred to as a sorbent–polymer composite) [26]. Flue gas flows from one end of the37
filter to the other through the channels and diffuses into the sheets. When sulphur38
dioxide, oxygen and water-vapour molecules come into contact with the surface of39
these pellets, they react to form liquid sulphuric acid (see Figure 1 for an illustration40
of the filtering device and a schematic of the filtration process). In reality, there are41
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Figure 1. Three modules of the filter device and a schematic of the filtration process (from [26]).

multiple intermediate reactions that take place in the filter medium (see, for example,42
[20, 33]) before acid is produced, but for simplicity these can be summarised by the43
following single effective chemical reaction44

(1.1) 2 SO2(?) + 2 H2O(?) + O2(?)
carbon catalyst−−−−−−−−−−→

k
2 H2SO4(l),45

where k is the overall reaction rate taking into account all intermediate steps, and46
(?) denotes gaseous state (g) initially, before a liquid layer has formed around the47
catalytic pellet, and aqueous solution (aq) afterwards. This method of sulphur dioxide48
removal is less costly in terms of maintenance, is easy to install in a factory, does not49
generate toxic waste, and produces sulphuric acid “for free” which can be easily stored50
or used for other purposes, and also acts as a natural cleanser of the filter by removing51
contaminant particles such as dust [26]. However, as the chemical reaction proceeds52
within the filter sheets, liquid sulphuric acid accumulates in the void space (that is, the53
volume that is neither solid nor liquid) between the catalytic pellets and dramatically54
reduces the amount of sulphur dioxide that can be processed by the device, resulting55
in a drop in the device efficiency over time. Our aim is to understand the dynamics56
of the liquid and gas transport in the filter sheets during operation in order to gain57
insight into the details of the efficiency reduction and to be able to advise on an58
optimal operating regime.59

Although various models exist for other purification methods, including gas scrub-60
bing [15, 21, 24, 32] and absorption [9, 39], reactive-pellet chemical filters that involve61
a phase change of the contaminant are less well studied. Mochida et al. [33] study the62
removal of sulphur dioxide using activated carbon fibres, again producing sulphuric63
acid. They develop a power-law model to describe the steady-state concentration64
of sulphur dioxide at the outlet of the device and find that this concentration is65
proportional to the weight of the catalyst and to a specific power of the starting con-66
centrations of sulphur dioxide, oxygen, and water vapour. In addition, they assert67
that the rate-limiting step of the reaction is the dissociation of sulphuric acid into68
an aqueous solution around the carbon. Similar findings appear in Gaur et al. [19],69
where they first develop a detailed kinetic model and then describe the evolution of70
the gas concentration. They observe that increasing the inlet sulphur dioxide concen-71
tration or decreasing the oxygen and water-vapour concentrations increases the outlet72
concentration. In neither of these models is the evolution of the liquid sulphuric acid73
explicitly modelled. Furthermore, in the second model the functional form of the74
concentration of sulphur dioxide in the fibre pores is assumed, and, in addition, the75
governing equations make use of an effective take-up rate of sulphur dioxide and are76
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derived from a simple averaging over the pore domain. A summary of the time it77
takes for the effluent gas concentration to reach a specific pre-determined value in gas78
removal using catalysts for various models can be found in [49].79

One approach to studying the physics and chemistry of these reactive filters would80
be to solve a detailed model of the microscale throughout the filter using an appro-81
priate software package. However, this would be computationally infeasible for real-82
istic filter sizes. Instead, we will appeal to homogenisation theory (see, for example,83
[4, 8, 22]) and upscale the equations that hold on the scale of a catalytic pellet to84
obtain an averaged model on the macroscale that captures all the microscale physics.85

Relevant physical situations that can be modelled using reaction–diffusion pro-86
cesses occurring at the microscale in a porous medium include solute transport [1, 2,87
11, 16, 18, 31, 37, 40, 45], nutrient transport [10, 14], filtration [12, 13], decontamina-88
tion [29], and dissolution and growth of materials, such as crystals [5, 6, 41, 46, 47]89
and biofilms [27, 36, 44, 48]. In these situations, the microscale models often describe90
conservation of mass and momentum of the phases involved, coupled with advection–91
diffusion equations describing the transport of chemicals, and surface or bulk reactions92
that contribute to the evolution. These microscale problems can be homogenised by93
performing a multiple-scales analysis, and the resulting macroscale equations often94
have a reaction–diffusion–advection form. For example, Conca et al. [11] consider95
the problem of homogenising a flow around reactive solid grains, and they derive up-96
scaled equations for the cases when the reaction happens on the surface of the grains97
or within the grains, and the resulting macroscale equations are of reaction–diffusion98
form. A homogenised model for bacterial nutrient uptake in a bioreactor is derived99
in Dalwadi et al. [14]. The reactor is modelled as a fluid medium with dissolved100
nutrients that diffuse around, and into, a periodic array of spherical bacteria, where101
the nutrients are absorbed. Here, the interface between the ambient medium and102
bacteria is static.103

In cases where there are moving interfaces on the microscale, there are two main104
approaches: using a level-set formulation or explicitly tracking the position of the105
interface. In the level-set formulation, the moving interface is given by the zero set of106
a time-dependent function f(x, t), such as f = |x| − R(x, t) in the case of an asym-107
metric interface with radius R(x, t), that is evolved according to the reactions that108
take place at the interface. In the homogenisation procedure, the key step is to utilise109
the separation of length scales on the microscale and the macroscale level by assuming110
that the variables depend on both the microscale and the macroscale independently.111
This assumption means that any derivative operators will then transform to a com-112
bination of derivatives with respect to the microscale and the macroscale variables.113
The next stage is to asymptotically expand the governing equations together with the114
boundary and initial conditions in powers of the ratio of the length scales, which is115
assumed to be a small parameter. The leading-order problem normally implies that116
the dependent variables are independent of the microscale variables, and thus vary117
only over the macroscale. A cell problem, usually involving a system of equations that118
arise from considering the first-order correction in the asymptotic expansion of the119
original system, is then formulated and needs to be solved once for a given geometry120
in order to extract homogenised quantities, such as effective diffusivity, that appear121
in the macroscale equations. The final step in the homogenisation procedure is to122
obtain the macroscale equations by averaging the microscale equations over the rele-123
vant microscale domain and applying the boundary conditions, which might appear at124
higher order in the asymptotic expansion. In the level-set formulation, the equation125
for the level-set function that defines the interface also needs to be expanded, and126
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a separate equation, which evolves the level-set function according to the reactions127
that take place at the interface, is necessary. The advantage of this formulation is128
the ability to capture spatially non-uniform evolution of any microscale interfaces.129
This approach has been used by van Noorden [46], for example, where he derives130
homogenised equations incorporating fluid flow for the evolution of a solid–liquid in-131
terface in crystal precipitation and dissolution. Similar modelling has also been done132
in Schultz and Knabner [44] to describe the growth, around solid particles, of a biofilm133
produced by mobile microorganisms that are transported in a moving fluid and can134
attach to, and detach from, the biofilm. They solve their cell problem, which is used135
to obtain effective diffusivity, until the time when the biofilms reach the boundary of136
the cell. In some situations, the homogenisation procedure leads to a cell problem for137
two variables on either side of an interface. In Bringedal et al. [5] and Bringedal and138
Kumar [6], for example, they derive and numerically solve effective macroscale equa-139
tions, whose cell problem includes two domains patched together with appropriate140
boundary conditions.141

Explicit interface tracking is often used when the evolution of the microscale inter-142
face is simple, for example, if it remains spherical. Here, the homogenisation procedure143
differs from the level-set formulation, because the problem can be explicitly written144
down in terms of the interface location, |x| = R(t), say. The interface evolution is145
often determined by appealing to conservation of mass and incorporating the effect of146
the reactions that occur on the interface. Another feature of this approach is that the147
unit normal to the interface needs to be expanded in both microscale and macroscale148
variables to take into account variations occurring over the macroscale. The rest of149
the homogenisation procedure follows that for the level-set formulation and consists150
of formulating a cell problem and averaging over the microscale domain, where the151
only difference is that the relevant boundary conditions can be applied at the explicit152
interface location. For example, in Luckins et al. [29], the problem of removal of153
toxic contaminant in a porous medium using a cleanser is considered. The removal154
is modelled using a first-order (linear) reaction between the two phases that occurs155
on the interface between them. They obtain a homogenised model that describes the156
effective removal of the toxic component in the case when it is surrounded by a layer of157
cleanser, and in the case when there is a sharp macroscale interface between the two158
phases. In van Noorden [47] and van Noorden [48], they obtain a one-dimensional159
equation for deposition and detachment in a biofilm that coats a thin pore and is160
subject to fluid flow.161

