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Abstract: Understanding the operation of filters used to remove particulates from fluids is important
in many practical industries. Typically the particles are larger than the pores in the filter so a cake
layer of particles forms on the filter surface. Here we extend existing models for filter blocking to
account for deformation of the filter material and the cake layer due to the applied pressure that
drives the fluid. These deformations change the permeability of the filter and the cake and hence the
flow. We develop a new theory of compressible-cake filtration based on a simple poroelastic model
in which we assume that the permeability depends linearly on local deformation. This assumption
allows us to derive an explicit filtration law. The model predicts the possible shutdown of the filter
when the imposed pressure difference is sufficiently large to reduce the permeability at some point
to zero. The theory is applied to industrially relevant operating conditions, namely constant flux,
maximising flux and constant pressure drop. Under these conditions, further analytical results are
obtained, which yield predictions for optimal filter design with respect to given properties of the
filter materials and the particles.
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1. Introduction

Membranes are an ideal choice for filtering of fluids because they can create highly
selective barriers that can retain particles due to various processes such as size-exclusion
(straining), electro-chemical and other effects [1]. As a result, membrane filtration has
become the method of choice in various applications for separations, not only due to its
economic advantage over other separation techniques due to lower energy costs, but also
because it is better suited to preserve the quality of the product in the food and beverage
industry than other purification processes [2]. Applications in industry range from small-
scale (protein filtration, virus removal) to large-scale (wastewater treatment) processes.
Classical modes of operation include dead-end and cross-flow filtration, depending on
whether the filter membrane surface is, respectively, either perpendicular or parallel to the
flow direction [3].

There are two main different ways in which the particles in the fluid can be retained
by the membrane. In the first, which is characterised by the particles being small compared
to the membrane pores, retention occurs inside the membrane, while in the second, which
is characterised by the particles being bigger than the membrane pores, retention occurs by
particles forming an additional layer on top of the membrane, usually referred to as a cake.
In this work, we will refer to the whole device comprising a filter (the membrane) and a
cake as a filtercake. Modelling of cake formation during both dead-end and cross-flow
filtration has been studied extensively in the literature (see, for example, King & Please [4]
and Sanaei et al. [5]).

Early core work on the build-up of a cake at a membrane surface comprised studies
in compressional rheology. In the pioneering paper by Buscall & White [6] , the authors
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developed a theory of sedimentation in the form of a two-phase model, which forms the
basis of many subsequent modelling efforts. A notable feature of this paper that permeates
subsequent work is the concept of a yield stress of the cake, which is estimated using
experimental data. The resulting model comprises a one-dimensional nonlinear diffusion
equation for the volume fraction with a moving boundary denoting the free surface of the
cake. The diffusion coefficient depends on both the permeability of the cake and the yield
stress. In Landman et al. (1995) [7], the authors showed how the framework developed by
Buscall & White [6] can be reconciled with simpler rheological relationships in the context
of pressure filtration. In particular, the authors show how the growth of the cake layer can
be predicted for a given applied pressure difference.

Applications of the compressional rheology theory to particular filtration processes
are studied further in Landman et al. (1997) [8], with the objective of using optimal control
to maximise the processing rate. In this case they reduce the nonlinear diffusion equation
derived in Buscall & White [6] to a linearised version to facilitate a more tractable analysis.
Similarly, Kapur et al. [9] consider a simplified version of the model of Buscall & White [6]
to speed up computation.

Dewatering is an important application in which cake build-up is a key feature. In
this process, water is removed from solid material or soil with the target product being the
solid material. Stickland et al. (2016) [10] study the dewatering process using the ideas of
compressional rheology in a case where optimisation is the primary objective in forming
the cake layer. Stickland et al. (2018) [11] also show how compressional rheology models
may be used to describe the specific case of wastewater treatment. Hewitt et al. [12] show
how the use of a compressive yield stress is a crucial component in accurately capturing the
dewatering process. They validate their theory using experiments and demonstrate how
the product that is being filtered plays a key role in the behaviour, finding that their model
does not fit the behaviour for the filtration of cellulose. Finally, Eaves et al. [13] study the
dewatering process for paper and slurries. Again the key concept here is the modelling
of water flow through a deforming consolidating material, however the main novelty in
this paper is the more complicated physical configuration of the filtration process that is
considered.

Vacuum filtration is another industrial process in which the build-up of cake is an
important characteristic. A notable differentiating feature of this process to those afore-
mentioned is that desaturation effects must be taken into account to model the air–liquid
capillary imbibition (see for example Stickland et al. (2010) [14]).

While there is an extensive body of literature that focuses on the accurate modelling
of the formation and growth of a cake layer on a membrane, there has been much less
work done to examine how mechanical deformation of both the cake and the underlying
filter material, and the interplay between the two, might affect the behaviour of the entire
system, and it is this question that forms the focus of this study.

We consider an elastic-response model to describe both the membrane and cake
behaviour, which will allow for both a suitable characterisation of the membrane dynamics
while enabling a direct comparison between the behaviour of the two materials. When
a fluid flows through a porous medium, it exerts forces on the porous matrix, inducing
deformations. These deformations in turn affect the local permeability of the material,
which then influences the fluid flow. This coupling between the fluid flow and porous
medium deformation is often modelled using poroelasticity theory, developed in the first
half of the 20th century by Terzaghi and Biot [15,16] and since then applied in a plethora of
industrial as well as biological applications [17–22].

To our knowledge, the first attempt to explicitly model the effects of elastic deforma-
tion on the local permeability of the porous medium was presented in Parker et al. [18].
Authors extended a one-dimensional steady-state poroelastic model—comprising Darcy’s
law for fluid flow, the Navier equation (equipped with a pressure gradient term arising from
Terzaghi’s principle) for deformation and a conservation equation for fluid—by assuming a
variety of constitutive assumptions relating local strain and permeability. In Köry et al. [23],
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the analytic solution under the linear constitutive assumption from Parker et al. [18] was
used to obtain explicit conditions for porous-medium shutdown (deformation leading to
locally zero permeability, which allows no flow through the medium). The analysis was
then extended to the case of non-uniform rest-state permeability, i.e., permeability in the
absence of any flow, with a special emphasis on applications to filtration processes.

Other models introduce more realistic descriptions of flow-deformation coupling
either via power-law constitutive assumptions or using explicitly multi-phase frameworks
(see Lee & Wang [24]), but these are both less intuitive and less amenable to analytical
progress, and become computationally challenging as the number of model parameters
increases. A more complicated model consisting of a poroelastic model (with a more
advanced relationship between the local permeability and deformation) and a fouling
model (modelling the effects of caking and intra-membrane clogging separately) has
recently been employed to explain the observed pressure–time signatures in direct-flow
filtration under constant flux [25].

In this work, we extend the simple poroelastic framework from Köry et al. [23] to
model cake filtration in a dead-end filter. The key objective of this work is to understand
how deformations in both the filter and the cake interact with one another and affect the
behaviour of the overall filtration process. We continue to assume the elastic response is
instantaneous on the time scale of filtration, however the problem is time dependent due
to the cake formation which takes the form of a moving boundary problem. In Section 2,
we formulate the model for a compressible filtercake including the boundary and interface
conditions. We choose to model the system using a linearised theory in order to elucidate
the concept of the interplay between the compression of the cake and the underlying mem-
brane; the modelling ideas we lay out here readily generalise to more complex nonlinear
theories. We nondimensionalise the system and then find the conditions required to both
ensure the validity of small-deformations assumptions and avoid filter shutdown. We
then derive the resulting caking filtration law (Equation (30)). The caking law depends on
the time-dependent pressure drop across the filtercake and two dimensionless material
parameters, reflecting the behaviour of the two porous media (the filter and the cake;
c.f. Köry et al. [23]).

In Section 3, we study the implications of the theory to three industrially relevant
operating conditions, namely constant flux, maximising flux, and constant pressure-drop
filtration, placing an emphasis on optimal filter design in each case. We conclude in
Section 4 by summarising the most important outcomes of our analysis and identifying
areas in which the proposed theoretical framework could be improved and extended.

2. Poroelastic Model of Cake Formation

We shall assume that both the cake and filter are compressible and propose a model
for a one-dimensional dead-end filtration device where the increase of resistance of a filter
is due to both the build-up of a cake and the compression of both the filter and the cake.

2.1. Governing Equations

We denote the thickness of the cake in the undeformed configuration in the absence
of fluid flow by L̃c and that of the filter in the undeformed configuration by L̃ f . We will
use the assumption of small deformations throughout this work (namely that the applied
pressure difference on the system leads to deformations that are small compared to the
sizes of the two porous media), and so, for example, we may impose the problem on a
region whose boundaries do not depend on the deformations.

