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Membrane fouling during particle filtration occurs
through a variety of mechanisms, including internal
pore clogging by contaminants, coverage of pore
entrances and deposition on the membrane surface.
In this paper, we present an efficient method for
modelling the behaviour of a filter, which accounts
for different retention mechanisms, particle sizes and
membrane geometries. The membrane is assumed to
be composed of a series of, possibly interconnected,
pores. The central feature is a conductivity function,
which describes the blockage of each individual
pore as particles arrive, which is coupled with a
mechanism to account for the stochastic nature of
the arrival times of particles at the pore. The result
is a system of ordinary differential equations based
on the pore-level interactions. We demonstrate how
our model can accurately describe a wide range
of filtration scenarios. Specifically, we consider a
case where blocking via multiple mechanisms can
occur simultaneously, which have previously required
the study through individual models; the filtration
of a combination of small and large particles by
a track-etched membrane and particle separation
using interconnected pore networks. The model
is significantly faster than comparable stochastic
simulations for small networks, enabling its use as a
tool for efficient future simulations.

1. Introduction
Membrane-based processes are the method of choice for
clarification, concentration, purification and separation
tasks in industrial applications ranging from water
desalination [1] to protein purification [2]. One of
the key problems in any membrane-based process is
fouling, which describes the blocking of pores by
deposition of particles within or on the membrane.
Fouling decreases the permeability of the membrane,
thereby decreasing the efficiency of the process, with the
membrane eventually needing to be cleaned or replaced.

2017 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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Mathematical modelling plays an important role in membrane science, for example, in the
area of understanding fouling, because the typical lengthscales range from a few to several
hundred nanometres and hence direct observation of the filtration process becomes impractical.
The retention and blocking mechanisms underlying fouling, therefore, have to be inferred
indirectly from empirical quantities, such as the applied pressure difference or permeate flux,
using mathematical models.

The standard model for membrane fouling describes the membrane as a plate of uniform depth
with cylindrical holes and the particles as spheres of uniform size. It allows for four different
blocking mechanisms, where the particles can (i) constrict the pores internally, (ii) seal the pores
completely, (iii) seal the pores only partially or (iv) form an additional resistive layer, the filtercake;
these mechanisms are termed standard, complete, intermediate blocking or cake filtration, respectively,
and were developed by Hermans & Bredee [3] and Hermia [4].

While the four different blocking mechanisms have been derived by making rather simplistic
assumptions about the pore geometry and the retention mechanisms, they are often sufficient
to describe an entire filtration experiment. For example, Gironès et al. [5] modelled bovine serum
albumin (BSA) filtration on silicon nitride microsieves using the complete-blocking law. De Lara &
Benavente [6] observed cake filtration during BSA filtration with a polymeric membrane and
standard blocking on a ceramic membrane, which is validated by scanning electron microscopy
micrographs. Li et al. [7] reported best fits of cake filtration to the ultrafiltration of sodium alginate
(SA) and intermediate blocking when subjecting SA to microfiltration. Finally, Bowen & Gan [8]
found best fits of standard blocking to BSA separation, which is a common observation on the
filtration of very dilute suspensions [9].

A single blocking mechanism is, however, rarely sufficient to model measurements such as the
volume flux during a filtration experiment where the pressure difference across the membrane
is kept constant. Iritani et al. [10] reported that a single blocking filtration law was insufficient to
describe their experimental measurements for BSA filtration. Ho & Zydney [11] used a concurrent
model of complete blocking and cake filtration to model protein fouling in direct stirred cell
filtration, while Mondal & De [12] used a consecutive model for cross-flow filtration. Duclos-
Orsello et al. [13] combined standard and intermediate blocking, as well as cake filtration, to obtain
good fits to protein microfiltration.

Even the combination of the four blocking mechanisms, be it concurrent or consecutive, can
at times be insufficient to model experimental observations appropriately. Ho & Zydney [14]
combined intermediate blocking with a two-resistor model to explain different experimental
results for straight-through versus interconnected membranes in protein microfiltration based
on the membrane morphology. Bolton et al. [15] considered the special geometry of fibrous
membranes to obtain better predictions for glass fibre filters.

The last two examples underline the need to allow for more complex geometries and pore–
particle interactions in mathematical models for membrane fouling. In this regard, Dalwadi et al.
[16] employed homogenization techniques to better understand the effect of porosity gradients
in depth-filters, while Rahimi et al. [17] used full-scale finite-element simulations to model
membrane filtration in more detail. A stochastic simulation approach was proposed by Griffiths
et al. [18], who considered a three-step blocking process in a constant-pressure filtration setting.
Here, in each pore, uniformly sized particles first constrict the pore by adhesion on the pore wall,
then, once the radius of the pore has been sufficiently decreased, partially cover the pore and then
finally stack up to form a filtercake above the pore. This blocking process is assumed to be the
same for all pores, and so the flux through a given pore only depends on the number of particles
it has retained. To compute the flux decline for the entire membrane they ran multiple stochastic
simulations, where the probability of a pore receiving a particle in a given iteration step depended
on the flux through it, the flux through the entire membrane was then obtained by summing over
the fluxes of the single pores.