For our filter problem, we need to solve for the sulphur dioxide concentration in162
both the gas and the liquid media, along with the position of the interface between163
them which moves due to the production of liquid sulphuric acid on the surface of164
the pellets that eventually become submerged by the produced liquid. This is funda-165
mentally different to the situation studied in [29], where the reaction occurs at the166
interface, or [14], where it occurs in the whole bacterial region with a static interface.167

In this paper, we will adopt a classical homogenisation-based approach in which168
we treat the filter medium as an array of cubic cells each containing a spherical pellet169
coated with a growing uniform layer of liquid sulphuric acid. We will exploit the170
separation of length scales on the pore and the device level and use homogenisation171
theory to derive averaged equations for the concentration of sulphur dioxide and172
the thickness of the acid layer within the filter. In Section 2, we will present a173
mathematical model for the microscale problem in the porous sheets. We will non-174
dimensionalise the model in Section 3 and introduce the key dimensionless parameters175
governing the behaviour of the system. In Section 4, we will use homogenisation to176
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Figure 2. Schematic cross-sectional representation of the porous structure of the filter. The
catalytic pellets (grey) are held together by a network of fibres, not shown in the schematic.

obtain averaged equations for the concentration of sulphur dioxide and the thickness177
of the liquid-acid layer throughout the filter. We will identify two distinct regimes178
of operation and derive the equations corresponding to each of them. In Section 5,179
we will couple the macroscale equations describing the filter with an equation for180
the gas flow in the filter channels. We will consider various model reductions, based181
on the filter geometry, in Section 6, and present numerical solutions and comparison182
with analytical results in Section 7. We will finish by discussing our results and draw183
conclusions in Section 8.184

2. Microscale Model. Our aim is to obtain a homogenised model for the oper-185
ation of the filter device (see Figure 2 left) that incorporates the effect of the porous186
microstructure of the filter sheets (see Figure 2 middle). We begin by presenting the187
mathematical model that holds in a microscopic region within the filter sheets con-188
taining a single spherical pellet (see Figure 2 right). We suppose that the microscale189
problem is periodic in a cubic cell of size l (taken to be the average inter-pellet dis-190
tance) containing the pellet of radius R < l/2 at the centre, where we ignore the191
presence of the surrounding scaffold of thin fibres. We assume that l is much smaller192
than the typical thickness, width, and length of the filter sheets, H,W , and L, respec-193
tively. We represent the filter sheet as a periodic array of these cubic cells and employ194
a Cartesian coordinate system (x̂, ŷ, ẑ) in each of them. We assume that the pellet195
catalyses the reaction presented in (1.1), and a layer of thickness â of liquid sulphuric196
acid forms around the pellet. We assume that surface tension tends to keep the gas–197
liquid interface spherical to a good approximation. We denote the cubic cell and its198
boundary by ω and ∂ω, respectively, and the regions of gas and liquid, the interface199
between the two phases, and the surface of the pellet in a single cell by ωg, ωl, Γi, Γp,200
respectively, as shown in Figure 2 (right). We denote the concentration of sulphur201
dioxide in the gas and the liquid by ŝg and ŝl, respectively. We assume that sulphur202
dioxide is transported by diffusion and advection induced by the liquid production at203
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the surface of the pellet. Thus, we have the following governing equations204

∂ŝg

∂t̂
+∇ · (ûg ŝg) = Dsg∇2ŝg in ωg,(2.1)205

∂ŝl

∂t̂
+∇ · (ûlŝl) = Dsl∇2ŝl in ωl,(2.2)206

207

where ûg and ûl are the velocities of the gas and the liquid phase, respectively, Dsg208
and Dsl are the corresponding diffusivities of sulphur dioxide in the gas and the209
liquid, respectively, and t̂ denotes time. We assume that the fluid in both phases is210
incompressible but will not write in full the equations satisfied by ûg, ûl, since, as we211
shall see, the advection terms in (2.1) and (2.2) will be negligible in the physical limit212
that we consider in which the liquid layer around the catalytic pellet grows slowly. We213
assume that water vapour and oxygen are abundant in the system and, thus, assume214
that their concentrations are constant. We use the Law of Mass Action to determine215
the flux, Q̂, of sulphur dioxide removed from the system at the surface of the pellets,216
which gives us that217

(2.3) Q̂ = 2k
(
ŝl||x̂|=R

)2
,218

where k is the reaction constant, with units m4 mol−1 s−1. We close the system using219
a global conservation law that links the growth of the liquid layer to the amount of220
liquid produced on the surface of the catalytic pellet, namely221

(2.4)
d

dt̂

(
4πρ

3

(
(R+ â)3 −R3

))
=

∫
Γp

ρVmQ̂dŜ = 4πρR2VmQ̂,222

where ρ is the density of sulphuric acid, with units kg m−3, and Vm is the molar223
volume of liquid sulphuric acid, with units m3 mol−1. We note that we can ignore the224
mass of the dissolved sulphur dioxide in this calculation, because, in one cubic metre225
of liquid sulphuric acid, there are approximately 16g of sulphur dioxide, compared to226
the 1830kg of acid [34]. We rewrite (2.4) as227

(2.5)
dâ

dt̂
=

2Vmk
(
ŝl||x̂|=R

)2
(1 + â/R)2

.228

At the pellet’s surface, the velocity of the liquid is given by its production rate229

(2.6) ûl · np = 2Vmkŝ
2
l ,230

where np denotes the outwards-pointing unit vector to the surface of the pellet, which231
is in the radial direction er. At the surface of the pellet, we balance the flux of sulphur232
dioxide into the pellet with the amount being consumed by the reaction, i.e.,233

(2.7) (Dsl∇ŝl − ûlŝl) · np = 2kŝ2
l ,234

which we can rewrite, using (2.6), to be235

(2.8) Dsl∇ŝl · np = 2k(1 + Vmsl)ŝ
2
l .236

At the gas–liquid interface, we impose continuity of flux of sulphur dioxide, and237
we assume local thermodynamic equilibrium (which leads to Henry’s law) and, thus,238
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we write239

−Dsg∇ŝg · ni = −Dsl∇ŝl · ni,(2.9)240

ŝg = βsŝl,(2.10)241242

where βs is a partition coefficient, which measures the relative solubility of the gas in243
each phase, and244

(2.11) ni =
∇ (|x̂| −R− â)

|∇ (|x̂| −R− â)|
245

denotes the outwards-pointing unit normal to the liquid layer.246
To close the microscale model, we prescribe periodicity of ŝg along the boundary247

of each cell and also assume248

(2.12) ŝg = S0 and â = 0 at t̂ = 0,249

where S0 is the inlet concentration of sulphur dioxide. Once we obtain the macroscale250
equations that hold over the domain of the whole device in Section 5, we will prescribe251
the necessary macroscale boundary and initial conditions.252

We present typical values of the physical parameters in Table 1. We note that253
the sulphur dioxide concentration may be smaller than the quoted value by one or254
two orders of magnitude depending on the level of contamination, and the inter-pellet255
distance can be smaller by an order of magnitude, so that it is comparable to the256
radius of the pellets.

Parameter Definition Value Units
βs Henry’s law constant for sulphur dioxide 4× 10−2 –
Dsg Diffusivity of sulphur dioxide in air 1× 10−5 m2 s−1

Dsl Diffusivity of sulphur dioxide in 2× 10−9 m2 s−1

liquid sulphuric acid
Vm Molar volume of sulphuric acid 5× 10−5 m3 mol−1

d Radius of filter channels 5× 10−3 m
k Rate of chemical reaction 5× 10−5 m4 mol−1 s−1

l Inter-pellet distance 5× 10−5 m
H Thickness of filter sheet 10−3 m
L Length of filter channels 3× 10−1 m
R Pellets radius 5× 10−6 m
S0 Inlet concentration of sulphur dioxide in

the filter channels
10−2 molm−3

U Speed of gas flow in filter channels 3× 10−1 ms−1

W Width of filter sheet 1× 10−2 m

Table 1
Parameter values (taken from [28, 30, 34, 42]). Note that k is an effective rate, and its value

is determined indirectly from experimental data.