2.1.1. Flow and Cake Build-Up

Employing the framework from Köry et al. [23], we introduce a spatial variable x̃,
impose an input pressure p̃in at x̃ = L̃ f + L̃c and impose an output pressure p̃out at x̃ = 0
such that p̃in > p̃out (see Figure 1). This results in a one-dimensional flow oriented in the
negative x̃ direction. We denote q̃ to be the (positive) fluid flux through the filtercake per
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unit area and allow p̃in to vary with time but hold p̃out constant. We assume that all the
particles are bigger than the pores in the filter.

Version December 20, 2020 submitted to Modelling 5
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Figure 1. Schematic set-up of the model for compressible filtercake.

Following Parker et al. [18] and Köry et al. [23], the permeabilities of the filter k̃ f and of the cake
k̃c are assumed to depend linearly on the strain ∂ũ(x̃, t̃)/∂x̃ , with ũ(x̃, t̃) denoting the displacement
field of the material from its undeformed state, and will vary spatially as well as in time here, due to
cake build-up. Thus we propose

k̃i

(
∂ũi
∂x̃

)
= k̃1,i + k̃2,i

∂ũi
∂x̃

, (5)

where we have introduced a subscript i, which here and henceforth can attain two values, f133

or c, corresponding respectively to the filter domain, x̃ ∈
(

0, L̃ f

)
, and the cake domain, x̃ ∈134

(
L̃ f , L̃ f + L̃c(t̃)

)
. Note that we assume that ∂ũi/∂x̃ is a good approximation to the strain and this135

is because we are assuming deformations are small. We note further that, while in reality the136

permeability may possess a more complex relationship with the deformation, equation (5) is an137

appropriate approximation in the small-deformation regime we are considering.138

With this notation Darcy’s law, for slow viscous flow of a fluid through a porous material, is

q̃i =
k̃i
η̃

∂ p̃i
∂x̃

, (6)

where p̃(x̃, t̃) is the fluid pressure and η̃ the fluid viscosity. We assume the fluid to be incompressible,139

which implies that the flux q̃i is uniform in space (independent of x̃) for both the cake and the filter,140

and the continuity of flux at the filter–cake interface implies that q̃ f (x̃, t̃) = q̃c(x̃, t̃) = q̃(t̃).141

2.1.2. Deformation142

We assume small one-dimensional deformations and that the timescale of poroelastic response is
much smaller than that of caking (similar to Herterich et al. [25]). Linear poroelasticity theory [26] then
informs us that the displacement of the filter and cake ũi(x̃, t̃) can be modelled using a steady-state
Navier equation extended by the Terzaghi term

∂ p̃i
∂x̃

=
(
λ̃i + 2µ̃i

) ∂2ũi
∂x̃2 , (7)

where λ̃i and µ̃i denote the effective elastic constants of the filter and the cake (see Köry et al. [23] for143

details).144

Figure 1. Schematic set-up of the model for compressible filtercake.

Consider the feed solution (the mixture of fluid and particles) with a solid volume
fraction φ assumed to be uniform in space and independent of time approaching the
moving cake front at constant speed ṽ. During (an infinitesimal) time δt̃, the particles
travel a distance ṽδt̃ and will cause a growth in the cake size δL̃c. Since the particles
move in the direction opposite to the cake growth, in this time interval a mass of volume
φÃ(δL̃c + ṽδt̃) has arrived at the cake from the feed where Ã denotes the cross-sectional
area of the cake. Taking into account particle packing in the cake with φc denoting the solid
volume fraction in the cake in its strain-free state, this mass is transformed into a cake size
increase of φc ÃδL̃c. Equating these two quantities, dividing by δt̃Ã and taking the limit as
δt̃→ 0 gives

φ

(
dL̃c

dt̃
+ ṽ
)
= φc

dL̃c

dt̃
, (1)

which may be rearranged to give

dL̃c

dt̃
=

φ

φc − φ
ṽ. (2)

Finally, conservation of the fluid across the moving front requires that ṽ = q̃/(1− φ) which
upon substitution into (2) yields

dL̃c

dt̃
=

φ

(1− φ)(φc − φ)
q̃(t̃). (3)

Note that it is natural to assume that φ < φc, as the particle packing in the feed fluid should
always be less than that in the (strain-free) cake. We assume that once the particles arrive
at the cake surface they become bound to the cake and cannot detach and re-enter the feed
stream. Thus we do not consider the effects of concentration polarisation here. Because
we assume that initially the system is clean so there is no cake we have L̃c(0) = 0 as an
initial condition. We are often interested in the throughput, T̃ , which is defined as the total
volume of fluid processed per unit area of membrane at a given time, t̃,

T̃ (t̃) =
∫ t̃

0
q̃(t̂)dt̂. (4)
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Following Parker et al. [18] and Köry et al. [23], the permeabilities of the filter k̃ f

and of the cake k̃c are assumed to depend linearly on the strain ∂ũ(x̃, t̃)/∂x̃ , with ũ(x̃, t̃)
denoting the displacement field of the material from its undeformed state, and will vary
spatially as well as in time here, due to cake build-up. Thus we propose

k̃i

(
∂ũi
∂x̃

)
= k̃1,i + k̃2,i

∂ũi
∂x̃

, (5)

where we have introduced a subscript i, which here and henceforth can attain two values,
f or c, corresponding respectively to the filter domain, x̃ ∈

(
0, L̃ f

)
, and the cake domain,

x̃ ∈
(

L̃ f , L̃ f + L̃c(t̃)
)

. Note that we assume that ∂ũi/∂x̃ is a good approximation to the
strain and this is because we are assuming deformations are small. We note further
that, while in reality the permeability may possess a more complex relationship with
the deformation, Equation (5) is an appropriate approximation in the small-deformation
regime we are considering.

With this notation Darcy’s law, for slow viscous flow of a fluid through a porous
material, is

q̃i =
k̃i
η̃

∂ p̃i
∂x̃

, (6)

where p̃(x̃, t̃) is the fluid pressure and η̃ the fluid viscosity. We assume the fluid to be
incompressible, which implies that the flux q̃i is uniform in space (independent of x̃) for
both the cake and the filter, and the continuity of flux at the filter–cake interface implies
that q̃ f (x̃, t̃) = q̃c(x̃, t̃) = q̃(t̃).

2.1.2. Deformation

We assume small one-dimensional deformations and that the timescale of poroelastic
response is much smaller than that of caking (similar to Herterich et al. [25]). Linear
poroelasticity theory [26] then informs us that the displacement of the filter and cake ũi(x̃, t̃)
can be modelled using a steady-state Navier equation extended by the Terzaghi term

∂ p̃i
∂x̃

=
(
λ̃i + 2µ̃i

)∂2ũi
∂x̃2 , (7)

where λ̃i and µ̃i denote the effective elastic constants of the filter and the cake (see
Köry et al. [23] for details).

2.1.3. Boundary and Interfacial Conditions

We fix the end of the filter at x̃ = 0 using a porous grid that offers no resistance to the
fluid flow and assume that the open end of the cake at x̃ = L̃ f + L̃c(t̃) is free. Then, the
boundary conditions read

p̃ f (0, t̃) = p̃out, p̃c

(
L̃ f + L̃c(t̃), t̃

)
= p̃in(t̃),

ũ f (0, t̃) = 0,
∂ũc

(
L̃ f + L̃c(t̃), t̃

)

∂x̃
= 0. (8)

The equations governing p̃ and ũ, Darcy’s law (6) and the Navier Equation (7), are,
respectively, first- and second-order in space. Thus, to close the problem we impose
continuity of fluid pressure, displacement and stress:

p̃ f (L̃ f , t̃) = p̃c(L̃ f , t̃), ũ f (L̃ f , t̃) = ũc(L̃ f , t̃),

(λ̃ f + 2µ̃ f )
∂ũ f

∂x̃
(L̃ f , t̃) = (λ̃c + 2µ̃c)

∂ũc

∂x̃
(L̃ f , t̃). (9)
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Altogether, this forms a moving boundary problem, with the moving boundary located
at L̃ f + L̃c(t), with three unknown functions p̃(x̃, t̃), ũ(x̃, t̃) and L̃c(t). This dimensional
model depends on 13 parameters namely: L̃ f , p̃out, φ, φc, k̃1,c, k̃2,c, k̃1, f , k̃2, f , η̃, λ̃ f , µ̃ f , λ̃c, µ̃c,
and one input function, p̃in(t̃). Note that there usually exists a one-to-one correspondence
between the permeability and the solid volume fraction of a (strain-free) porous medium.
This means that φc in our approach is not an independent parameter and, if needed, could
be expressed as function of k̃1,c.