Stochastic models have been used to model particle transport and retention in porous media
[19–21] and to provide an alternative approach to explain and model filtration. For example,
Hsu & Fan [22] considered the number of blocked pores as a random variable and use the
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Carman–Kozeny equations to compute the corresponding pressure build-up in a deep porous
medium. An alternative derivation of the complete-blocking model was proposed, which fits their
experimental observations for filtering coal particles with a deep bed of sand. Iritani et al. [23] used
a stochastic model to compute the expected number of retained particles in a filtration experiment.
By considering the four blocking mechanisms used for standard, complete and partial blocking,
and cake filtration, they obtain alternative derivations of the four blocking laws. Tarafdar et al. [24]
modelled the filtration process as a transition between different states of the entire membrane,
with each state corresponding to a certain flux through the membrane. In order to model depth
filters, which primarily work by retaining particles within the membrane structure and not on
the surface, Nassar et al. [25] subdivided depth filters in their model into several compartments
to compute the spatial distribution of particles. For standard blocking of a deep porous medium
by particles with a given, potentially continuous, size distribution, Shapiro et al. [26] derived a
population balance model, which was then averaged to obtain a system of differential equations
describing the reduction in permeability due to particle retention.

This paper builds on several of these ideas by introducing a generalization of the work of
Griffiths et al. [18] to provide a tool to model membrane filtration for more complex particle–pore
interactions. We focus on direct-flow filtration, where the particle-laden fluid flows orthogonally
through the membrane. The fluid is pushed through the membrane by a constant applied pressure
difference, and is commonly referred to as constant-pressure filtration. At the model’s core lies the
assumption that the blocking process is the same for each pore. With this assumption, it follows
that the conductivity of a pore, relating the applied pressure to the flux through the pore, only
depends on the number of retained particles and, when there are different particle types involved,
their order of arrival. We model the filtration as a stochastic process and consider the number of
retained particles and their order for a given pore as our random variable. Taking an ensemble
average over a large set of pores then allows us to derive a system of ODEs to compute the
time-dependent probability distribution for our random variable.

Note that the number and order of arrival of the retained particles for a given pore effectively
represents the state of a pore. Considering the state of a pore instead of the state of the entire
membrane, however, has the advantage that we can determine the conductivity of a pore for
a given state using analytical, numerical or experimental techniques. Moreover, it allows for
insights into the randomness of the filtration as the distribution of the number of particles retained
by the pores can be tracked during a simulation. The expected flux through the membrane can be
obtained directly from the time-dependent probability distribution of the random variable and
the state-dependent conductivity. Thus, this approach allows us to compute the decline in flux
across the membrane for any set of particle–pore interactions where a relationship between the
number of retained particles by a pore, including their order of arrival in case of different particle
sizes, and the conductivity of the pore can be established.

Following the work of Griffiths et al. [27] on using stochastic simulations for interconnected
membranes, we also show that this approach can be generalized to interconnected pore
geometries. Instead of a compartmentalization as proposed by Nasser et al. [25], we represent
the underlying membrane structure by a network of connected pores, extend the idea of
retention-dependent conductivity to the links in the network and consider the change in pressure
distribution through the network due to particle retention.

This paper is divided into three sections. In §2, we introduce our approach on the basis of
monodispersed particles, which is extended to multi-particle models in §3. Finally, in §4, we
discuss how to adapt our model to membranes with an interconnected pore structure.

2. Stochastic modelling of direct-flow filtration of monodispersed particles

(a) A basic model of membrane filtration
We begin by considering the simplest membrane, comprising a solid material containing a
number, N, of circular and non-interconnected holes called pores that run from one side of the
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Figure 1. (a) Schematic diagram of a portion of the membrane set-up considered. (b) Flux (Q) versus throughput (V)
graph for the stochastic simulation and ODE model (2.5) for the conductivity function (2.7), contrasted with the results for
interpolated conductivity function. The stochastic simulation and our ODE model show excellent agreement, while the stark
difference between the expected flux and the interpolated conductivity function underlines the difference between pore-level
and membrane-level behaviours. (Online version in colour.)

membrane to the other. This type of structure describes, for example, track-etched membranes
[28], where the pores are usually cylindrical or cone-shaped; a schematic is shown in figure 1a.

The particles in the fluid are assumed to be uniform in shape and size. Furthermore, we
assume that the concentration c of the particles in the fluid is constant and that the particles do
not interact. As the fluid passes through the pores of the membrane the particles are potentially
retained with retention probability PR. The underlying mechanisms behind the retention are usually
complex: they can be of physical or chemical nature, depend on properties of the particles and
the membrane, and may change over the course of the filtration process.

We assume that the pores retain the particles in an identical way, that is, two pores having
retained the same number of particles are assumed to be indistinguishable. Therefore, both the
retention probability and the flux f through a given pore only depend on the number n of particles
the pore has retained and the applied pressure difference �p across the membrane, that is, PR =
PR(n, �p) and f = f (n, �p) = κ̃(n)�p, where κ̃(n) denotes the conductivity of a pore with n retained
particles. The last equality follows from the linearity of the Stokes equations, which describe
the low-Reynolds-number flow encountered in membrane filtration of liquids. The conductivity
function κ̃ will be a central concept in this work. This depends on several parameters, such as
the geometry of the pores and the material properties of the membrane, and must be determined
by analytical, computational or experimental considerations. The conductivity function is usually
a decreasing function of n.

In typical constant-pressure filtration experiments, the flux Q̃ through the membrane is
measured against the throughput Ṽ, the time-integral of the flux. For unit retention probability, we
might anticipate that the flux through the entire membrane after processing a volume Ṽ of fluid
is simply the sum of the average flux through an individual pore after that time, i.e. Nκ̃(cṼ/N)�p,
using linear interpolation whenever cṼ/N takes a non-integer value. However, the measured flux
Q̃(Ṽ) typically differs significantly from this expression. Hence the average behaviour of the flow
through the pores, as seen in the flux, is not the behaviour of a pore with the average number of
particles. The conductivity function κ̃ only describes the impact of particle retention on the flux
through a single pore, whereas Q̃(Ṽ) combines this impact with the stochastic behaviour of the
system composed of several pores. In the next section, we will therefore describe how to obtain
the flux (Q̃) versus throughput (Ṽ) relationship from the conductivity function by accounting for
the stochastic nature of the filtration process.
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(b) Derivation of evolution equations
From the assumptions of uniform concentration c of the particles in the fluid and no particle–
particle interaction, it follows that the number of particles in a given volume �Ṽ of fluid
is Poisson distributed with parameter c�Ṽ. Hence, membrane filtration is fundamentally a
stochastic process and the measured flux Q̃ against throughput Ṽ constitutes an outcome of this
stochastic process.