257

3. Dimensionless Model. We non-dimensionalise (2.1), (2.2), (2.5)–(2.10),258
and (2.12) using259

(3.1)
(x̂, â) = l (x, a) , t̂ =

(
β2
s l/VmkS

2
0

)
t, ŝg = S0sg, ŝl = (S0/βs) sl,

(ûg, ûl) =
(
VmkS

2
0/β

2
s

)
(ug,ul),

260
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where we have chosen to nondimensionalise using the timescale over which the liquid261
layer grows to fill the void space. Using the typical parameter values in Table 1 we find262
this timescale is approximately equal to 3.7 days, which is longer than the timescale263
for diffusive gas transport (l2/Dsg = 2.5× 10−4s). The dimensionless model reads264

ν2η

(
∂sg
∂t

+ ug · ∇sg
)

= ∇2sg in ωg,(3.2)265

ν2

(
∂sl
∂t

+ ul · ∇sl
)

= ∇2sl in ωl,(3.3)266

da

dt
=

2
(
sl||x|=λ

)2
(1 + a/λ)2

,(3.4)267
268

subject to the boundary conditions and initial conditions269

∇sl · np = 2
(
κs + ν2sl

)
s2
l on Γp,(3.5)270

−∇sg · ni = − η

βs
∇sl · ni on Γi,(3.6)271

sg = sl on Γi,(3.7)272

sg periodic on ∂ω,(3.8)273

sg = 1 at t = 0,(3.9)274

a = 0 at t = 0,(3.10)275276

where we have introduced the following four dimensionless parameters:277
(3.11)

η =
Dsl

Dsg

≈ 10−4, κs =
klS0

βsDsl

≈ 10−1, λ =
R

l
≈ 10−1, ν =

√
VmklS2

0

β2
sDsl

≈ 10−2.278

Here, η is the ratio of the diffusivities of sulphur dioxide in the liquid and gas phase, κs279
(sometimes called a Damköhler number) measures the relative strength of the reaction280
on the surface of the pellet to diffusion of sulphur dioxide in the liquid sulphuric acid,281
λ is a measure of how densely packed the catalytic pellets are, and ν is the Péclet282
number,1 i.e., the ratio of the diffusive timescale in the liquid over the pore scale to the283
timescale associated with the liquid-layer growth. We also introduce the ratio of the284
pore length scale to the filter sheet thickness, ε = l/H ≈ 5× 10−2 � 1, which we will285
use later in the homogenisation. We note that ν = ε

√
τ , where τ = VmkH

2S2
0/β

2
s lDsl286

is the ratio of the diffusive timescale in the liquid over the thickness of the filter sheet287
to the timescale associated with the liquid-layer growth.288

4. Homogenisation. Our goal is to obtain macroscale equations, valid over the289
whole filter domain, by averaging over the complicated porous microstructure of the290
filter sheets, in order to obtain the effective removal of sulphur dioxide by the filter.291
We introduce the macroscale spatial variables292

(4.1) X = εx,293

and let sg, sl, and a also depend independently on the macroscale variables. Using294
(4.1) together with the Chain Rule, the gradient operator transforms as ∇ → ∇x +295

1We have used ν here for the Péclet number, reserving Pe for the Péclet number in the outer
flow, as described in Section 5.
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ε∇X . We also note that, using the fact that ∇x|x| = x/|x| = er,296

(4.2) ∇ (|x| − λ− a) = er − ε∇Xa,297

and we see that, due to the dependence on the macroscale variables, ni, defined by298
(2.11) is not equal to er. Rewriting (3.2)–(3.8), we have299

ε2τη

(
∂sg
∂t

+ ug · (∇x + ε∇X) sg

)
300

= ∇2
xsg + ε (∇x · ∇X +∇X · ∇x) sg + ε2∇2

Xsg in ωg,(4.3)301

ε2τ

(
∂sl
∂t

+ ul · (∇x + ε∇X) sl

)
302

= ∇2
xsl + ε (∇x · ∇X +∇X · ∇x) sl + ε2∇2

Xsl in ωl,(4.4)303

∂a

∂t
=

2
(
sl||x|=λ

)2
(1 + a/λ)2

,(4.5)304
305

subject to the boundary conditions306

(∇x + ε∇X) sl · er = 2
(
κs + ε2τsl

)
s2
l on Γp,(4.6)307

− (∇x + ε∇X) sg · (er − ε∇Xa) = − η

βs
(∇x + ε∇X) sl · (er − ε∇Xa) on Γi,

(4.7)
308

sg = sl on Γi,(4.8)309

sg is periodic on ∂ω,(4.9)310311

and the initial conditions (3.9) and (3.10), which we will not explicitly mention again312
until we derive the macroscale equations.313

For the richest asymptotic limit, we begin by assuming that τ = O(1) and η =314
O(1). The case when these parameters are small, which is the case for the physical315
experiments (see (3.11)), corresponds to a sub-limit that can easily be obtained from316
our more general results. At the end of the section, we will also mention another317
physically less relevant limit when τ � 1 and η � 1. However, in this case little318
analytical progress can be made due to the non-linearity in the system of equations and319
boundary conditions. The parameters that most significantly control the behaviour320
of our system are η/βs and κs, as they dictate respectively how much and how fast321
sulphur dioxide can be transported to the pellets in order to produce liquid sulphuric322
acid that eventually clogs up the filter. There is a rich underlying asymptotic structure323
associated with the order of magnitude of these parameters. In particular, we will324
find later on that, if the product of these parameters, σsκs (where σs = η/βs) is not325
sufficiently small, then sulphur dioxide is completely consumed in the filter medium,326
and non-zero solutions appear as higher-order corrections only. This, for example,327
corresponds to the case when the dimensionless rate of mass transfer of sulphur dioxide328
into the liquid is O(1) and comparable to the rate at which it is being consumed by329
the reaction. It transpires that, when σsκs = O(ε2), we have a non-trivial behaviour330
at leading order in the sulphur dioxide concentration in both the gas and the liquid331
phases. We, therefore, first present two distinguished limits when σsκs = O(ε2), and332
then briefly discuss what happens when σsκs � ε2.333

4.1. Limit I: σs = O(ε2) and κs = O(1). We begin by exploring the case334
when the mass transfer of sulphur dioxide into the liquid σs = O(ε2), but the di-335
mensionless reaction rate κs = O(1). For convenience, we write σs = ε2σ̃s, where336
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σ̃s = O(1). We expand each of the dependent variables in (4.3)–(4.9) as337

(4.10) f ∼ f (0) + εf (1) + ε2f (2) + · · · ,338

and obtain the following leading-order problem for sg, sl, and a:339

∇2
xs

(0)
g = 0 in ω(0)

g ,(4.11)340

∇2
xs

(0)
l = 0 in ω

(0)
l ,(4.12)341

∂a(0)

∂t
=

2
(
s

(0)
l ||x|=λ

)2

(1 + a(0)/λ)2
,(4.13)342

343

subject to the boundary conditions344

∇xs(0)
l · er = 2κss

(0)2
l on Γp,(4.14)345

−∇xs(0)
g · er = 0 on Γ

(0)
i ,(4.15)346

s(0)
g = s

(0)
l on Γ

(0)
i ,(4.16)347

s(0)
g is periodic on ∂ω,(4.17)348349

where ω(0)
g = ω\{|x| ≤ λ + a(0)}, ω(0)

l = {λ < |x| < λ + a(0)}, and Γ
(0)
i = {|x| =350

λ+a(0)}. We first solve the problem in the liquid layer. We rewrite (4.12) in spherical351
polar coordinates, assume radial symmetry, integrate, and apply (4.14) to find that352

(4.18)
∂s

(0)
l

∂r
=

2λ2κs

(
s

(0)
l |r=λ

)2

r2
,353

where we note that, due to radial symmetry, s(0)
l |r=λ is a function of the macroscale354

variables only.355
Integrating once again and using (4.16), we obtain356

(4.19) s
(0)
l = 2λ2κs

(
s

(0)
l |r=λ

)2
(

1

λ+ a(0)
− 1

r

)
+ s(0)

g |r=λ+a(0) .357

Evaluating (4.19) at r = λ yields a quadratic equation for s(0)
l |r=λ that has one358

physically relevant solution, which is non-negative and bounded as κs → 0. Rewriting359
(4.19), evaluated at r = λ, in the form360