2.2. Nondimensionalisation

Denoting ∆i p := ( p̃in(0)− p̃out)/(λ̃i + 2µ̃i), we nondimensionalise as

x̃ =
(

L̃ f

)
x, ũi =

(
L̃ f ∆c p

)
ui,

L̃c(t̃) =

(
L̃ f

k̃1,c

k̃1, f

)
Lc(t), p̃i = ( p̃in(0)− p̃out)pi + p̃out, (10)

q̃ =

(
k̃1, f

η̃ L̃ f
( p̃in(0)− p̃out)

)
q, t̃ =

(
(1− φ)(φc − φ)η̃k̃1,c L̃2

f

φk̃2
1, f ( p̃in(0)− p̃out)

)
t,

T̃ =

(
(1− φ)(φc − φ)k̃1,c L̃ f

k̃1, f φ

)
T , (11)

for i = f , c. These scalings are chosen to be natural to the model so that the resulting
governing equation for the evolution of the cake thickness possesses the fewest number
of parameters, as we shall observe subsequently (see Equation (30)). We introduce the
following dimensionless quantities

νi =
λ̃i + 2µ̃i

λ̃c + 2µ̃c
, ωi =

k̃1,i

k̃1, f
, Γi = ∆c p

k̃2,i

k̃1, f
, P(t) = p̃in(t̃)− p̃out

p̃in(0)− p̃out
. (12)

We note that νc = ω f = 1, and so, for convenience, we introduce ν f = ν and ωc = ω and
use this from hereon whenever there is no ambiguity.

Using these scalings and notation the dimensionless filter and the cake regions are rep-
resented by x ∈ (0, 1) and x ∈ (1, 1 + ωcLc). The dimensionless cake-evolution equation is

dLc(t)
dt

= q, (13)

Darcy’s law is

q = ki
∂pi
∂x

, (14)

where
ki = ωi + Γi

∂ui
∂x

, (15)

and the deformation of the two porous media is governed by the Navier equation

∂pi
∂x

= νi
∂2ui
∂x2 . (16)
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The boundary conditions (8) become

p f (0, t) = 0 (17a)

pc(1 + ωLc(t), t) = P(t) (17b)

u f (0, t) = 0 (17c)

∂uc(1 + ωLc(t), t)
∂x

= 0. (17d)

Continuity of fluid pressure and displacement at x = 1 become the same conditions for
the dimensionless variables, while the dimensionless form of the third interfacial condition
from (9) is

ν
∂u f

∂x
(1, t) =

∂uc

∂x
(1, t). (18)

For this choice of nondimensionalisation, the definition of throughput (4) indicates that
T = Lc and so the dimensionless throughput and the cake thickness are interchangeable.
The dimensionless model depends only on four model parameters, namely, ν, ω, Γ f and Γc,
and one input function P .

2.3. Model Restrictions

Using the same methodology as in Köry et al. [23], before solving the problem, we
discuss the restrictions on model parameters required so that the small-deformations
assumption is valid and so that shutdown is avoided. It can be shown (see Appendix A)
that provided ∆c p� 1, ∆ f p� 1 and P = O(1) the small-deformations assumption holds
in the filtercake for all times.

The filtercake will shut down if the permeability reaches zero at any point in the
depth and this may occur in the filter or in the cake. We now explore the conditions on
the dimensionless parameters and the pressure-drop evolution that allow us to avoid this
shutdown behaviour.

2.3.1. Avoiding Filter Shutdown

We expect the maximum strain in the filter to occur at the porous grid (x = 0).
From (A2) and the form of the permeability function (15) this permeability will remain
positive provided the applied transmembrane pressure

P(t) < ν

Γ f
. (19)

We note that P(0) = 1 and so we require

Γ f < ν (20)

to avoid initial filter shutdown before any cake has deposited.

2.3.2. Avoiding Cake Shutdown

To avoid shutdown in the cake, the permeability from (15) needs to be positive
everywhere in the cake, which is equivalent to

− ∂uc

∂x
(x, t) <

ω

Γc
. (21)
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Integrating the Navier Equation (16) within the cake and using the boundary condi-
tions (17b,d), we conclude for x ∈ (1, 1 + ωLc)

P(t)− pc(x, t) = −∂uc

∂x
(x, t), (22)

which in combination with (21) yields

P(t) < pc(x, t) +
ω

Γc
, (23)

and this gives us a restriction to avoid shutdown in the cake. Note that the pressure
distribution within the cake is not known a priori and must be determined as part of
the solution.

2.4. Solution

We now analyse the dimensionless problem (13)–(18) to determine the solution. Sub-
stituting the expression for the pressure-gradient term from the Navier Equation (16) into
Darcy’s law (14), integrating with respect to x and using the boundary condition (17d),
we conclude

νΓ f

2

(
∂u f

∂x

)2

+ ν
∂u f

∂x
− q(t)(x− f1(t)) = 0 for x ∈ (0, 1),

Γc

2

(
∂uc

∂x

)2
+ ω

∂uc

∂x
− q(t){x− [1 + ωLc(t)]} = 0 for x ∈ (1, 1 + ωLc(t)),

(24)

where f1(t) is an integration constant. This constant can be determined using the continuity
of stress at the filter–cake interface (18) (details of the calculations used throughout this
section are presented in Appendix B) and we arrive at

f1(t) = 1 +
ν

2Γ f q(t)



1−

[
1−

Γ f ω

Γcν

(
1−

√
1− 2Γcq(t)

ω
Lc(t)

)]2


. (25)

Equation (24) is subsequently solved to give

∂u f

∂x
=− 1

Γ f





1−

√√√√
[

1−
Γ f ω

Γcν

(
1−

√
1− 2Γcq(t)

ω
Lc(t)

)]2

+
2Γ f q(t)

ν

[
x− 1

]




for x ∈ (0, 1),

∂uc

∂x
=− ω

Γc

{
1−

√
1 +

2Γcq(t)
ω2

[
x− (1 + ωLc(t))

]}
for x ∈ (1, 1 + ωLc(t)).

(26)

Substituting the strain field from (26) into Darcy’s law (14), integrating and using
the continuity of pressure across the filter–cake interface as well as appropriate boundary
conditions, we arrive at an equation relating q(t), Lc(t) and P(t):

P =
ν

Γ f





1−

√√√√
[

1−
ωΓ f

νΓc

(
1−

√
1− 2ΓcqLc

ω

)]2

−
2Γ f q

ν





. (27)

We further define

γ f =
Γ f

ν
=

p̃in(0)− p̃out

λ̃ f + 2µ̃ f

k̃2, f

k̃1, f
, γc =

Γc

ω
=

p̃in(0)− p̃out

λ̃c + 2µ̃c

k̃2,c

k̃1,c
, (28)
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and note that these dimensionless parameters are natural extensions for the two porous
media (filter and cake) of the dimensionless sensitivity parameter γ from Köry et al. [23].
These parameters characterise the sensitivity of the permeability of each porous medium to
its deformation. While the precise values of γ will depend on the particular filter material
and the contaminants that are being filtered, we may make some general observations
on the values that may be taken. First, we note that both γ f and γc must be positive.
Second, we require γ f < 1 in order that the filter does not shut down before any cake has
been deposited (see Equation (20)). Third, we would usually expect the cake to be more
deformable than the filter material. This means that we would expect the effective elastic
constants, λ̃ and µ̃, to be smaller for the cake than the filter, and so we would expect that
γc > γ f . Recalling that, at t = 0, we have Lc = 0 and P = 1, (27) provides an expression
for the flux at t = 0 given by

q(0) =
2− Γ f /ν

2
=

2− γ f

2
, (29)

which is consistent with Equation (3.3) from Köry et al. [23]. Upon solving (27) for q, we
substitute back into the cake-evolution Equation (13) to obtain

dLc(t)
dt

=

−
{(

1− γ f /γc

)2
Lc(t)/γc +

[
1 + γ f Lc(t)/γc

]
×
[
γ fP(t)2/2−P(t)− γ f /γ2

c + 1/γc

]}

[
1 + γ f Lc(t)/γc

]2

+

(
1− γ f /γc

)√(
γ fP(t)2 − 2P(t)

)
Lc(t) +

((
1− γ fP(t)

)2
L2

c (t) + 2Lc(t) + 1
)

/γc

γ
1
2
c
[
1 + γ f Lc(t)/γc

]2 . (30)

We have thus arrived at a first-order ordinary differential equation for the cake size
with explicit dependencies on the model parameters. In summary the cake evolution
depends on the input function P , defined in (12), and two groupings of dimensionless pa-
rameters, γ f and γc, defined in (28). Even though it is not straightforward to see the impact
of individual parameters on cake size evolution, Equation (30) will be our starting point
throughout Section 3 where we discuss industrial applications of our modelling framework.
Furthermore, given arbitrary γ f , γc and pressure evolution P(t), one can obtain Lc(t) by
numerically solving (30) (equipped with Lc(0) = 0). The cake-evolution Equation (13) then
gives q(t). The strain field may be inferred from (26), which can subsequently be integrated
to give the displacement field using the boundary condition (17c).