As the pressure difference �p across the membrane is uniform and the pores are non-
interconnected, the flux through a given pore only depends on the number of retained particles
and not on the flux through the other pores. Hence, the stochastic processes describing the
filtration for the individual pores are independent of each other. Typical membranes have a
large number of pores, and so the flux measurements will be close to the expected outcome of
the stochastic process of the individual pores. This justifies framing filtration as a deterministic
process and our goal is to determine the expected flux Q̃e as a function of time, from which we
can derive the relationship as a function of volume.

For a given pore i ∈ {1, . . . , N}, we introduce the time-dependent random variable Xi(t̃),
counting the number n ∈ N0 of particles retained by the pore at time t̃ ≥ 0. We denote the
probability of the pore having n particles at time t̃ by PX(n, t̃) := P(X(t̃) = n). The measured flux
Q̃m and the expected flux Q̃e are then given by

Q̃m(t̃) =
N∑

i=1

κ̃(Xi(t̃))�p

and Q̃e(t̃) =
N∑

i=1

∞∑
n=0

κ̃(n)PXi (n, t̃)�p = N
∞∑

n=0

κ̃(n)PX(n, t̃)�p.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.1)

To obtain the expected flux Q̃e we need to obtain the evolution equation for PX. We consider
the change in PX over a short time-period �t̃, chosen to be small enough such that the probability
of more than one particle arriving during this time is small. A pore will contain n particles at time
t̃ + �t̃ if it contains n particles at time t̃ and either does not receive a particle during the interval
�t̃ or does not retain the particle it receives. This happens with probability

P = PX(n, t̃)[Poi(0, �t̃cκ̃(n)�p) + (1 − PR(n)) Poi(1, �t̃cκ̃(n)�p) + O(�t̃2)]

= PX(n, t̃)[1 − PR(n)�tcκ̃(n)�p exp(−�t̃cκ̃(n)�p) + O(�t̃2)], (2.2)

where we used the shorthand PR(n) = PR(n, �p) as the pressure difference is constant, Poi(n, λ)
denotes the probability P(Y = n) where Y is Poisson distributed with parameter λ, and the O(�t2)
correction accounts for the probability of retaining more than one particle in this time interval.
A pore can also contain n ≥ 1 particles at time t̃ + �t̃ by containing n − 1 particles at time t̃ and
retaining one particle during the time interval �t̃. This happens with probability

P = PX(n − 1, t̃)PR(n) Poi(1, �t̃cκ̃(n − 1)�p) + O(�t̃2)

= PX(n − 1, t̃)[PR(n)�t̃cκ̃(n − 1)�p exp(−�t̃cκ̃(n − 1)�p)] + O(�t̃2), (2.3)

where the O(�t̃2) correction accounts for the probability of retaining more than one particle
during the time interval and having contained correspondingly fewer particles at time t̃.

Combining equations (2.2) and (2.3), letting �t̃ → 0, scaling t̃ = (c/(κ̃(0)�p))t, so that on average
initially one particle is expected to arrive in each pore per unit time step, Q̃ = Q̃(0)Q, Ṽ =
(Q̃(0)c/Nκ̃(0)�p)V and κ̃(n) = κ̃(0)κ(n), we obtain the dimensionless governing equations for the
probability PX as

dPX(n, t)
dt

= −PR(n)κ(n)PX(n, t) + PR(n − 1)κ(n − 1)PX(n − 1, t), n ≥ 1

and
dPX(0, t)

dt
= −PR(0)PX(0, t),

⎫⎪⎪⎬
⎪⎪⎭ (2.4)
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with initial conditions PX(0, 0) = 1 and PX(n, 0) = 0 ∀n ≥ 1. Note that mass is conserved by
summing the equations for PX(·, t) over all n.

As the flux is usually plotted against the throughput V, it is useful to rewrite (2.4) in terms of
the expected throughput Ve by using dVe/dt = Qe, which gives

dPX(n, Ve)
dVe

= 1
Qe(Ve)

[−PR(n)κ(n)PX(n, Ve)

+ PR(n − 1)κ(n − 1)PX(n − 1, Ve)], n ≥ 1

and
dPX(0, Ve)

dVe
= − 1

Qe(Ve)
PR(0)PX(0, Ve),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.5)

with the same initial conditions PX(0, 0) = 1 and PX(n, 0) = 0 ∀n ≥ 1 as for (2.4).
It is possible to obtain a closed-form solution for PX for any κ . In the simplest case where PRκ =

1 for all n ≥ 0, we find that PX(n, t) = tn/(n!) exp(−t), the moments of the Poisson distribution with
parameter 1, and that the flux Qe is constant. In the case of a unit retention probability PR ≡ 1 and
a strictly decreasing conductivity function κ , that is 1 = κ(0) > κ(1) > · · · , which is expected to be
the case in a filtration experiment, we obtain

Qe(t) =
∞∑

n=0

κ(n)PX(n, t) =
∞∑

n=0

κ(n)

⎡
⎣ n∑

k=0

⎛
⎝ n∏

i=0,i�=k

1
κ(i) − κ(k)

⎞
⎠ exp(−κ(k)t)

⎤
⎦ . (2.6)

Other cases for the retention probability and conductivity function can be computed in a similar
fashion using integrating factors.