(4.20) s
(0)
l |r=λ =

(
λ+ a(0)

2a(0)λκs

)1/2 (
s(0)
g |r=λ+a(0) − s

(0)
l |r=λ

)1/2

,361

and substituting the solution to (4.19) in the right-hand side of (4.20) yields362
(4.21)

s
(0)
l |r=λ =

1 + a(0)/λ

2
√

2κsa(0)

1 +
4λκsa

(0)s
(0)
g |r=λ+a(0)

λ+ a(0)
−

√
1 +

8λκsa(0)s
(0)
g |r=λ+a(0)

λ+ a(0)


1
2

.363

Now considering (4.11), we multiply both sides by s(0)
g , integrate over ω(0)

g , use364
the Divergence Theorem and rearrange to obtain365

(4.22)
∫∫∫

ω
(0)
g

∣∣∣∇xs(0)
g

∣∣∣2 dV =

∫∫
∂ω

(0)
g

s(0)
g ∇xs(0)

g · dS.366
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Since s(0)
g is periodic on the boundary of the unit cell ω, the surface integral in (4.22)367

over ∂ω evaluates to zero. On Γ
(0)
i = {|x| = λ+ a(0)}, we use (4.15) to obtain368

(4.23)
∫∫∫

ω
(0)
g

∣∣∣∇xs(0)
g

∣∣∣2 dV = 0.369

Thus,370

(4.24) s(0)
g = s(0)

g (X, t),371

i.e., s(0)
g depends only on the macroscale spatial variables. We manipulate (4.21)372

(utilising the formula A−B =
(
A2 −B2

)
/ (A+B)) to find373

(4.25) s
(0)
l |r=λ =

√
2s(0)
g

1 +
4λκsa

(0)s
(0)
g

λ+ a(0)
+

√
1 +

8λκsa(0)s
(0)
g

λ+ a(0)

−
1
2

,374

where we have rationalised s(0)
l |r=λ to further simplify it.375

We now consider the O(ε) terms in (4.3)–(4.9) in order to determine the problem376

for s(1)
g . We have377

(4.26) ∇2
xs

(1)
g = 0 in ω(0)

g ,378

subject to the boundary conditions379

−
(
∇Xs(0)

g +∇xs(1)
g

)
· er = 0 on Γ

(0)
i ,(4.27)380

s(1)
g is periodic on ∂ω.(4.28)381382

We use the linearity of the problem for s(1)
g to write the solution in the form383

(4.29) s(1)
g = Φ · ∇Xs(0)

g ,384

where the function Φ(x, t) = (Φ1,Φ2,Φ3) satisfies the cell problem385

(4.30) ∇2
xΦi = 0 in ω(0)

g ,386

subject to387

(∇xΦi + ei) · er = 0 on Γ
(0)
i ,(4.31)388

Φi is periodic on ∂ω,(4.32)389390

for i = 1, 2, 3, and where ei is the unit vector in the x, y, z direction, respectively.391
We now look at the O(ε2) terms in (4.3)–(4.9) in order to determine the problem392

for s(2)
g . We have393

(4.33) τη
∂s

(0)
g

∂t
= ∇2

xs
(2)
g + (∇x · ∇X +∇X · ∇x) s(1)

g +∇2
Xs

(0)
g in ω(0)

g ,394

subject to the boundary conditions395

−
(
∇xs(2)

g +∇Xs(1)
g

)
· er +∇Xa(0) ·

(
∇xs(1)

g +∇Xs(0)
g

)
396

= −σ̃s∇xs(0)
l · er = −

2σ̃sκs

(
s

(0)
l |r=λ

)2

(
1 + a(0)/λ

)2 on Γ
(0)
i ,(4.34)397

s(2)
g is periodic on ∂ω,(4.35)398399
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where we have used (4.18) and (4.27) to simplify (4.34) and remove the terms that400

come from expanding sg on the boundary Γ
(0)
i = {|x| = λ+ a(0)}.401

We now integrate (4.33) over ω(0)
g , remembering that s(0)

g does not depend on the402
microscale variables, and use the Divergence Theorem to obtain403
(4.36)

τηVg
∂s

(0)
g

∂t
=

∫∫∫
ω

(0)
g

∇X ·
(
∇xs(1)

g +∇Xs(0)
g

)
dV +

∫∫
∂ω

(0)
g

(
∇Xs(1)

g +∇xs(2)
g

)
·dS,404

where405

(4.37) Vg
(
ω(0)
g

)
=

∫∫∫
ω

(0)
g

dV406

is the volume of the gas phase in the unit cell. To rewrite the volume integral in407
(4.36), we use a generalisation of Leibniz’ Rule in the form408
(4.38)

∇X ·
∫∫∫

ω
(0)
g (X,t)

g (X,x, t) dV =

∫∫∫
ω

(0)
g

∇X · g dV −
∫∫
{|x|=λ+a(0)}

∇Xa(0) · g dS.409

With g = ∇xs(1)
g +∇Xs(0)

g , we obtain410 ∫∫∫
ω

(0)
g

∇X ·
(
∇xs(1)

g +∇Xs(0)
g

)
dV = ∇X ·

∫∫∫
ω

(0)
g

∇xs(1)
g +∇Xs(0)

g dV411

+

∫∫
Γ
(0)
i

∇Xa(0) ·
(
∇xs(1)

g +∇Xs(0)
g

)
dS412

= ∇X ·

(
Vg

(
I +

1

Vg

∫∫∫
ω

(0)
g

∇xΦ dV

)
∇Xs(0)

g

)
413

+

∫∫
Γ
(0)
i

∇Xa(0) ·
(
∇xs(1)

g +∇Xs(0)
g

)
dS,(4.39)414

415

where I is the identity matrix, and we have used (4.29) to obtain the final line in416

(4.39). Since s(1)
g and s

(2)
g are periodic on ∂ω, the surface integral in (4.36) can be417

reduced to an integral over Γ
(0)
i only and so, using (4.34), we find that418

∫∫
∂ω

(0)
g

(
∇Xs(1)

g +∇xs(2)
g

)
· dS =−

2σ̃sκs

(
s

(0)
l |r=λ

)2

Sgl(
1 + a(0)/λ

)2419

−
∫∫

Γ
(0)
i

∇Xa(0) ·
(
∇xs(1)

g +∇Xs(0)
g

)
dS,(4.40)420

421

where422

(4.41) Sgl
(

Γ
(0)
i

)
=

∫∫
Γ
(0)
i

dS423

is the surface area of the gas–liquid interface. Rewriting (4.36), using (4.39) and424

(4.40), we obtain the macroscale equations that govern the evolution of s(0)
g and a(0),425
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which, dropping the superscripts, read426

τη
∂sg
∂t

=
1

Vg
∇X · (VgD∇Xsg)−

2σ̃sκs (sl|r=λ)
2 Sgl

Vg (1 + a/λ)
2 ,(4.42)427

∂a

∂t
=

2 (sl|r=λ)
2

(1 + a/λ)2
,(4.43)428

429

where430

(4.44) Dij = δij +
1

Vg

∫∫∫
ωg

∂Φj
∂xi

dV,431

is the macroscopic diffusivity tensor which depends on the microscale structure, δij is432
the Kronecker delta,433

(4.45) Vg = 1− 4

3
π (λ+ a)

3
, Sgl = 4π (λ+ a)

2
,434

and sl|r=λ is given by (4.25). Due to the spatial symmetry of the cubic cell, D is435
proportional to the identity matrix, i.e., D = DI. We solve for D numerically using436
COMSOL Multiphysics. In Figure 3, we plot D as a function of λ+a, and we observe437
that D decreases as the liquid layer increases in thickness, as expected.

λ+ a

D

Figure 3. Effective diffusivity, D, as a function of the dimensionless radius of the pellet and
thickness of the liquid layer around it.