Note that, in terms of the new dimensionless parameters from (28), the condition for
avoiding filter shutdown (19) can be reformulated as

P(t) < 1
γ f

, (31)

and the condition for avoiding cake shutdown (23) as

P(t) < pc(x, t) +
1
γc

, (32)

which needs to hold everywhere inside the cake. As the cake-evolution Equation (30)
cannot be explicitly solved for arbitrary pressure-drop evolution P(t), we do not have an
explicit formula for the pressure distribution in the cake. To obtain a simple cake-shutdown
condition in terms of variables that we keep track of (as opposed to the pressure pc), we
infer from the form of the permeability function (15), the strain field (26) and the definitions
of the dimensionless parameters (28) that

kc(1, t) = ω
√

1− 2γcq(t)Lc(t), (33)
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and it follows that the cake shutdown is reached whenever

q(t) =
1

2γcLc(t)
. (34)

This condition will help us avoid cake shutdown on a case-by-case basis in Section 3, where
we will use this theory to answer industrially motivated questions.

3. Industrial Applications

We now apply the theoretical framework that we have developed so far to indus-
trially relevant problems. Specifically, we study three commonly employed filtration
regimes—constant flux, greedy (where one wishes to achieve maximum total amount of
fluid processed, or throughput, at any given time) and constant pressure drop. In each
case, we aim to find the material properties of the filter (represented by the dimensionless
parameter γ f ) that optimise a given industrial goal for given material properties of the
contaminant to be filtered (represented by the dimensionless parameter γc).

3.1. Adaptive Pressure Drop to Obtain Constant Flux

A common operating regime in industry is to filter fluids at a constant flux. Enforcing
a constant flux q(t) = q0, we find, using (29), that

q0 =
2− γ f

2
. (35)

The solution to the cake-evolution Equation (30) that satisfies the initial condition Lc(0) = 0
is then

Lc(t) = q0t. (36)

It can then be shown (see Appendix C) that the time evolution of the transmembrane
pressure difference across the entire filtercake is given by

P =
1

γ f
−

√
γ2

c + γ f

(
γ2

c (γ f − 2) + 2γ f − γc

(
2 + 1

2 γ f (γ f − 2)2t
)
+ (γc − γ f )

√
4− 2γc(γ f − 2)2t

)

γ f γc
. (37)

We note that in the limit of an incompressible filter, γ f = 0, which gives q0 = 1 in (35),
while (37) reduces to

P = 1 + 1/γc −
√

1/γ2
c − 2t/γc. (38)

We see that the transmembrane pressure difference rises with time, to maintain the
constant flux as a result of the increased resistance offered by the build-up of the cake.
Eventually the pressure will become sufficiently large such that, at a point in either the
filter or the cake, the permeability will reach zero. Beyond this point, no further fluid may
be processed while maintaining constant flux. In practice, filtration is conducted only until
some threshold pressure (<1/γ f ) is reached.

3.1.1. Observations

We now consider the behaviour of the system when it is operated in a constant flux
regime using the model we have developed. For weakly compressible cakes (γc = 0.01,
Figure 2a) the higher the value of γ f the sooner the shutdown occurs. The shutdown is
first reached within the filter for any value of γ f here. For a moderately compressible cake
(γc = 1, Figure 2b), while shutdown is reached in the filter for higher values of γ f , we
now find that shutdown occurs in the cake if γ f is sufficiently low (γ f = 0.2). When the
cake is very compressible (γc = 100, Figure 2c) the shutdown always occurs in the cake.
Furthermore, in this case, while the behaviour for different values of γ f is similar at early
time, at some point the pressure difference for the lowest value of γ f (0.2, black) overtakes
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that of the higher values of γ f (0.4 and 0.6, blue and green curves respectively). This reflects
the fact that the cake resistance is becoming the limiting factor (Figure 2c).

Note that, while in the case of incompressible filtercake, one needs to linearly increase
pressure drop with time to maintain constant flux (cf. bottom-left subfigure of Figure 3
in Ripperger et al. [27]), when compression effects are taken into account, a superlinear
growth of pressure drop is needed.

Inspired by these observations, we now examine whether the shutdown under
constant-flux filtration first occurs in the cake or in the filter.
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Figure 2. Temporal evolution of the transmembrane pressure difference P to maintain a constant flux
for varying values of γ f = 0.2 (black), 0.4 (blue), 0.6 (green) and 0.8 (red), and for (a) γc = 0.01 (b) 1
and (c) 100. The horizontal dashed lines show the critical pressure at which the filter would shut down,
equation (31). The vertical dashed lines show the critical time at which the cake would shut down,
equation (41). We plot the pressure–time curve until one of these lines is reached. If the horizontal
bound is reached first then the filter shuts down; if the vertical bound is reached first then the cake
shuts down. Figure (d) shows whether the shutdown occurs in the filter or in the cake depending on
γ f and γc. Note that γc varies over a much larger range than γ f to capture the appropriate parameter
space within which the transition occurs, which also reflects the fact that we expect the cake to be more
compressible than the filter material in practice.

Figure 2. Temporal evolution of the transmembrane pressure difference P to maintain a constant flux for varying values of γ f = 0.2
(black), 0.4 (blue), 0.6 (green) and 0.8 (red), and for (a) γc = 0.01 (b) 1 and (c) 100. The horizontal dashed lines show the critical pressure
at which the filter would shut down, Equation (31). The vertical dashed lines show the critical time at which the cake would shut
down, Equation (41). We plot the pressure–time curve until one of these lines is reached. If the horizontal bound is reached first then
the filter shuts down; if the vertical bound is reached first then the cake shuts down. (d) shows whether the shutdown occurs in the
filter or in the cake depending on γ f and γc. Note that γc varies over a much larger range than γ f to capture the appropriate parameter
space within which the transition occurs, which also reflects the fact that we expect the cake to be more compressible than the filter
material in practice.

3.1.2. Where and When Does the Shutdown Take Place?

To determine whether the shutdown occurs in the filter or the cake, and the time tmax

at which this occurs, we must first evaluate the strain and this can be determined from the
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strain field (26) using q = q0 from (35) and Lc(t) = q0t. Using the results (35) and (36) as
well as the definitions of dimensionless parameters from (28), this gives

∂u f

∂x
= − 1

Γ f
+

1
Γ f

√√√√√

1− γ f /γc + γ f /γc

√

1−
(2− γ f )2

2
γct




2

+ γ f (2− γ f )(x− 1) for x ∈ (0, 1),

∂uc

∂x
= −1/γc + 1/γc

√√√√1 +
(2− γ f )γc

ω

[
x−

(
1 +

ω(2− γ f )

2
t

)]
for x ∈

(
1, 1 +

ω(2− γ f )

2
t

)
.

(39)

Provided γ f < 1 (which is required to avoid filter shutdown at t = 0, see (20)) the
maximum strain within the filter continues to occur at x = 0 (the porous grid) where it
attains the value

∂u f

∂x
=

√[
1− γ f /γc + γ f /γc

√
1− (2−γ f )2

2 γct
]2
− γ f (2− γ f )− 1

Γ f
.