It is important to note that, although we can compute an exact solution for an arbitrary
retention probability PR and conductivity function κ , the closed form is not particularly useful
as the evaluation of the product in (2.6) is numerically unstable. Therefore, the numerical solution
to (2.4) is the preferred method.

For simplicity, we have restricted ourselves in the derivation of equation (2.4) to a single-
particle system with a one-dimensional state space, namely the number of retained particles by a
pore. However, we can model more complex configurations that might occur within a pore, such
as bridging, by introducing a multi-dimensional state space, where different states can correspond
to different aggregations of the same number of particles within a pore or by subdividing the
pore into several sections. The necessary techniques and generalizations for this are developed
in §§3 and 4.

(c) Comparison with a three-stage fouling model
Modelling filtration as a stochastic process is especially useful if there are different mechanical
stages in the fouling of a pore. We compare our methods with the work of Griffiths et al. [18], who
evaluate a three-stage fouling process using stochastic simulations on a fixed number of identical
pores.

The three stages arise as the cylindrical pores have a larger radius than the spherical particles,
allowing for the particles to enter the pores. Once a particle has entered a pore, it either adheres
to the pore wall with retention probability PR or passes through. The analysis we present holds
for pore-radius- or time-dependent probabilities but here we shall assume that PR is constant.
It is assumed that the reduction in radius due to particle adhesion is uniform within the pore,

so that a pore with initial radius R0 containing n particles has radius Rn =
√

R2
0 − n4a3/3h, where

a denotes the radius of the particles and h the depth of the pore; this is known as standard blocking.
The new, reduced flux Q̃n through the pore can then be computed by using Poiseuille’s Law as
Q̃n = �pR4

n/8μh, where μ denotes the fluid viscosity.
As each retained particle decreases the radius of the pore, the maximum number of admissible

particles per pore is given by n� = 	3(1 − a2)h/4a3
. Once the pore has a smaller radius than the
particles due to this constriction, it enters the second stage, where the next particle that arrives
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at the pore will cover it, allowing for a fixed residual flux Q̃res = κ̃res�p. After the pore has been
covered, subsequent particles reaching the pore will stack on top of each other in the third stage,
forming a filtercake. The filtercake imposes an additional resistance that is proportional to its
height.

Combining these three stages, we can infer the dimensionless conductivity function κ = κ̃/κ̃(0)
for the pore as

(first stage: constriction) κ(n) =
(

1 − n
4a3

3 hR2
0

)4

, n ≤ n�

(second stage: covering) κ(n) = κres, n = n� + 1

and (third stage: caking) κ(n) = ((κres)−1 + r(n − n�))−1, n ≥ n� + 2,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.7)

where the dimensionless parameter r relates the number of particles in the filtercake to its
resistance.

To evaluate the flux–throughput behaviour of this model, in Griffiths et al. [18], N = 144
pores were considered taking the average over several stochastic simulations using the following
algorithm:

(i) Subdivide the throughput V into equal volume steps Vk = k�V := k/c, k = 1, 2, . . . , where
c is the particle concentration (number of particles per unit volume), so that at each step
a particle arrives at the membrane.

(ii) At each volume step Vk, choose the pore to which the particle is assigned to, with the
probability Pj of a given pore j receiving the particle being Pj = κ(nj(Vk−1))/Q(Vk−1),
where nj(Vk−1) denotes the number of particles retained by pore j after volume Vk−1 has
been processed by the membrane.

(iii) If the particle, with probability PR(nj(Vk−1)), is retained, update the number of retained
particles of the pore that received the particle and continue.

To compute the expected flux Qe for the conductivity function κ defined by (2.7), we first solve
(2.5) where we extend the definition of PR(n) via PR(n) = 1 if n ≥ n� and PR(n) = 0.1 otherwise, r
was chosen to be 1, a = 0.9, h = 10, R0 = 1 and κres = 0.3. For a given volume V, we can then obtain
Qe(V) using the same approach as in (2.1).

The solution to the system of ODEs (2.5) is shown in figure 1b to provide almost exact
agreement with the stochastic model of Griffiths et al. [18]. The figure also crucially highlights the
difference between the observed flux–throughput behaviour and the interpolated conductivity
function that would be predicted if we assumed that the particles were equidistributed across
the pores during the filtration. For a given non-zero retention probability PR, the expected
dimensionless volume that is processed before a particle is retained is P−1

R . Therefore, we choose
interpolation points (Vi, κ(i)) with Vi =∑i−1

k=0 PR(k)−1 for plotting the conductivity function. This
demonstrates why our model is essential to traverse from the microscopic level of the individual
pore to the macroscopic level of the entire membrane. As the number of pores in a typical
membrane is large, computing the expected flux Qe is sufficient to predict the measured flux–
throughput behaviour. Compared with the stochastic simulation, solving the evolution equation
(2.5) offers a significantly faster and easy-to-implement method for this computation. In our
simulations, we achieved a speed-up of three orders of magnitude and needed only a fraction
of the lines of code.