438
We conclude with a remark about the physical significance of the variable sg.439

Since sg is independent of the microscale, it can be related to the volume average440
of the sulphur dioxide concentration over the gas phase (which is an experimentally441
measurable quantity), by442

(4.46) sg =
1

Vg

∫∫∫
ωg

sg dV.443

Another useful quantity is the volume-averaged concentration over the whole space,444
defined as445

(4.47) Sg =
1

V

(∫∫∫
ωg

sg dV +

∫∫∫
ωl

sl dV

)
= Vgsg +

∫∫∫
ωl

sl dV,446

since V = 1 is the volume of ω. Sg is important when we are interested in the total447
amount of sulphur dioxide in the filter, in both gaseous and dissolved form.448
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4.2. Limit II: σs = O(1) and κs = O(ε2). The second distinguished limit449
is the case when the mass transfer of sulphur dioxide into the liquid happens at an450
O(1) rate and the dimensionless reaction rate is small. For convenience, we write451
κs = ε2κ̃s, where κ̃s = O(1). In this case, the O(1) problem for sg, sl, and a becomes452

∇2
xs

(0)
g = 0 in ω(0)

g ,(4.48)453

∇2
xs

(0)
l = 0 in ω

(0)
l ,(4.49)454

∂a(0)

∂t
=

2
(
s

(0)
l |r=λ

)2

(1 + a(0)/λ)2
,(4.50)455

456

subject to the boundary conditions457

∇xs(0)
l · er = 0 on Γp,(4.51)458

−∇xs(0)
g · er = −σs∇xs(0)

l · er on Γ
(0)
i ,(4.52)459

s(0)
g = s

(0)
l on Γ

(0)
i ,(4.53)460

s(0)
g is periodic on ∂ω.(4.54)461462

Returning to (4.48) and using (4.52) in an identical way as in Subsection 4.1, we463
obtain464 ∫∫∫

ω
(0)
g

∣∣∣∇xs(0)
g

∣∣∣2 dV = −
∫∫

Γ
(0)
i

s(0)
g ∇xs(0)

g · erdS = −
∫∫

Γ
(0)
i

σss
(0)
l ∇xs

(0)
l · erdS465

= −
∫∫

Γp

σss
(0)
l ∇xs

(0)
l · erdS = 0,(4.55)466

467

where we have used the Divergence Theorem twice, together with (4.51) and (4.53).468

We conclude that s(0)
g is a function of the macroscale variables only. Solving the469

problem in the liquid layer given by (4.49), together with (4.51) and (4.53), we obtain470

(4.56) s
(0)
l = s(0)

g .471

We now consider the O(ε) problem of (4.3)–(4.9) for s(1)
g and s(1)

l , namely472

∇2
xs

(1)
g = 0 in ω(0)

g ,(4.57)473

∇2
xs

(1)
l = 0 in ω

(0)
l ,(4.58)474475

subject to the boundary conditions476

(∇xs(1)
l +∇Xs(0)

l ) · er = 0 on Γp,(4.59)477

−
(
∇Xs(0)

g +∇xs(1)
g

)
· er = −σs

(
∇Xs(0)

l +∇xs(1)
l

)
· er on Γ

(0)
i ,(4.60)478

s(1)
g = s

(1)
l on Γ

(0)
i ,(4.61)479

s(1)
g is periodic on ∂ω,(4.62)480481

again evaluating to zero the terms involving ∇xs(0)
l on the right-hand sides of (4.60)482

and (4.61) that arise from expanding the variables around the moving boundary.483
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In this limit, we use the linearity of the problem for both s(1)
g and s(1)

l to write484
the solution in the form485

s(1)
g = Ω · ∇Xs(0)

g ,(4.63)486

s
(1)
l = Θ · ∇Xs(0)

l ,(4.64)487488

where the functions Ω(x, t) = (Ω1,Ω2,Ω3) and Θ(x, t) = (Θ1,Θ2,Θ3) satisfy the cell489
problems490

∇2
xΩi = 0 in ω(0)

g ,(4.65)491

∇2
xΘi = 0 in ω

(0)
l ,(4.66)492493

subject to, for i = 1, 2, 3,494

(∇xΩi + ei) · er = σs (∇xΘi + ei) · er on Γ
(0)
i ,(4.67)495

Ωi = Θi on Γ
(0)
i ,(4.68)496

(∇xΘi + ei) · er = 0 on Γp,(4.69)497

Ωi is periodic on ∂ω.(4.70)498499

We now look at the O(ε2) problem of (4.3)–(4.9) for s(2)
g and s(2)

l , which becomes500

τη
∂s

(0)
g

∂t
= ∇2

xs
(2)
g + (∇x · ∇X +∇X · ∇x) s(1)

g +∇2
Xs

(0)
g in ω(0)

g ,(4.71)501

τ
∂s

(0)
l

∂t
= ∇2

xs
(2)
l + (∇x · ∇X +∇X · ∇x) s

(1)
l +∇2

Xs
(0)
l in ω

(0)
l ,(4.72)502

503

subject to the relevant boundary conditions504

−
(
∇xs(2)

g +∇Xs(1)
g

)
· er +∇Xa(0) ·

(
∇xs(1)

g +∇Xs(0)
g

)
505

= σs

(
−
(
∇xs(2)

l +∇Xs(1)
l

)
· er +∇Xa(0) ·

(
∇xs(1)

l +∇Xs(0)
l

))
on Γ

(0)
i ,(4.73)506 (

∇xs(2)
l +∇Xs(1)

l

)
· er = 2

(
κ̃s + τs

(0)
l

)
s

(0)2
l on Γp,(4.74)507

s(2)
g is periodic on ∂ω,(4.75)508509

where we have used (4.60) to simplify (4.73).510

Integrating (4.71) and (4.72) over ω(0)
g and ω(0)

l , respectively, and applying first511

the Divergence Theorem and then Leibniz’ Rule together with periodicity of s(1)
g and512
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s
(2)
g we obtain513

τηVg
∂s

(0)
g

∂t
= ∇X ·

(
Vg

(
I +

1

Vg

∫∫∫
ω

(0)
g

∇xΩ dV

)
∇Xs(0)

g

)
514

+

∫∫
Γ
(0)
i

∇Xa(0) ·
(
∇xs(1)

g +∇Xs(0)
g

)
−
(
∇Xs(1)

g +∇xs(2)
g

)
· er dS,(4.76)515

τVl
∂s

(0)
l

∂t
= ∇X ·

(
Vl

(
I +

1

Vl

∫∫∫
ω

(0)
l

∇xΘ dV

)
∇Xs(0)

l

)
516

−
∫∫

Γ
(0)
i

∇Xa(0) ·
(
∇xs(1)

l +∇Xs(0)
l

)
+
(
∇Xs(1)

l +∇xs(2)
l

)
· er dS517

−
∫∫

Γp

(
∇Xs(1)

l +∇xs(2)
l

)
· er dS,(4.77)518

519

where Vl = 1 − Vg − 4πλ3/3 is the volume of the liquid phase. We now multiply520
(4.77) by σs, combine with (4.76), and use the boundary conditions (4.73) and (4.74)521
together with (4.56) to obtain the macroscale equations that govern the evolution of522

s
(0)
g and a(0) which, dropping the superscripts, read523

τ
∂sg
∂t

=
1

V1
∇X · (V2D∇Xsg)−

2σs (κ̃s + τsg) s
2
gSgl

V1 (1 + a/λ)
2 ,(4.78)524

∂a

∂t
=

2s2
g

(1 + a/λ)2
,(4.79)525

526

where527

(4.80) Dij = δij +
1

V2

(∫∫∫
ωg

∂Ωj
∂xi

dV + σs

∫∫∫
ωl

∂Θj

∂xi
dV

)
,528

529

(4.81) V1 = ηVg + σsVl, V2 = Vg + σsVl.530

In this limit, since the mass transfer of sulphur dioxide between the gas and the531
liquid phase is O(1), we must solve two cell problems, and the diffusivity tensor takes532
account of the diffusivities in both the gas and the liquid domain (unlike the previous533
limit, which only depended on the diffusivity in the gas domain).534

4.3. Uniformly Valid Equations. We combine the results from the limits in535
Subsections 4.1 and 4.2 into a uniformly valid set of macroscale equations to obtain536