Within the cake the maximum strain occurs at x = 1 where the value(√
1− (2− γ f )2γct/2− 1

)
/γc is attained. It is easy to see that both the maximum com-

pression within the filter and that within the cake increase with time. We conclude that the
shutdown might either occur in the filter at time tmax

f satisfying


1− γ f /γc + γ f /γc

√

1−
(2− γ f )2

2
γctmax

f




2

= γ f (2− γ f ) (40)

(provided we have not yet reached shutdown in the cake) or in the cake at time tmax
c

satisfying

tmax
c (γ f , γc) =

2
γc(2− γ f )2 , (41)

provided we have not yet reached shutdown in the filter. After some algebraic manip-
ulations of (40) and (41) (see Appendix D) we conclude that the boundary separating
shutdown in the cake and in the filter can be expressed as a critical value for the cake
properties, γcrit

c for given filter properties given by

γcrit
c (γ f ) :=

γ f

1−
√

γ f (2− γ f )
. (42)

We conclude that if γc > γcrit
c , shutdown occurs in the cake, while if γc ≤ γcrit

c ,
shutdown occurs in the filter (see Figure 2d). Inverting (42) provides the critical filter
properties that separate cake or filter shutdown for a given cake properties given by

γcrit
f :=

γc
(
1 + γc −

√
2γc
)

(1 + γ2
c )

. (43)

Finally the analysis in Appendix D gives that the maximum operating time given by

tmax(γ f , γc) =





2
{

γc(γ f − 1)2 + 2(γ f − γc)
[
1−

√
γ f (2− γ f )

]}

γ2
f (2− γ f )2

, if 0 ≤ γc ≤
γ f

1−
√

γ f (2− γ f )
,

2
γc(2− γ f )2 , if γc >

γ f

1−
√

γ f (2− γ f )
.

(44)
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The total throughput, T , is obtained by multiplying this quantity by the flux, given
by (35), so that

T =
(2− γ f )tmax

2
. (45)

3.1.3. Optimisation

We now use the expressions (35), (44) and (45) to determine optimal values for γc and
γ f for the system operating at constant flux. We start by allowing the system to run until it
shuts down and consider how the throughput might be maximised.

Figure 3a shows that, for a given contaminant, characterised by γc, for small γ f we can
increase the time before shutdown by increasing γ f . At the same time the flux decreases
as γ f increases. However this penalty does not outweigh the advantages gained by the
increased operating time, and so the total throughput, given by (45) also increases with
increasing γ f (Figure 3a).

This increase in throughput is due to the more compressible filter acting as a ‘mattress’,
taking up some of the pressure drop and compression that would otherwise be carried
by the cake and preventing the cake from shutting down. However, if we increase γ f
too far then the filter becomes too compressible and shuts down before the cake, leading
to a reduction in total processing time. Figure 3a indicates that for γc = 1 both the total
throughput and the maximum operating time are maximised at γ f ≈ 0.30.

We can further determine expressions for the filter properties that lead to the corre-
sponding maximisations. First, the value of γ f that maximises the operating time can be
obtained by differentiation of (44), equating the resulting expression to zero and solving
for γc. This gives

γmax
c =

γ f

(
γ f

(
γ f

(
2
√
(2− γ f )γ f + 3

)
− 3
√
(2− γ f )γ f − 4

)
+ 4
√
(2− γ f )γ f + 4

)

(1− γ f )2((γ f − 2)γ f + 4)
. (46)

Second, the value of γ f that maximises the total throughput can similarly be shown to
satisfy

γmax,T
c =

2(1− γ f )γ f

(
(γ f − 2)γ f + 2

√
(2− γ f )γ f

)

γ f

(
γ f

(
γ f

(√
(2− γ f )γ f − 4

)
− 4
√
(2− γ f )γ f + 14

)
+
√
(2− γ f )γ f − 12

)
+ 4
√
(2− γ f )γ f

. (47)

In Figure 3b it can be seen that, for a given γc, both the time-maximising and the
throughput-maximising values of γ f are in the filter-shutdown region and very close to the
critical value at which the filter and cake shut down simultaneously. These observations
suggest that choosing a filter compressibility that is close to that for which we would
observe simultaneous filter and cake shutdown would lead to maximum throughput
before shutdown.

From these relationships we confirm that, for given cake properties (characterised
through γc), a filter with properties (characterised by γ f ) that correspond to the threshold
between cake and filter shutdown leads to a system that is very close to that which
maximises both the operating time and the total throughput (Figure 3b). This does indeed
confirm that, given a particular material to filter, choosing the filter properties such that
both the cake and filter shut down at the same time (given by (43)), will lead to a system
that is close to maximising the total operating time and final throughput. This offers a
simple way of identifying an optimal filter selection.
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We can further determine explicit expressions for the filter properties that lead to the
corresponding maximisations. First, the value of γ f that maximises the operating time can be obtained
by differentiation of (44), equating the resulting expression to zero and solving for γc. This gives

γmax
c =

γ f

(
γ f

(
γ f

(
2
√
(2− γ f )γ f + 3

)
− 3
√
(2− γ f )γ f − 4

)
+ 4
√
(2− γ f )γ f + 4

)

(1− γ f )2((γ f − 2)γ f + 4)
. (46)

Second, the value of γ f that maximises the total throughput can similarly be shown to satisfy

γmax,T
c =

2(1− γ f )γ f

(
(γ f − 2)γ f + 2

√
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)
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(
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√
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+
√
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This offers a simple way of identifying an optimal filter selection.245

Figure 3. (a) Flux, q0, given by (35) (cyan); maximum operating time, tmax, given by (44) (green); and the maximum
throughput, T given by (45) (black). Here, γc = 1. (b) The value of γc that: maximises the operating time, γmax

c , given
by (46) (blue); maximises the throughput, γmax,T

c , given by (47) (red); and the critical value that separates cake or filter
shutdown, γcrit

c , given by (42) (black).

3.1.4. Minimising Power Expenditure

Previously we discussed maximising throughput but another desirable industrial
outcome is to minimise the total energy used per unit area of membrane required to
generate a given flux. The total power per unit membrane cross-sectional area expended
on the filtration is the product of the flux q (here q0) and the pressure difference P(γ f , γc, t).
A measure of the total energy, E , used at time t, is the time integral of this:

E(γ f , γc) = q0(γ f )

tmax(γ f ,γc)∫

0

P(γ f , γc, t)dt. (48)

This may be evaluated using (44), (35) and (37), but while the result is analytic, it is
cumbersome so we do not write it here.

Setting γ f = 1 yields filter shutdown at t = 0, resulting in E = 0, which trivially min-
imises the power expenditure. Therefore, we cannot minimise the expended power while
maximising the throughput, and we thus consider trade-offs similar to those described in
Köry et al. [23]. However, for a given γc, we find that varying γ f leads to a multi-valued
energy E when plotted versus the throughput T (see Figure 4). This indicates that, in some
cases, the same final throughput can be achieved for less energy by choosing a more rigid
filter, that is, one with a lower value of γ f .
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3.2. Adjusting the Pressure Drop to Achieve Maximum Throughput at All Times

Let us now consider the operational regime where we want to filter a given amount of
fluid as quickly as possible and we can vary the flux by changing the applied pressure. At
any given instant in time, the transmembrane pressure must be below a critical value to
avoid shutdown of the system. Here, we will derive an expression for the transmembrane
pressure difference P that maximises the flux at any time, noting that avoiding shutdown
of the system requires us to be below the pressure that causes shut down of both the
filter and the cake. We expect that maximising the flux at each time will maximise the
throughput. We will assume that we are constrained initially to avoid shutdown in the
filter and then check if and when shutdown in the cake becomes the limiting constraint.

To begin with, when the cake thickness is small, we will always be limited by the
critical pressure that induces filter shutdown. This is given by P = 1/γ f from (31). Note
from (12) that P(0) = 1, which means that P = 1/γ f here needs to be understood
as an instantaneous switch of the dimensionless pressure drop from 1 to 1/γ f at t =
0. Substituting this into the cake-evolution Equation (30) and simplifying the resulting
expression, the cake evolution equation takes the form

dLc(t)
dt

= q =
(γc − 2γ f )

2

2γ f

(
γ2

c + 2γ2
f (1 + Lc)− γcγ f (2 + Lc) + 2γ1/2

f (γ f − γc)
√

γ f + Lc(2γ f − γc)
) . (49)

Upon rewriting and integrating, we obtain an implicit relation for the cake thickness at a
given time t,

t =
8γ2

f (γ f − γc) + 6(γc − 2γ f )(γ
2
c − 2γ f γc + 2γ2

f )Lc − 3(γc − 2γ f )
2γ f L2

c

3(γc − 2γ f )3/γ f

+
8(γc − γ f )γ

1/2
f

(
γ f + Lc(2γ f − γc)

)3/2

3(γc − 2γ f )3/γ f
,

(50)
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where we have applied Lc(0) = 0. We continue operating with P = 1/γ f unless we
reach shutdown in the cake. Substituting the right-hand side from the cake-evolution
Equation (30) for q into the cake-shutdown condition (34), we find that there are no positive
solutions for Lc when γc ≤ γ f and one positive solution,

L∗c =
γcγ f

(γc − γ f )2 , (51)

for γc > γ f . Substituting (51) into (50) provides the transition time before which the system
is on the brink of shutdown in the filter and after which the cake deformation limits the
pressure drop. We conclude that, if γ f ≥ γc, continuing indefinitely with a transmembrane
pressure of P = 1/γ f will provide the maximum flux. In this case, it follows from (50)
that the cake size will increase unboundedly. This is because we have P ≤ 1/γc here,
and the condition for avoiding cake shutdown (32) is thus always satisfied. If γc > γ f ,
however, the constant transmembrane pressure P = 1/γ f > 1/γc would cause the cake to
grow, the filter–cake interface pressure to decrease, and eventually the cake to shut down
(i.e., condition (32) would cease to be true in finite time). In such a case, we maximise the
flux at any given time by applying a transmembrane pressure P = 1/γ f until the cake
size reaches the value given by (51), following which we enter a second phase where we
decrease the pressure drop P in such a way that the flux is given by (34) to ensure that the
cake does not shut down.