(d) Multiple-pore-geometry membranes
A multiple-pore-geometry membrane contains several types of differently shaped unconnected
pores instead of a single pore type as assumed in the previous subsections. It is appropriate to
consider these types of membranes because different pore geometries can be created in a single
membrane either on purpose or due to imperfections in the manufacturing process.
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For a membrane with K different types of pores, we can adapt the stochastic model to multiple-
pore-geometry membranes by introducing representative random variables Xk counting the
number of particles retained by pore type k ∈ {1, . . . , K}, κk denoting its conductivity function, PRk

its retention probability and PXk the probability distribution of Xk. As the flux through a given
pore only depends on the number of particles retained by the pore, the time-dependent evolution
equations for the different pore types are independent of each other. Hence, we can solve equation
(2.4) for each pore type k ∈ {1, . . . , K} and then sum the different expected fluxes to obtain the total
flux through the membrane. Specifically, if Nk denotes the number of pores of type k, we obtain
the total expected dimensionless flux Qe through the membrane as

Qe(t) =
K∑

k=1

Nk

∞∑
n=0

κk(n)PXk (n, t). (2.8)

To obtain the volume-dependent evolution equation, we have to use (2.8) to compute the flux
and take into account the number of pores of each type, hence

dPXk (n, t)
dVe

= Nk

Qe(Ve)
[−PRk (n)κk(n)PXk (n, t)

+ PRk (n − 1)κk(n − 1)PXk (n − 1, t)], n ≥ 1

and
dPXk (0, t)

dVe
= Nk

Qe(Ve)
[−PRk (0)κk(0)PXk (0, t)],

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.9)

with initial conditions PXk (0, 0) = 1, PXk (n, 0) = 0 ∀n ≥ 1 ∀K ∈ {1, . . . , k}.
We point out that the independence in the time evolution for the different pore types allows

us to formulate the optimal pore-type composition of a membrane as an optimization problem
of a linear objective function, however, the constraints are not necessarily linear. When designing
a membrane, a standard goal is to maximize the expected throughput Ve(T) = ∫T

0 Qe(t) dt of a
membrane after time T in constant-pressure filtration by choosing the right mixture of pores
N1, . . . , Nk. Rearranging the expected throughput as

Ve(T) =
K∑

k=1

Nk

∫T

0

∞∑
n=0

κk(n)PXk (n, t) dt =:
K∑

k=1

NkVk(T), (2.10)

we see that obtaining a membrane with maximum expected throughput is in fact simply a
packing problem, where we want to cover the surface of the membrane with the pore inlets
such as to maximize (2.10). Packing problems are, in general hard problems, for which no
efficient optimization algorithms exist. However, if the pore inlets have to be arranged on some
lattice instead so that the total number of pores N = N1 + · · · + NK is prescribed, the maximum
throughput will be attained by choosing only pores of type k where Vk = max{V1, . . . , VK}.

While this conclusion is as we would expect, we have highlighted the methodology that may
be adopted to consider membranes with multiple pore geometries and that such generalizations
are simple to include within our framework. In the remaining sections, we will return to single-
pore-type models, but emphasize that all models can be extended to membranes with multiple
pores using the results from this section.

3. Multi-particle systems

(a) A two-particle system
We now turn our attention to the filtration of a fluid containing two types of particles: small
particles, having a radius less than that of the pores, and large particles, having a radius bigger
than that of the pores. We denote their concentrations by c̃s and c̃l, respectively. As in the previous
section, we consider a membrane of fixed depth h with cylindrical, non-interconnected pores of
uniform radius R0 and apply a constant transmembrane pressure �p.
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This two-particle model is a good approximation for filtering the protein BSA with sterile
membranes having a pore diameter of around 200 nm. Protein monomers in general can aggregate
to large polymers due to a variety of factors, even under operating conditions where the monomer
state is highly favoured [29]. While BSA monomers have diameters of around 10 nm, the
aggregated polymers can grow larger than the pore diameter. As an example, Ho & Zydney [14]
measured particle size distributions between 100 and 450 nm for the BSA aggregates in a filtration
experiment.

Having two types of particles extends the range of possibilities for a pore to foul. While
small particles will enter the pores where, if retained with probability PR, they constrict the pore,
particles that exceed the pore size will cover the pore entrance, allowing for a residual flux but
making it impossible for any further small particles to enter the pore. Therefore, once a pore has
been sealed, both small and large particles will stack up on the surface, forming a filtercake. For
this model, we neglect the possibility of particles in the filtercake being released back into the
fluid or filtercakes of neighbouring pores interacting with each other. The interaction between
neighbouring filtercakes can be modelled by including pore–pore interactions as discussed in §4,
whereas the release of particles back into the fluid would have to be dealt with by including
additional terms in the governing equations (3.4) and (3.5).

Until the pore has been covered, we only have to keep track of how many small particles have
been retained inside the pore. As soon as the pore is covered, we also have to keep track of the
depth of the filtercake, that is we need to know how many small and large particles have been
retained on the surface of the pore. We will identify the number of small particles n inside the pore
and the number of large particles l and small particles m on the surface of the pore as the state of
the pore; it is denoted by the triplet (n, l, m). A pore transitions from one state to another when it
retains a particle. The newly attained state depends on the previous state as well as the particle
that is being retained, we use the | sign to distinguish between two states that are attainable if
either a small or a large particle is retained. As in §2c, we assume that there is a maximum number
n� of small particles that can be retained within a pore and every particle that arrives at the pore
thereafter is retained on the surface. If no large particle has been retained yet, we therefore have
to distinguish between these two cases:

(n, 0, 0) −→ (n + 1, 0, 0) | (n, 1, 0), n < n�

and (n�, 0, m) −→ (n�, 0, m + 1) | (n�, 1, m).