τ
∂sg
∂t

=
1

V1
∇X · (V2D∇Xsg)−

2σs
(
κs/ε

2 + τsg
) (
s

(0)
l |r=λ

)2

Sgl

V1 (1 + a/λ)
2 ,(4.82)537

∂a

∂t
=

2
(
s

(0)
l |r=λ

)2

(1 + a/λ)2
,(4.83)538

539

where s(0)
l |r=λ, D, V1, and V2 are defined as in (4.25), (4.80), and (4.81), respec-540

tively. Setting either σs or κs to be O(ε2) recovers the previous limits, while further541
simplifications can be made if both σs, κs � 1.542
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4.4. A Comment on the Limit When σs, κs = O(1). In this limit, sulphur543
dioxide will be depleted at a much faster rate than in the previous two limits. The544

leading-order governing equations for s(0)
g and s(0)

l in this case are545

∇2
xs

(0)
g = 0 in ω(0)

g ,(4.84)546

∇2
xs

(0)
l = 0 in ω

(0)
l ,(4.85)547548

subject to the boundary conditions549

∇xs(0)
l · er = 2κss

(0)2
l on Γp,(4.86)550

−∇xs(0)
g · er = −σs∇xs(0)

l · er on Γ
(0)
i ,(4.87)551

s(0)
g = s

(0)
l on Γ

(0)
i ,(4.88)552

s(0)
g is periodic on ∂ω.(4.89)553554

Applying the Divergence Theorem to (4.84) and (4.85), and using (4.86), (4.87), and555
(4.89), we conclude that556

(4.90) s
(0)
l = 0 on Γp.557

Then, solving (4.85), with (4.86), (4.90) and the radial symmetry of s(0)
l , we obtain558

(4.91) s
(0)
l = 0 in ω

(0)
l .559

Following the previous arguments in (4.22)–(4.24) (where (4.87) and (4.91) reduce to560

(4.15)), we see that s(0)
g is independent of the microscale variables and, thus, using561

(4.88), we establish that562

(4.92) s(0)
g = 0 in ω(0)

g ,563

i.e., all the sulphur dioxide is consumed. This suggests that, in this case, sulphur diox-564
ide consumption happens on a faster timescale than the liquid-layer-growth timescale565
we have used to non-dimensionalise the model, and, in fact, we need to rescale time566

by ε2 so that the time derivative in (4.85) enters the leading-order equation for s(0)
l .567

As in [14], in this regime, there is a limit in which η = O(ε2), which simplifies the568
leading-order version of (4.3), but retains the time derivative in the leading-order569
version of (4.4). However, unlike in [14], the resulting equations cannot be solved570
explicitly due to the non-linearity in the boundary conditions on the surface of the571
catalytic pellet and the moving boundary that is present.572

We note that we obtain the same conclusions if we assume σsκs = O(ε) and one573
of κs or σs is O(1). In these limits, the combined effect of the mass transfer and574
reaction is strong enough to consume all the sulphur dioxide to leading order on our575
chosen timescale.576

4.5. Physically Relevant Limit. It is clear that the limits in which σsκs =577
O(ε2) provide the largest values of the parameters for which we obtain non-trivial578
solutions for the sulphur dioxide concentration on our timescale. Furthermore, the579
values of the physical parameters also suggest that these are the physically relevant580
regimes, since otherwise the device would fill with liquid and lose efficiency much581
faster than the experiments indicate. In fact, using actual parameter values, the most582
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relevant limit is κs, σs = O(ε). This is a sub-limit of the other two considered in583
Subsection 4.1 and 4.2, and the governing equations in this case can be obtained, for584
example, by letting κs → 0 in (4.42) and (4.43) or using the equations in Subsection 4.3585
with κs, σs = O(ε). Writing κs = εκ̄s, σs = εσ̄s, where κ̄s, σ̄s = O(1), we find that586

τη
∂sg
∂t

=
1

Vg
∇X · (VgD∇Xsg)−

2σ̄sκ̄sSgls2
g

Vg (1 + a/λ)
2 ,(4.93)587

∂a

∂t
=

2s2
g

(1 + a/λ)2
,(4.94)588

589

where D, Vg, and Sgl are as defined in (4.44) and (4.45), respectively.590

5. Device-Scale Model. Now that we have derived the macroscale equations591
for the sulphur dioxide concentration and the thickness of the liquid acid layer within592
the filter sheets, we need to incorporate these in a model for the whole device. We593
consider the filter as shown on the left in Figure 1, which we reproduce with the594
relevant coordinate system (with macroscale variables X̂, Ŷ , Ẑ) and length scales in595
Figure 4. The flue gas flows up through a channel of half-width d and length L596
alongside a filter sheet of thickness H, width W , and length L. In the filter channel,597
since the gas flow is uniform in the Ẑ-direction and we assume no flux of gas at598
Ŷ = ±W/2, we anticipate negligible variation in the X̂-direction and no variation599
in the Ŷ -direction. We note that, on the surface of the filter sheet, we could have600
applied the boundary condition found in Beavers and Joseph [3] to account for the601
transmission of longitudinal flow from the channel into the porous medium. This602
would introduce a thin layer, near the surface, across which the gas velocity is reduced603
to zero. Since our focus is on the generation of liquid inside the filter sheet, for604
simplicity we assume the channel wall provides no retardation to the flow. Thus,605
conservation of mass of sulphur dioxide with cross-sectionally averaged concentration606
Ŝ(ẑ, t̂) reads607

(5.1) d

(
∂Ŝ

∂t̂
+ U

∂Ŝ

∂Ẑ

)
=

[
V̂g (â)

l3
D̂(â)

∂ŝg

∂X̂

]
X̂=d

,608

where U is the constant speed of the gas flow, V̂g (â) /l3 = Vg is the void fraction in the609

filter sheets (defined in (4.45)), and D̂(â) = DsgD(a) with D defined in (4.44). The610
right-hand side of (5.1) accounts for the uptake of sulphur dioxide by the filter device611
at X̂ = d, while we have assumed zero flux at X̂ = 0 and Ŷ = ±W/2. We note that612
we have neglected diffusion along the channel, which is justifiable, since the Péclet613
number Pe = UL/Dsg = 104 � 1. In the filter sheet, we track the concentration,614
ŝg, of sulphur dioxide and the void fraction Vg. The dimensional forms of (4.93) and615

(4.94), in which we have replaced â with V̂g using the dimensional form of (4.45), read616

∂ŝg

∂t̂
=

1

V̂g
∇X̂ ·

(
V̂gD̂∇X̂ ŝg

)
−
(

8πR2k

β2
s

)
ŝ2
g

V̂g
,(5.2)617

∂V̂g
∂t̂

= −
(

8πVmR
2k

β2
s

)
ŝ2
g.(5.3)618

619

At the surface of the sheet, we assume that the concentration is continuous, and620
so we write621

(5.4) ŝg = Ŝ at X̂ = d.622

This manuscript is for review purposes only.



A HOMOGENISED MODEL FOR A REACTIVE FILTER 19

flue gas

filter sheet

H

filter channel

symmetry line X̂ = 0

d

L

inlet Ẑ = 0

outlet Ẑ = L

X̂

Ŷ
Ẑ

W

Figure 4. Schematic of the filter.

We note that the void fraction does not appear in (5.4), since ŝg is the concentration623
of sulphur dioxide averaged over the gas phase and not the whole space. At the back624
of the filter sheet, we assume that no sulphur dioxide can escape and write625

(5.5)
∂ŝg

∂X̂
= 0 at X̂ = d+H.626

At the inlet of the filter, both the channels and the filter sheets are exposed to the627
incoming gas stream. We assume that sulphur dioxide of constant concentration S0628
is supplied to the filter629

(5.6) ŝg = Ŝ = S0 at Ẑ = 0.630

At the bottom of the sheet, the filter is open, and, thus, we assume that the two631
concentrations are the same, and so we have that632

(5.7) ŝg = Ŝ at Ẑ = L.633

At the two ends along the width of the sheet, we assume no flux of sulphur dioxide634

(5.8)
∂ŝg

∂Ŷ
= 0 at Ŷ = ±W

2
.635

Finally, we assume no sulphur dioxide or liquid sulphuric acid are initially present in636
the filter; these conditions read637

(5.9) ŝg = Ŝ = 0, V̂g = l3 − 4

3
πR3 at t̂ = 0,638

We non-dimensionalise (5.1)–(5.9) using639

(5.10)
X̂ = d+HX, Ŷ = WY, Ẑ = LZ, t̂ = (L2/Dsg )t,

Ŝ = S0S, V̂g = l3Vg, D̂ = DsgD,
640

where we have picked the timescale based on diffusion along the length of the filter641
sheet. We note that the diffusive timescale in the transverse, X, direction is much642
smaller than this timescale and not of particular interest with regards to the long-643
term operation of the device. In addition, since the flue gas flows uniformly along644
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the channel, and we prescribe zero flux of sulphur dioxide at Y = ±1/2, there are no645
variations in the Y -direction of sg or S. The dimensionless equations are646