Using the cake-evolution Equation (13) and substituting for q from (34), we conclude
that the cake evolution equation during this second phase reads

dLc

dt
= q =

1
2γcLc

. (52)

Solving this subject to the condition Lc(t∗) = L∗c gives

Lc(t) =

√
L∗2c −

t∗

γc
+

t
γc

. (53)

In order to determine how one should vary P to achieve the maximum flux at any
time for γc > γ f after the critical value of Lc from (51), we equate the right-hand side of
the cake-evolution equation (30) and that of (52) and solve for P to get

P(Lc; γ f , γc) =
1

γ f


1−

√(
1−

γ f

γc

)2
−

γ f

γcLc


, (54)

where we chose the appropriate solution of the quadratic for which P ≤ 1/γ f so that we
do not have shutdown in the filter. Substituting (53) into (54) gives the maximum pressure
that we can apply without the system shutting down for times t > t∗ when the cake
(rather than the filter) deformation begins to constrain the pressure drop. Substituting (53)
into (52) gives the corresponding flux q.

As a special case, note that for an incompressible filter (γ f = 0), we find that, for
all t > 0, P(Lc; 0, γc) = (1 + 2Lc)/(2γcLc) and Lc(t) =

√
t/γc. An incompressible filter

maximises the throughput that can be achieved by any filter up to any positive time. Finally,
note that whenever γc ≥ γ f , as Lc → ∞ (i.e., t→ ∞), we get P → 1/γc. This is consistent
with Equation (32)), which ensures we do not reach shutdown in the cake, because pc(x, t)
must be non-negative. Note further that as t → ∞ under the throughput-maximising
strategy, the cake size increases without bounds so the resistance of the filter becomes
negligible compared to that of the cake, which (provided P = O(1) for all times) results in
pc(x = 1, t)→ 0. This explains why P(t) must converge to 1/γc as t→ ∞.

In Figure 5a,b we show the evolution of P and q as functions of cake size Lc, which
acts as a proxy for time, for different values of γ f and γc. We find that, for any γc, one
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reaches any given value of Lc (and thus filters any given amount of fluid) in the shortest
time by choosing an incompressible filter, γ f = 0.Version December 20, 2020 submitted to Modelling 17
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Figure 5. (a) The maximum flux, q, that can be achieved without the system shutting down, versus cake
thickness, Lc, for γc = 2 and γ f = 0.2 (blue), 0.4 (red), 0.6 (black) and 0.8 (green). The black dotted line
represents the incompressible-filter limit (γ f = 0) and the arrow indicates the direction of increasing
γ f . These curves are generated using equations (49) and (52). (b) The evolution of transmembrane
pressure with cake size that achieves the maximum flux at any time without system shutdown, with
γc = 1/2.

In order to determine how one should vary P to achieve the maximum flux at any time for
γc > γ f after the critical value of Lc from (51), we equate the right-hand side of the cake-evolution
equation (30) and that of (52) and solve for P to get

P(Lc; γ f , γc) =
1

γ f


1−

√(
1−

γ f

γc

)2
−

γ f

γcLc


 (54)

where we chose the appropriate solution of the quadratic for which P ≤ 1/γ f so that we do not280

have shutdown in the filter. Substituting (53) into (54) gives the maximum pressure that we can apply281

without the system shutting down for times t > t∗ when the cake (rather than the filter) deformation282

begins to constrain the pressure drop. Substituting (53) into (52) gives the corresponding flux q.283

As a special case, note that for an incompressible filter (γ f = 0), we find that, for all t >284

0, P(Lc; 0, γc) = (1 + 2Lc)/(2γcLc) and Lc(t) =
√

t/γc. An incompressible filter maximises the285

throughput that can be achieved by any filter up to any positive time. Finally, note that whenever286

γc ≥ γ f , as Lc → ∞ (i.e., t → ∞), we get P → 1/γc. This is consistent with equation (32)), which287

ensures we do not reach shutdown in the cake, because pc(x, t) must be non-negative. Note further288

that as t→ ∞ under the throughput-maximising strategy, the cake size increases without bounds so289

the resistance of the filter becomes negligible compared to that of the cake, which (provided P = O(1)290

for all times) results in pc(x = 1, t)→ 0. This explains why P(t) must converge to 1/γc as t→ ∞.291

In Figures 5a and 5b we show the evolution of P and q as functions of cake size Lc, which acts as a292

proxy for time, for different values of γ f and γc. We find that, for any γc, one reaches any given value293

of Lc (and thus filters any given amount of fluid) in the shortest time by choosing an incompressible294

filter, γ f = 0.295

Figure 5. (a) The maximum flux, q, that can be achieved without the system shutting down, versus cake thickness, Lc, for
γc = 2 and γ f = 0.2 (blue), 0.4 (red), 0.6 (black) and 0.8 (green). The black dotted line represents the incompressible-filter
limit (γ f = 0) and the arrow indicates the direction of increasing γ f . These curves are generated using Equations (49)
and (52). (b) The evolution of transmembrane pressure with cake size that achieves the maximum flux at any time without
system shutdown, with γc = 1/2.

3.3. Behaviour for Fixed Pressure Drop

Finally, we study the operational regime where a constant pressure drop P ≡ 1 is
applied across the filtercake and the flux therefore changes. We have already shown that
for γc ≤ γ f the threshold pressure drop P = 1/γ f can be maintained for all positive times
t, so it follows that any constant pressure drop below this value (including P = 1) can also
be maintained indefinitely. Thus, we solely concentrate on the case where γc > γ f , for
which the threshold pressure drop would result in finite-time cake shutdown.

In a similar manner to the previous section, we can find an implicit relationship for
the dependence of cake size Lc on time t. The expression is, however, rather cumbersome,
and so instead we focus on the cake shutdown. Substituting P(t) ≡ 1 into the right-hand
side of the cake-evolution Equation (30), equating this expression with the cake shutdown
condition for the flux (34) and solving for Lc, we get (assuming γc > γ f ) no finite positive
solutions Lc for γc ≤ 1 and one positive solution

L∗c (γ f , γc) = T =
γc

(γc − 1)
(

γc(2− γ f )− γ f

) (55)

for γc > 1. This implies that for γc ≤ 1 one can maintain such pressure drop indefinitely,
while for γc > 1, the filtration under constant pressure drop ends in finite time. It follows
from (55) that, for any chosen γc > 1, one achieves maximal throughput by designing a
filter with the largest possible γ f so that filter shutdown is avoided, that is, γ f = 1. With
such γ f , the throughput from (55) becomes

L∗c (1, γc) = T =
γc

(γc − 1)2 . (56)
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This observation is confirmed in Figure 6, where we find that, if one wishes to maximise the
total throughput T before shutdown for arbitrary γc > 1, then it is best to choose a filter
with γ f = 1, and the result (56) provides an upper bound on the expected throughput.
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Figure 6. (a) Total throughput as a function of γ f and γc. (b) Total throughput as a function of γ f for γc = 2 (blue), 3 (red) and 4
(green). For all values of γc, maximum throughput is achieved by choosing a filter with γ f = 1.

Finally, note that while the throughput at any time is given by Lc(t; γ f , γc) (provided
we avoid shutdown), the power expended on such filtration process up to time t is given by

E(t; γ f , γc) = P0Lc(t, γ f , γc) = Lc(t, γ f , γc). (57)

This explicitly states the trade-off between the minimisation of power expenditure
and the maximisation of throughput.

4. Discussion

In this paper we considered fouling of filters due to cake formation during dead-
end filtration. We focused on the particular idea that both the cake and the underlying
membrane may deform elastically during a filtration process and thus the interplay between
the two may play an important role during filtration processes. We applied a poroelastic
model introduced in Parker et al. [18] and further studied in Köry et al. [23] to the caking
process. Both the filter and the cake were considered to be compressible porous media,
where their permeabilities were assumed to vary linearly with the local strain, and the flow
and deformations were taken to be one dimensional.