}
(3.1)

Once a large particle has been retained, all particles are retained on the surface and so

(n, l, m) −→ (n, l, m + 1) | (n, l + 1, m), l ≥ 1. (3.2)

To obtain the conductivity function, we adapt the analysis from §2c, assuming that the radius
of the pore shrinks in response to the deposition of particles so that we obtain an average pore
constriction following the retention of each particle. In addition to the previous conductivity
function (2.7), we introduce a further parameter β ∈ [0, 1] to control the conductivity of a
constricted pore. This is motivated by findings of Bowen & Gan [8], who observed a flux through
fully constricted pores. Once the pore has been covered, all particles contribute to the formation
of the filtercake which acts as an additional resistor in series, its resistance being proportional
to the number of retained small and large particles. Hence, the total resistance of the pore is the
resistance of the constricted pore and the resistance of the filtercake, and so the dimensionless
conductivity is given by

κ(n, l, m) =
⎛
⎝(1 − βn

4a3

3hR2
0

)−4

+ l rl + m rs

⎞
⎠

−1

, n ≤ n�, (3.3)

where a denotes the radius of a small particle, h the depth of the membrane and rl, rs relate the
number of large and small particles, respectively, to the resistance of the filtercake. Reducing the
parameter β increases the residual flux through a fully constricted pore.
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Figure 2. The effect of the residual flux parameter β and the ratio of large particles cl on the flux (Q) versus throughput
(V) relationship for the conductivity function (3.3) with parameters a= 0.9, h= 10, R0 = 1, rs = 1, rl = 10 and (a) β = 1
and (b)β = 0.1. The values for the ratio cs are 0, 0.8, 0.9, 0.95, 1 and PR ≡ 1. (Online version in colour.)

To compute the probability density function for the random variable X, indicating the state
(n, l, m) a given pore is in, note that the time-dependent evolution of the different pores is
independent and the Poisson parameters for the transitions are given, as before (equation (2.2)),
by c̃sκ̃(0)κ(X(t))�p and c̃lκ̃(0)κ(X(t))�p, where κ̃(0) denotes the dimensional conductivity of an
unconstricted pore. Using (3.1), scaling t̃ = ((c̃s + c̃l)/(κ(0)�p))t, cs = c̃s/(c̃s + c̃l) and cl = c̃l/(c̃s +
c̃l), so that initially one particle, either large or small, is expected to arrive per unit time step and
cs and cl are the fractions of small and large particles, we obtain for (3.1)

dPX((n, 0, 0), t)
dt

= −(csPR(n) + cl)κ(n, 0, 0)PX((n, 0, 0), t)

+ 1n>0csPR(n − 1)κ(n − 1, 0, 0)PX((n − 1, 0, 0), t), n ≤ n�

and
dPX((n�, 0, m), t)

dt
= −κ(n�, 0, m)PX((n�, 0, m), t)

+ 1m=0csPR(n� − 1)κ(n� − 1, 0, 0)PX((n� − 1, 0, 0), t)

+ 1m>0csκ(n�, 0, m − 1)PX((n�, 0, m − 1), t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)

where 1 denotes the indicator function taking value 1 if the associated condition is satisfied and
0 otherwise. Note that the retention probability PR is only relevant for small particles while they
can still enter the pore and so only depends on n. Similarly, for (3.2) we have

dPX((n, l, m), t)
dt

= −κ(n, l, m)PX((n, l, m), t)

+ clκ(n, l − 1, m)PX((n, l − 1, m), t)

+ 1m>0csκ(n, l, m − 1)PX((n, l, m − 1), t), l ≥ 1. (3.5)

As before, we can obtain the expected dimensionless flux Qe by summing over all possible states

Qe(t) =
n�∑

n=0

∑
l,m∈N

κ(n, l, m)PX((n, l, m), t). (3.6)

We consider the impact of the fraction of small particles cs on the results of the membrane
filtration based on the conductivity function (3.3) in figure 2. We contrast the effect of the residual
flux in a completely constricted pore by considering the cases β = 1, 0.1.
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(b) General form of multi-particle models
For the general multi-particle problem, if we assume that there are J different types of particles
then the state space can be represented by the set of ordered sequences of finite length, [J]N0 .
To derive the evolution equations for the probability PX of the random variable X, we use the
notation

σ
cστ−−→ τ , (3.7)

denoting that a pore can transition from state σ to state τ , where σ , τ ∈ [J]N0 , and that the
relative concentration of the corresponding particles for the transition is cστ , their state-dependent
retention probability is denoted by PR(σ , τ ). The evolution equation for the probability PX is then
obtained by considering, for a given state σ , the probability of being in state σ and transitioning
to τ and the probability of being in a state γ and transitioning to state σ , yielding

dPX(σ , t)
dt

= −
⎛
⎝ ∑

{τ :σ→τ }
cστ PR(σ , τ )

⎞
⎠ κ(σ )PX(σ , t)

+
⎛
⎝ ∑

{γ :γ→σ }
cγ σ PR(γ , σ )κ(γ )PX(γ , t)

⎞
⎠ . (3.8)

Note, however, that the set of ordered sequences of length at most L contains (1 − JL+1)/(1 − J) ≥
JL elements; hence the state space for general problems will quickly become too large to be dealt
with efficiently. If we cannot use state-space reduction schemes as described in §3a, Monte Carlo
methods may be a viable alternative to obtain an approximation for the expected flux instead.

4. Modelling membranes with interconnected pore structure

(a) General modelling strategy
Although the stochastic model developed in this paper is motivated by track-etched membranes
with non-interconnected pores, it can also be applied to membranes with an interconnected
pore structure, such as polyvinyl difluoride (PVDF) membranes [30]. In an interconnected
pore structure, the inlets on the top surface of a membrane are connected to multiple outlets
on the bottom surface and vice versa. In this case, there may be several paths through the
membrane between connected inlets and outlets. Membranes with an interconnected pore
structure exhibit a different flux–throughput behaviour to track-etched membranes in various
filtration experiments [14].