δε

(
∂S

∂t
+ Pe

∂S

∂Z

)
=

(
VgD

∂sg
∂X

) ∣∣∣∣∣
X=0

,(5.11)647

δ2 ∂sg
∂t

=
1

Vg

(
∂

∂X

(
VgD

∂sg
∂X

)
+ δ2 ∂

∂Z

(
VgD

∂sg
∂Z

))
−
δ2Υs2

g

αVg
,(5.12)648

∂Vg
∂t

= −Υs2
g,(5.13)649

650

subject to651

sg = S at X = 0,(5.14)652

∂sg
∂X

= 0 at X = 1,(5.15)653

sg = S = 1 at Z = 0,(5.16)654

sg = S at Z = 1,(5.17)655

sg = S = 0 at t = 0,(5.18)656

Vg = 1− 4πλ3

3
at t = 0,(5.19)657

658

where we have the following six dimensionless parameters with corresponding orders659
of magnitude660

(5.20)
α = VmS0 ≈ 10−6, δ =

H

L
≈ 10−2, ε =

d

L
≈ 10−2, λ =

R

l
≈ 10−1,

Υ =
8πVmR

2kL2S2
0

β2
s l

3Dsg

≈ 10−1, Pe =
LU

Dsg

≈ 104.
661

Here, α measures the change in volume in the gas-to-liquid transition in the chemical662
reaction, δ is the aspect ratio of the filter sheet, ε is the aspect ratio of the filter663
channel, λ is the ratio of the catalytic pellet radius to the inter-pellet distance (as664
introduced in (3.11)), Υ is a ratio of the diffusive timescale to the timescale over which665
the liquid layer grows, and Pe is the Péclet number.666

6. Asymptotic Results for a Slender Filter Device. As seen in (5.20),667
δ � 1. Furthermore, under normal operating conditions, the gas flow is advection-668
dominated, so that Pe � 1. We exploit these facts to further simplify the system of669
equations presented in the previous section. In particular, we systematically explore670
two physically relevant distinguished limits by varying α and ε which control the671
system behaviour. In all the limits, based on experimental evidence, we assume672
Pe = O(1/δ2) and, for the richest asymptotic limit, we assume Υ = O(1).673

6.1. Limit I: α = O(δ2) and ε = O(δ). We first study the case when the674
reaction rate and the diffusive rate are in balance, the channel thickness and sheet675
thickness are similar, and the concentration of sulphur dioxide supplied at the entrance676
of the channel is small. We set α = δ2α̃, and ε = δε̄, where α̃, ε̄ = O(1). Expanding677
the dependent variables as power series in powers of δ2, the leading-order versions of678
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(5.12) and (5.11) become quasi-static, and we find that679

ε̄ P̃e
∂S

∂Z
=

(
VgD

∂sg
∂X

) ∣∣∣∣∣
X=0

,(6.1)680

0 =
1

Vg

(
∂

∂X

(
VgD

∂sg
∂X

))
−

Υs2
g

α̃Vg
,(6.2)681

∂Vg
∂t

= −Υs2
g,(6.3)682

683

where P̃e = δ2Pe = O(1). Equations (6.2)–(6.1) must be solved subject to (5.14)–684
(5.19). We will solve these numerically in Section 7 and will find a monotonically685
decreasing quasi-static solution for the sulphur dioxide concentration that agrees well686
with the solution to the full numerical solution as δ decreases.687

6.2. Limit II: α = O(δ) and ε = O(δ2). We now turn our attention to688
the case when reaction is slower than diffusion, the channel width is much thinner689
than the sheet width, and there is a moderate amount of sulphur dioxide entering690
the device. We write α = δᾱ, and ε = δ2ε̃, where ᾱ, ε̃ = O(1). After asymptotically691
expanding the dependent variables in powers of δ (and dropping the superscripts on692
the leading-order variables), the leading-order version of (5.12) becomes693

(6.4) 0 =
1

Vg

(
∂

∂X

(
VgD

∂sg
∂X

))
.694

This can be readily integrated, and using (5.15), we obtain695

(6.5) sg = sg(Z, t).696

The O(δ) versions of (5.11) and (5.12) read697

ε̃ P̃e
∂S

∂Z
=

(
VgD

∂s
(1)
g

∂X

)∣∣∣∣∣
X=0

.(6.6)698

0 =
1

Vg
∂

∂X

(
VgD

∂s
(1)
g

∂X

)
−

Υs2
g

ᾱVg
,(6.7)699

700

Multiplying (6.7) by Vg and integrating it with respect to X from 0 to 1, and using701
(5.14), (5.15) and (6.6) we obtain702

(6.8) 0 = −Υ

ᾱ
S2 − ε̃ P̃e

∂S

∂Z
,703

which we solve alongside704

(6.9)
∂Vg
∂t

= −ΥS2,705

together with the conditions706

S = 1 at Z = 0,(6.10)707

Vg = 1− 4πλ3

3
at t = 0.(6.11)708

709
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Writing β = Υ/ᾱ ε̃ P̃e, the solution is710

(6.12) S =
1

1 + βZ
, Vg = 1− 4πλ3

3
− Υt

(1 + βZ)
2711

In this limit, we see that S has reached a steady state, while Vg evolves linearly712
in time. Furthermore, using (6.12), we can calculate the first time when liquid layers713
around the pellets adjacent to the inlet of the channel touch each other, after which714
moment we will need a different model to account for the coalescence. The critical715
void fraction at which this happens is Vg,c = 1− π/6 (the largest sphere that can fit716
in the unit cube has radius π/6), and, therefore, using (6.12) evaluated at Z = 0, the717
asymptotic value of the critical time tac is calculated to be718

(6.13) tac =
π

6Υ

(
1− 8λ3

)
.719

7. Numerical Results. We solve (5.12)–(5.19) numerically using a second-720
order-accurate finite-difference scheme, implemented in MATLAB. In Figure 5, we721
show plots of the spatial profiles of S in the channel and Vg at the edge of the filter722
at X = 0 for various times (the parameter values are shown in the figure caption).723
We stop the simulations at the time when two neighbouring liquid layers adjacent724
to the inlet of the channel coalesce (tc ≈ 0.52 in this simulation). After this point,725
our model becomes unphysical, and we would need to consider transport through a726
fully flooded microstructure, but this is beyond the scope of this paper. We see that,727
as time increases, the concentration of sulphur dioxide increases and approaches a728
quasi-steady state, which can be more easily seen in Figure 6 (left), where we plot a729
temporal profile of S at the outlet of the channel Z = 1. In Figure 6 (left), we can730
also see the breakthrough curve that describes the steep increase in the concentration731
of sulphur dioxide and the point in time when the gas initially fills up the channel.732
The slow increase in concentration at the end of the channel is due to the gradual733
accumulation of liquid sulphuric acid in the filter sheets. In Figure 5 (right), we see734
that, as time increases, the void fraction decreases and is smallest near the channel735
inlet, as expected. In Figure 7, we plot the temporal profile of the ratio, F , of the736
total amount of sulphur dioxide that has exited the channel at Z = 1, compared to737
the total amount of sulphur dioxide that has entered the channel at Z = 0, calculated738
according to739

(7.1) F =

∫ t
0
S(1, s) ds∫ t

0
S(0, s) ds

.740

We see that, similar to Figure 6 (left), F is initially zero until the channel is filled741
with gas. We also see that F then rises steeply as sulphur dioxide exits the channel742
then levels off. In Figure 6 (right), we show spatial profiles of S and Vg in the filter743
sheet at the middle of the channel at t = tc. As anticipated, the concentration of744
sulphur dioxide decreases deeper into the sheet, and the void fraction increases.745

In Figure 8, we show the temporal evolution of S at the channel outlet Z = 1746
as we vary four of the dimensionless parameters, namely α, ε,Υ and Pe. We see that747
decreasing α decreases the concentration of sulphur dioxide at the outlet, since this748
corresponds to lower amounts of sulphur dioxide being fed into the device. However,749
increasing ε increases the concentration, since this corresponds to wider channels,750
which contain more sulphur dioxide. Increasing Υ, though, decreases the critical time751
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| X