Using analytical methods, we determined the condition for filter shutdown (31) and
derived an equation for the growth of the cake that depended on only the pressure drop and
two dimensionless parameters that measured the mechanical sensitivities of the cake and
filter. This provides a novel cake-filtration law as the flux q(t) through the filtercake is given
explicitly as a function of the pressure drop P . Even though the equation for the growth
of the cake layer cannot be solved for a general pressure drop, we made considerable
analytical progress by considering three industrially relevant operating regimes of constant
flux, maximising flux, and constant pressure-drop filtration.

To maintain a constant flux through the filtercake it is necessary to increase the applied
pressure drop gradually. At some point the pressure drop will be such that either the
filter or the cake will shut down. We found the required evolution of the pressure drop to
maintain a constant flux and subsequently identified the parameter dependence that leads
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to either filter or cake shutdown. We proceeded to study the maximum operating time and
throughput achievable and showed that, for given cake properties, the largest throughput
is achieved with a slightly compressible filter, which acts as a mattress, taking some of the
pressure drop and compression away from the cake. The effective elastic coefficients, λ
and µ, of the optimal filter must be chosen slightly below the coefficients that cause the
filter and the cake to shut down simultaneously. We concluded the constant-flux analysis
by considering a minimisation of the power costs. Here, we noticed that, even though we
can obtain higher throughput by allowing the filter to be compressible, it comes at the cost
of significantly increased power expenditure, so trade-offs between throughput and power
consumption, similar to those studied in Köry et al. [23], should be taken into account.

We then analysed the operational regime where we maximise the flux (and thus
throughput) at every time during the filtration process, regardless of power expenditure.
We derived an implicit relationship for the cake size as a function of filtration time. We
found that, if the compressibility of the filter was at least as large as that of the cake, a
constant pressure drop (just below that which causes filter shutdown) could be maintained
indefinitely without reaching shutdown in the cake. If the filter is more rigid than the
cake, however, the maximum pressure that can be applied without the filtercake shutting
down falls with time and we found an explicit expression for this dependence. For any
cake properties, choosing an incompressible filter was shown to maximise throughput at
all times.

Finally, we studied the operational regime of a constant applied pressure drop. We
found that, for given material properties, there exists a critical pressure below which we
can operate a system indefinitely without the filtercake shutting down. If we wish to
maximise throughput for given cake properties at a pressure drop above this critical value,
it is optimal to choose a filter that is highly compressible so that it is able to take some of
the pressure drop and compression from the cake.

The work in this paper demonstrates how the resistance and deformation of both the
cake and the underlying filter medium can play an important role when thinking about
optimising the process of dead-end filtration with cake build-up. The main objective of this
work was to present a simple model that was able to demonstrate the type of behaviour
that can be exhibited in a system comprising a membrane and cake that both deform
elastically. A key next step in this work would be to generalise the ideas to account more
accurately for the filtration of specific materials. Specifically, this would involve using
nonlinear compressional rheology modelling. In doing so, the system may be described
by an elastic membrane with a plastically deforming cake. It would also be interesting to
account for particle trapping in the interior of the filter medium. In addition it would be of
interest to study the case where the particles that build up to form the cake remain free
so that if the flow is switched off the cake can deplete. In this scenario, one would also
need to model the effects of concentration polarisation. Finally, experiments need to be
conducted to validate or disprove the implications of this theory.
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Appendix A. Sufficient Conditions Ensuring Small Deformations

To ensure small deformations in the filter we note that, due to the boundary
condition (17c), it is sufficient to show that

∆c p
∣∣∣u f (x = 1, t)

∣∣∣� 1. (A1)

Integrating the Navier Equation (16) and using the continuity of stress (18), we obtain
∣∣∣∣
∂u f

∂x
(x = 0, t)

∣∣∣∣ =
P
ν

(A2)

and this value represents the largest compression within the filter. Using the boundary
condition (17c) we then get

∣∣∣u f (x = 1, t)
∣∣∣ =

∣∣∣∣∣∣

1∫

0

∂u f (x, t)
∂x

dx

∣∣∣∣∣∣
≤ P

ν
(A3)

and (A1) is thus satisfied provided

∆c p
P
ν

= P∆ f p� 1. (A4)

Small deformations in the filter can then be enforced provided ∆ f p� 1 and P = O(1) for
all times t.

To ensure small deformations in the cake, we need to make sure that

∆c p|uc(x = 1 + ωLc, t)− uc(x = 1, t)|
ωLc(t)

� 1. (A5)

Integrating the Navier Equation (16) across the cake and using the boundary condition
(17d), we get ∣∣∣∣

∂uc(x = 1, t)
∂x

∣∣∣∣ = P − pc(x = 1, t) < P (A6)

and using this as an upper bound for compression within the cake, we conclude

|uc(x = 1 + ωLc(t), t)− uc(x = 1, t)| =

∣∣∣∣∣∣∣

1+ωLc(t)∫

1

∂uc

∂x
dx

∣∣∣∣∣∣∣
< PωLc(t). (A7)

Therefore, the condition (A5) is satisfied, if we have

P∆c p� 1. (A8)

We conclude that the assumption ∆c p� 1 (with P = O(1)) ensures small deformations in
the cake for all times.

Appendix B. Details of the Solution Process

The solution of (24) reads

∂u f

∂x
= − 1

Γ f



1−

√

1 +
2Γ f q(t)

ν
[x− f1(t)]



, for x ∈ (0, 1) (A9)

∂uc

∂x
= − ω

Γc

{
1−

√
1 +

2Γcq(t)
ω2 [x− (1 + ωLc(t))]

}
, for x ∈ (1, 1 + ωLc(t)), (A10)
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where the sign in (A10) has been chosen to satisfy the boundary condition (17d), and the
sign in (A9) has been chosen so that we restrict our attention to the (physically relevant)
region ∂u f /∂x ≥ −1/Γ f in x ∈ (0, 1), which follows from requiring that the filter perme-
ability is non-negative everywhere (otherwise we have shutdown and our model is no
longer valid). Applying the continuity of stress at x = 1 (18), we conclude (25) must hold
and this then yields the strain field (26). Substituting (26) back into Darcy’s law (14) yields

∂p f

∂x
=

q√√√√
[

1−
Γ f ω

Γcν

(
1−

√
1− 2Γcq(t)

ω
Lc(t)

)]2

+
2Γ f q

ν

[
x− 1

]
, for x ∈ (0, 1)

∂pc

∂x
=

q

ω

√
1 +

2Γcq(t)
ω2

[
x− (1 + ωLc(t))

] , for x ∈ (1, 1 + ωLc(t)).

Integrating the pressure over the two respective regions, using its continuity across x = 1
as well as boundary conditions (17a,b), we find (27) is valid. It then follows (using the
dimensionless parameters from (28)) that

√[
1− γ f /γc + γ f /γc

√
1− 2γcqLc

]2

− 2γ f q = 1−Pγ f . (A11)

Squaring both sides of (A11), denoting G(t) = 1−Pγ f , and manipulating gives

[
2γ f + 2γ2

f /γcLc

]
q +

[
G2 −

(
γ f /γc

)2
− (1− γ f /γc)

2
]
= 2γ f /γc(1− γ f /γc)

√
1− 2γcqLc. (A12)

Once again, we square both sides of (A12) and using elementary algebra, we conclude

0 =
{[

2γ f + 2γ2
f /γcLc

]2}
q2 +

{
8γ2

f /γc(1− γ f /γc)2Lc + 2[2γ f + 2γ2
f /γcLc]× [G2 −

(
γ f /γc

)2
− (1− γ f /γc)2]

}
q +

{
[G2 −

(
γ f /γc

)2
− (1− γ f /γc)2]2 − 4

(
γ f /γc

)2
(1− γ f /γc)2

}
,

which is quadratic in q. Upon algebraic simplification of the discriminant, the solutions
read

q =
−
{

4γ2
f /γc(1− γ f /γc)2Lc + [2γ f + 2γ2

f /γcLc]× [G2 −
(

γ f /γc

)2
− (1− γ f /γc)2]

}
±

[
2γ f + 2γ2

f /γcLc
]2

4γ
3
2
f /γ

1
2
c

∣∣∣1− γ f /γc

∣∣∣
√
(G2 − 1)Lc + γ f /γc(G2L2

c + 2Lc + 1)
[
2γ f + 2γ2

f /γcLc
]2 . (A13)

To determine which sign gives the relevant solution, we evaluate q at t = 0 (where Lc = 0
and P = 1) to get

q(0) =
−2γ f

(
−2γ f + γ2

f − 2
(

γ f /γc

)2
+ 2γ f /γc

)
± 4γ2

f /γc

∣∣∣1− γ f /γc

∣∣∣

4γ2
f

=

2− γ f

2
+ 1/γc

(
γ f /γc − 1±

∣∣∣1− γ f /γc

∣∣∣
)

.