In order to evaluate the contribution of the membrane geometry to this differing behaviour,
we represent the membrane structure beneath a given area, e.g. a square, by an undirected
graph as shown in figure 3. The edges of the graph are identified with the pores discussed in
the previous sections. However, they now no longer run all the way through the membrane but
connect junctions instead, represented by the nodes in the graph. Accordingly, particles retained
on the surface or within the membrane alter the conductivity of the corresponding edge and the
state of an edge is given by the number and order of arrival of the particles the edge has retained.
The flux through a given edge depends on the pressure above and below the pore and hence
not only on the state of that edge but also on the states of the other edges in the network. We,
therefore, introduce the state of the network as the Cartesian product of the states of the edges
in the network.

We assume that the expected time for retaining a particle within the network is much smaller
than the expected time between two particles arriving, and so the particle arriving in the structure
is retained before the next particle arrives. Thus, the network transitions from one state σ to
another state τ if the two states differ by an edge e having retained one more particle in τ than
in σ , which we denote by σ

e−→ τ . The derivation of the evolution equation for the probability
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Figure 3. Representation of the internalmembrane structure by superimposing an undirected graph onto the cross-section of a
porous medium.

distribution of the state of the network, similar to (2.4) and (3.8), is divided into two steps. For a
given state σ of the network, we first compute the pressure distribution within the network. Then,
for each edge e, we compute the probability for e to retain the next particle.

As for the pores in the previous sections, the state-dependent conductivity function for a
given edge can be computed either analytically or numerically, or determined experimentally. The
pressure distribution in the network of state σ can then be obtained by solving the corresponding
set of linear equations that arise due to conservation of mass: for a given node v, let pv denote the
pressure at the corresponding junction, for an edge e = e(u, v) = e(v, u) connecting vertices u, v, let
κ(e, σ ) = κ(e(u, v), σ ) denote its conductivity. If the node is located at the upper or lower surface of
the membrane, we have pv = pin or pv = pout as boundary conditions, as we assume that the inlet
and outlet pressures are constant. Within the network, we have conservation of mass, implying
for every node v ∑

u∈C(v)

κ(e(v, u), σ )(pv − pu) = 0, (4.1)

where C(v) denotes the set of nodes u that v is connected to. In order to obtain a unique solution
to the resulting set of linear equations, we only consider those vertices that can be reached from
either one of the inlet or outlet nodes via a path of edges having non-zero conductivity.

In the previous models, the concentration of particles arriving at a pore was known and
constant. However, in a network the concentration of particles in the fluid leaving a pore may
change as particles are being retained. As a consequence, the Poisson parameter Λ(σ , τ ) for the
transition σ

e−→ τ between two states σ , τ is no longer given by the product of the concentration
cστ , the flux, and the retention probability PR(e, σ , �p(e, σ )) alone, with �p(e, σ ) denoting the
(positive) pressure difference across e. We now also have to factor in the probability of a particle
reaching the edge e in the first place. For a particle to reach the edge e, it has to traverse the
network along a path ending in e without being retained. Since the particles travel with the fluid,
the pressures in the nodes of the path have to be decreasing and so there is only a finite number
of these paths. At every node v, since there can be multiple edges to travel along, we assume that
the probability PJ(l, σ ) of taking an edge l leading to a node u with lower pressure is given by the
flux through l divided by the sum of the fluxes of the edges leading from v to nodes with lower
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pressure. Thus, we obtain the Poisson parameter

Λ(σ , τ ) = cστ κ(e, σ )�p(e, σ )

·
⎡
⎣PR(e, σ , �p(e, σ ))

∑
w∈Paths(e)

∏
l∈w\e

PJ(l, σ )[1 − PR(l, σ , �p(l, σ ))]

⎤
⎦ , (4.2)

where Paths denotes the set of all paths with decreasing pressure on the nodes that end with e.
Note that the Poisson parameter defined in (4.2) is independent of time and only depends on the
state of the network.

Similar to equation (3.8), we obtain

dPX(σ , t)
dt

= −
⎛
⎝ ∑

{τ :σ→τ }
Λ(σ , τ )

⎞
⎠PX(σ , t) +

⎛
⎝ ∑

{γ :γ→σ }
Λ(γ , σ )PX(γ , t)

⎞
⎠ . (4.3)

As the state space of the network is given by the Cartesian product of the state spaces of the
different edges, solving the system of ODEs arising from (4.3) quickly becomes infeasible. We
therefore either have to look for symmetries or other simplifications to obtain a state space
of manageable size (see §4b) or consider small networks (see §4c). If neither is an option,
stochastic simulations, as presented by Griffiths et al. [27] are more suitable to compute a good
approximation for the expected flux through the network.

(b) Example: retention of large particles in two- and three-dimensional grids
We begin by considering a simple model for the retention of particles with larger diameter
than the pores, so that all particles in the fluid are retained on the surface. We assume that a
particle landing on an inlet seals it completely. As the particles cannot enter the membrane due
to their size, only the edges incident to an inlet can change their conductivity due to particle
retention. Hence, the state space of the network can be simplified to {sealed, unsealed}N , where N
denotes the number of inlets, i.e. pores connected to the upper surface (generalizing our previous
definition for the number of pores in a non-interconnected membrane).