=
0

Increasing t

Figure 5. (Left) Spatial profile of S in the channel at t = 0.52 and (right) Vg on the channel
wall at X = 0 for various times t: 0 (red), 0.001 (orange), 0.005 (brown), 0.01 (green), 0.1 (blue),
0.3 (magenta), 0.52 (black). In these plots, δ = 0.1, ε = 0.1,Υ = 1,Pe = 100, α = 0.01, λ = 0.1.

t
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=
1

quasi-steady regime

breakthrough curve

zero initial concentration

X

V
g |Z
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.5s g
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0
.5

Figure 6. (Left) Temporal profile of S at the outlet of the channel Z = 1. (Right) Spatial
profiles of sg (blue) and Vg (dashed red) in the sheet at the middle of the channel Z = 0.5. In these
plots, δ = 0.1, ε = 0.1,Υ = 1,Pe = 100, α = 0.01, λ = 0.1.

for liquid coalescence, tc, and the sulphur dioxide concentration, which is expected,752
as this corresponds to increasing the reaction rate k. Increasing Pe increases the753
concentration, as this corresponds to increasing the speed of the gas. Furthermore,754
in Figure 9, we show the temporal profile of F for different values of Pe. We see that755
increasing Pe increases F and thus decreases the efficiency of the filter. Thus, we can756
use these results to calculate the maximum flow speed of the gas in order to remove757
a given proportion of the incoming sulphur dioxide, or keep the outlet concentration758
of sulphur dioxide below a given threshold. We note that we have used a different set759
of base parameter values for δ and Pe than in (5.20), since the simulations become760
computationally challenging in this case. The aim here is to illustrate the general761
qualitative behaviour of the system, and then to use asymptotic reductions (when762
δ � 1), thus enabling a quicker solution.763

In Figure 10, we show spatial profiles of the numerical solution to (5.12)–(5.19) for764
decreasing δ compared to the solution of the asymptotically reduced equations (6.2)–765
(6.1) and the asymptotic result (6.12), respectively. When we vary δ, we also vary α766
and ε according to the limits considered in Subsections 6.1 and 6.2, respectively. We767
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t

F

Figure 7. Temporal profile of the ratio, F , of the total amount of sulphur dioxide that has
exited the channel at Z = 1, compared to the total amount of sulphur dioxide that has entered the
channel at Z = 0. In this plot, δ = 0.1, ε = 0.1,Υ = 1,Pe = 100, α = 0.01, λ = 0.1.
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Figure 8. Plots of the temporal profile of S at the channel outlet Z = 1 varying (top left)
α = 1 (red), 0.1 (green), and 0.01 (blue) keeping ε = 1,Υ = 1,Pe = 10, (top right) ε = 0.1 (red), 0.2
(green), and 1 (blue) keeping α = 0.1,Υ = 1,Pe = 10, (bottom left) Υ = 0.5 (red), 1 (green), and 2
(blue) keeping α = 0.1, ε = 1,Pe = 10, and (bottom right) Pe = 5 (red), 10 (green), and 100 (blue)
keeping α = 0.1, ε = 1,Υ = 1. In these plots, δ = 0.3, λ = 0.1.

see a very good agreement even at moderate values of δ, noting that the convergence768
in Figure 10 (right) is slower. We note that, in order to obtain the asymptotic results769

This manuscript is for review purposes only.



A HOMOGENISED MODEL FOR A REACTIVE FILTER 25

t

F

Increasing Pe

Figure 9. Temporal profile of the ratio, F , of the total amount of sulphur dioxide that has
exited the channel, compared to the total amount of sulphur dioxide that has entered the channel,
varying Pe = 5 (red), 10 (green), and 100 (blue) keeping α = 0.1, ε = 1,Υ = 1, δ = 0.3, λ = 0.1.

in Figure 10 (left), we start the numerical simulation with the early-time asymptotic770
solution of (5.12)–(5.19) when t = O(δ2).771

Z

S

Decreasing δ

Z

S

Decreasing δ

Figure 10. Plots of the spatial profile of S at t = 0.52 for (left) δ = 0.3 (red), δ = 0.1 (blue),
and the corresponding asymptotic results in Subsection 6.1 and for (right) δ = 0.3 (red), δ = 0.1
(blue), δ = 0.03 (green) and the corresponding asymptotic results in Subsection 6.2 (dashed black).

8. Discussion and Conclusions. In this paper, we developed a mathematical772
model to describe the operation of a device that converts gaseous sulphur dioxide into773
liquid sulphuric acid through a chemical reaction that occurs on the surface of catalytic774
beads contained in a filter. Our aim was to track the spatial and temporal evolution775
of the concentration of sulphur dioxide and the local amount of acid in the filter along776
with the concentration of sulphur dioxide in the gas to be purified. Furthermore,777
we assumed that other chemical species (oxygen and water vapour) participating in778
the reaction are abundant in the system and, hence, of constant concentration. We779
began by describing the model that holds on the scale of a single catalytic pellet in780
the filter sheets, around which a uniform layer of liquid sulphuric acid forms. We then781
systematically homogenised these equations and derived a set of macroscale equations782
that describe the whole filter that captures the effect of the porous microstructure via783
(i) an effective “sink” term in the macroscale equation for the concentration of sulphur784
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dioxide in the filter, and (ii) an effective diffusivity. We presented two distinguished785
limits based on the order of magnitude of two dimensionless numbers, κs and σs,786
which measure the relative strength of reaction to diffusion and the relative mass787
transfer on either side of the gas–liquid interface, respectively. In the first limit, when788
κs = O(1) and σs = O(ε2), the sink term for sulphur dioxide was a complicated789
non-linear function of the concentration of sulphur dioxide and the thickness of the790
sulphuric acid. In the second limit, when κs = O(ε2) and σs = O(1), this term791
simplified considerably but the effective diffusivity became more difficult to calculate.792
We identified a physically relevant sub-limit, in which both κs and σs are both small,793
which simplified the governing equations in the filter sheets.794

In the second part of the paper, we coupled the macroscale equations emerging795
from the homogenisation with a reaction–advection equation for the gas flow in the796
filter channels between the sheets. We then assumed that the aspect ratio of the797
filter is small and studied two asymptotic regimes based on the orders of magnitude798
of two dimensionless numbers, α and ε, which measure the change in volume in the799
gas-to-liquid transition in the chemical reaction, and the aspect ratio of the channel,800
respectively. In the first limit, when α = O(δ2) and ε = O(δ), we obtained a quasi-801
static equation for the concentration of sulphur dioxide both in the filter sheets and802
in the channel. In the second limit, when α = O(δ) and ε = O(δ2), we were able to803
obtain an explicit solution (6.12) for the concentration of sulphur dioxide and the void804
fraction. In particular, we found an estimate for the time at which two neighbouring805
liquid layers around catalytic pellets adjacent to the inlet of the channel will coalesce,806
which is proportional to the ratio of the timescale over which the liquid layer grows807
and the diffusive timescale of sulphur dioxide along the channel. From this formula,808
we see that increasing the inter-pellet distance in the porous sheet increases the time809
until coalescence, and, thus, increases the device operation time. We solved the full810
system of macroscale equations numerically and investigated the effect of changing811
various parameters. Given a target concentration of sulphur dioxide at the outlet,812
our model can be used to find the maximum speed of the gas that achieves this. We813
compared the numerical results to our asymptotic predictions and found an excellent814
agreement and thus, in the relevant limit, the reduced system of equations may be815
used to approximate the performance of the filter in the given regimes.816

Our model captures the initial stage of operation of the filter device before neigh-817
bouring liquid layers in the filter sheets coalesce. Once this happens we need to818
develop another model that accounts for the change in diffusive pathway in the liquid819
and involves a moving front of liquid inside the filter sheet (see Figure 11). In addi-

inlet

flue

gas

outlet

moving front

Figure 11. Schematic of a moving liquid-acid front in a porous filter sheet.

820
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tion, we want to incorporate the effect of the fibre network in the porous sheet, since821
these fibres can be manufactured to be either hydrophilic or hydrophobic, which may822
enhance or inhibit the liquid transport within the filter. Our model provides the basis823
for exploration of the performance of reactive filters and for optimisation in order to824
minimise the amount of sulphur dioxide released by the device into the atmosphere,825
while ensuring longevity.826
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