Recalling the initial flux value from (29) as well as the definition of γ f from (28), we
conclude that if γ f /γc < 1, we have to choose the positive sign, and if γ f /γc ≥ 1, we have
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to choose the negative sign in (A1). The time evolution of the (undeformed) cake size is
then determined by substituting back into the cake-evolution Equation (13) and we get

dLc(t)
dt

=
−
{

4γ2
f /γc(1− γ f /γc)2Lc + [2γ f + 2γ2

f /γcLc]× [G2 −
(

γ f /γc

)2
− (1− γ f /γc)2]

}
+

[
2γ f + 2γ2

f /γcLc
]2

4γ
3
2
f /γ

1
2
c

(
1− γ f /γc

)√
(G2 − 1)Lc + γ f /γc(G2L2

c + 2Lc + 1)
[
2γ f + 2γ2

f /γcLc
]2 .

Dividing both numerator and denominator by 4γ2
f and recalling the definition of G, we

conclude (30) is valid.

Appendix C. Pressure Drop Needed to Maintain Constant Flux

We start by noting that the right-hand side of the cake-evolution Equation (30) equals
the flux q (which we assume to be independent of time here), then we denote

H =
P
(

γ fP − 2
)

2
(A14)

and multiplying by the denominator, we get

q0(1 + γ f /γcq0t)2 = −1/γc(1− γ f /γc)2q0t− (1 + γ f /γcq0t)(H − γ f /γ2
c + 1/γc)

+1/γ
1
2
c (1− γ f /γc)

√
2Hq0t + 1/γc((1 + 2γ f H)(q0)2t2 + 2q0t + 1), (A15)

which gives

q0(1 + γ f /γcq0t)2 + 1/γc(1− γ f /γc)2q0t + (1 + γ f /γcq0t)(1/γc − γ f /γ2
c ) + (A16)

(1 + γ f /γcq0t)H = 1/γ
1
2
c (1− γ f /γc)

√
2Hq0t + 1/γc((1 + 2γ f H)(q0)2t2 + 2q0t + 1).

Squaring (A16), and introducing the notation

F1(γ f , γc, t) = q0(1 + γ f /γcq0t)2 + 1/γc(1− γ f /γc)2q0t + (1 + γ f /γcq0t)(1/γc − γ f /γ2
c )

F2(γ f , γc, t) = 1 + γ f /γcq0t

F3(γ f , γc, t) = 1/γc(1− γ f /γc)2
(

2q0t + 2γ f /γc(q0)
2t2
)

F4(γ f , γc, t) = 1/γ2
c (1− γ f /γc)2(q0t + 1)2,

and get
F2

2 H2 + (2F1F2 − F3)H + (F2
1 − F4) = 0,

which is a quadratic equation in H. The solution to this equation reads

H =
F3 − 2F1F2 + sign(1− γ f /γc)

√
(2F1F2 − F3)2 + 4F2

2 (F4 − F2
1 )

2F2
2

=: F5(γ f , γc, t), (A17)

where the sign has been chosen in order to satisfy H(t = 0) = (γ f − 2)/2 = −q0. Rewriting
H from (A14) as

H =
1

2γ f

{(
Pγ f − 1

)2
− 1
}

, (A18)

we then get
2γ f F5(γ f , γc, t) + 1 = (Pγ f − 1)2, (A19)
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which in turn yields

P =
1

γ f

(
1−

√
1 + 2γ f F5(γ f , γc, t)

)
, (A20)

and simplifying this we arrive at (37).

Appendix D. Constant-Flux Filtration: Comparing the Times of Cake and Filter
Shutdown

Using algebraic manipulation, the filter-shutdown condition (40) becomes

2(1− γ f /γc)γ f /γc

√
1− (2−γ f )2

2 γct =

γ f (2− γ f )− (1− γ f /γc)2 −
(

γ f /γc

)2
+

γ2
f /γc(2−γ f )

2

2 t, (A21)

which upon squaring and further algebra gives

γ4
f (2− γ f )

4

4γ2
c

t2 + γ2
f /γc(2− γ f )

2(−γ2
f + 2γ f + 1− 2γ f /γc)t

+(γ f − 1)2(4γ f /γc(γ f /γc − 1) + (γ f − 1)2) = 0. (A22)

Solving this as a quadratic equation in t yields

t± =

(
γc(γ f − 1)2 + 2(γ f − γc)

)
± 2 | γc − γ f |

√
γ f (2− γ f )

γ2
f (2− γ f )2/2

, (A23)

where we still need to determine the sign because by squaring (A21), we might have
obtained new roots. We now check whether the signs of the right- and left-hand sides
of (A21) agree. Note, once the sign is resolved, the shutdown time is then given by the
minimum of non-negative values from (A23) and we conclude by comparing this minimum
with the cake shutdown time from (41).

As the square root on the left-hand side of (A21) is multiplied by (1− γ f /γc), we now
split the analysis into two cases: γ f /γc ≥ 1 and γ f /γc < 1.

Case 1. γ f /γc ≥ 1

Here, the RHS of (A21) needs to be non-positive at the time of filter shutdown, that is,

γ f (2− γ f )− (1− γ f /γc)2 −
(

γ f /γc

)2
+ (A24)

(γ f − 1)2 + 2(γ f /γc − 1)± 2(γ f /γc − 1)
√

γ f (2− γ f ) ≤ 0,

which is equivalent to

− 2(1− γ f /γc)
2 ± 2(γ f /γc − 1)

√
γ f (2− γ f ) ≤ 0. (A25)

We see that t− from (A23) satisfies (A21) and is non-negative. Therefore, as t− ≤ t+,
the shutdown in filter will occur at t = t−, provided shutdown has not occurred in the cake
before that, that is, provided tmax

c from (41) is greater than t− from (A23). One trivially has

γ f (γ f − 2) < 0 ≤ (γ f /γc − 1)2 + 2(γ f /γc − 1)
√

γ f (2− γ f ), (A26)

from which it follows that
(

γ f /γc

)2
> (1− γ f )

2 + 2(γ f /γc − 1)− 2(γ f /γc − 1)
√

γ f (2− γ f ). (A27)
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This implies that when γ f ≥ γc, the value of t− is always smaller than tmax
c and shutdown

will happen in the filter at t− from (A23).

Case 2. 0 < γ f /γc < 1

For any solution of (A23) to also solve (A21), we need the RHS of (A21) to be non-
negative, that is,

γ f (2− γ f )− (1− γ f /γc)2 − (γ f /γc)2 + (γ f − 1)2 +

2(γ f /γc − 1)± 2(1− γ f /γc)
√

γ f (2− γ f ) ≥ 0, (A28)

which is true if and only if

− 2(1− γ f /γc)
2 ± 2(1− γ f /γc)

√
γ f (2− γ f ) ≥ 0. (A29)

Thus we see that the only available solution is the one with a positive sign, and for
inequality (A29) to hold, we then need

1− γ f /γc ≤
√

γ f (2− γ f ), (A30)

which under our constraint γ f /γc < 1 leads to

(
γ f /γc

)2
− 2γ f /γc + (γ f − 1)2 ≤ 0. (A31)

Viewing this as a quadratic inequality in 1/γc we conclude that, under our constraint
γ f /γc < 1, the inequality (A29) with t+ from (A23) holds if

1−
√

2γ f − γ2
f ≤ γ f /γc. (A32)

This implies that, for 0 < γ f /γc < 1−
√

2γ f − γ2
f , the filtration process ends with a

cake shutdown at the maximum operating time from (41). t+ from (A23) can be shown to
be non-negative if and only if

γ f /γc >
1−

√
2γ f − γ2

f

2
, (A33)

from which it immediately follows that for every γ f and γc satisfying (A32), the value of
t+ is indeed non-negative. For such γ f and γc, it then remains to compare tmax

c with t+.
Clearly, (

γ f /γc +
(√

γ f (2− γ f )− 1
))2
≥ 0, (A34)

and expanding this we get

(
γ f /γc

)2
≥ (1− γ f )

2 + 2(γ f /γc − 1) + 2(1− γ f /γc)
√

γ f (2− γ f ) (A35)

and it therefore follows that t+ < tmax
c .
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