To evaluate the impact of the underlying membrane structure, we consider a simple network as
shown in figure 4a, where we are interested in the effect of the depth of the network on the decline
of the expected flux. Every edge in the network has initially unit dimensionless conductivity. If
one of the nodes of the edge is an inlet, the conductivity is reduced to zero once the inlet is sealed.

While the network of a real interconnected membrane is usually three-dimensional, it is useful
to consider a two-dimensional model. We show the difference in the flux–throughput graphs
for the two- and three-dimensional structure by comparing the results for a 4 × 4 and 16 × 1
gridstructure, and a membrane containing 16 non-interconnected pores. To provide the most
accurate representation of a real membrane, we introduce cyclic connectivity, meaning that the
nodes on the right boundary are connected to the ones on the left and the ones on the front
boundary to those at the back.

Compared with a membrane with non-interconnected pores, the flux–throughput graph
increases in concavity with the number of layers of the membrane (figure 4b), a pattern that
is commonly observed when filtering BSA with interconnected membranes. Additionally, the
concavity of the flux–throughput graphs is more pronounced for the three-dimensional structure
than the two-dimensional structure, which we expect to be due to the higher average degree of
the vertices in the three-dimensional structure (figure 4b).

(c) Internal blocking in a small network
To study the impact of particle size on the flux–throughput shape for different membrane
geometries, we now consider a model of a single particle type with the pores having larger
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Figure 4. (a) Schematic of a 3 × 4 three-dimensional grid structure with five layers. The dotted lines illustrate the
cyclic connection. (b) Flux (Q) versus throughput (V) graphs for the 4 × 4 (dashed) and 16 × 1 (solid) configuration
with four (blue) and eight (red) layers. The black line corresponds to 16 non-interconnected pores. An increase in
concavity is observed with an increase in the number of layers, with the concavity for the three-dimensional structure
being more pronounced than for the two-dimensional structure with the same number of layers. (Online version in
colour.)
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Figure 5. (a) Schematic of non-interconnected (i) and interconnected (ii) network structure. (b) Flux (Q) versus throughput (V)
graph forκx = 0.1, 0.5, 0.9 for interconnected (solid) and non-interconnected (dashed) network structure. The interconnected
network structure leads to a larger expected total throughput than the non-interconnected structure for the chosen retention
probabilities. (Online version in colour.)

diameter than the particles. In this case, initially the particles can traverse any edge in the graph.
We assume that the dimensionless conductivity of an edge is either 1, κx or 0 depending on
whether the edge has retained 0, 1 or 2 particles, respectively, with differences in the value of
κx identified with differences in the particle size. We consider κx = 0.1, 0.5, 0.9 where a smaller
particle size corresponds to a bigger κx. As in §2c, we choose a retention probability PR = 0.1.
Thus, the state space of an edge can be represented by the set {0, 1, 2} and the size of the state
space is 3E, where E is the number of edges in the network. We consider the two networks
shown in figure 5a with six and nine edges for the non-interconnected and interconnected
networks, respectively. The state space for the interconnected network with nine edges contains
39 = 19 683 elements, which makes computing the expected flux for the interconnected network
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computationally still feasible. However, considering more than 105 states becomes difficult
without further optimization.

Note that for the same values of κx, the flux–throughput curve for the interconnected network
structure lies above the flux–throughput curve for the non-interconnected structure, and the
expected total throughput is significantly higher for the interconnected network structure than
for the non-interconnected structure (figure 5b). This is an observation that we expect in general
when comparing the performance of interconnected and non-interconnected membranes, and is
corroborated by the stochastic study performed in [27], as an interconnected membrane structure
allows for more load balancing once the pores start to constrict.

5. Conclusion
In this paper, we have shown how to compute the expected flux through a membrane during
a filtration experiment on the basis of a conductivity function, which relates the number and
order of the retained particles in a pore to the flux through it. The expected flux through the
membrane can then be computed by solving a system of ODEs for the probability distribution
of the state of a given pore. Describing membrane filtration in terms of a conductivity
function opens up the possibility of considering a variety of retention mechanisms in filtration
models, as the stochastic model is valid for any given non-negative conductivity function.
We show that this approach can be applied to a range of membrane-type to feed-type
combinations by discussing its application to multi-particle feeds, multi-pore-type membranes
and membranes with an interconnected pore structure. Furthermore, for typical applications,
the size of the state space is such that the computation of the expected flux is orders of
magnitude faster and more precise than using a stochastic simulation. Finally, the derivation
of the ODEs highlights that membrane filtration fundamentally is a stochastic process and
the ODE model allows us to compute the probability distribution of the potential states of
a pore.

Our model is based on the assumption that one particle enters a pore or interconnected pore
structure at a time and so we can define a conductivity function relating the number of retained
particles to the flux through the pore. For high enough particle concentrations, several particles
can be expected to traverse a pore at the same time and so the assumptions underlying our
derivations are no longer valid, making our method not applicable for these instances. When
dealing with general multi-particle models or intricate geometries, additional considerations
or assumptions have to be made to reduce the size of the state spaces for the corresponding
system of ODEs, otherwise the method becomes already impractical for modest instances. If these
reductions in the state space are not possible, computing an approximation for the expected flux
should be considered instead.

In the realm of interconnected membranes, future work can include deterministic–stochastic
models, where certain retention processes are assumed to follow a deterministic, easy-to-evaluate
law, whereas others are assumed to be stochastic. This approach would allow us to consider, for
example, several-particle-type feeds through interconnected membranes. Based on the ansatz of
modelling fouling as a stochastic process, it would furthermore be important to find ways of
computing the probability density for the measured flux. These insights could be of significant
value for the area of microfluidic filtration, where the small number of particles and pores often
shows the stochastic nature of the filtration process.
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