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When a contaminated liquid evaporates from within a porous material (PM), the impurities10
or dirt accumulate and deposit within the porespace. This occurs during the cleaning of11
filters and fouling of textiles, and is related to the “coffee-ring” problem. To investigate12
how and where dirt is deposited in the porespace, we present a model for the motion of an13
evaporation front through a PM, and the related accumulation, transport, and deposition of14
dirt, assuming that the liquid remains stationary. For physically relevant parameters, vapour15
transport out of the PM is quasi-steady and we derive a single ordinary differential equation16
describing the motion of the evaporation front in time. Model solutions exhibit spatially non-17
uniform profiles of the deposited-dirt layer thickness through the PM. The dirt accumulation18
and evaporation problems are coupled: deposited dirt hinders vapour transport through the19
PM, slowing the evaporation. We identify two scenarios in which the PM becomes clogged20
with dirt. Accumulation of suspended dirt at the evaporating interface along with slow dirt21
diffusion results in the deposited-dirt layers clogging the pores at the evaporating interface,22
halting the drying and trapping liquid in the PM. Alternatively, slow dirt-deposition results in23
the suspended dirt being pushed far into the PM by the evaporation, eventually leaving only24
dirt (with no liquid) in the porespace. We investigate the dynamics of both clogging scenarios,25
characterising the parameter regimes for which each occurs. Both clogging scenarios must26
be avoided in practice since they may be detrimental to future filter efficacy or textile27
breathability.28
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1. Introduction30

Drying-driven redistribution of dirt within filters and textiles is a common problem, with31
practical industrial importance. For instance, after the rinsing of filters used in vacuum32
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cleaners or washing machines, the filter dries and any remaining dirt or cloth fibres are left33
in the filter (Ji & Sanaei 2023), reducing its capacity for the next filtration cycle. Waterproof34
clothing such as coats and boots will dry after use, and impurities or dirt may similarly be35
left within the pores of the textile and waterproof membrane (Breward et al. 2020; Sanaei36
et al. 2022).37

A key question in these filtration and waterproof-clothing applications is to determine38
where within the porous material the dirt is deposited once the liquid has all evaporated. We39
might also ask whether all of the liquid can indeed be evaporated, or whether it becomes40
trapped in regions of porespace clogged by the deposited dirt. In the applications of interest,41
it is important that the dirt does not clog the material, as this leads to reduced filter efficacy,42
or reduced breathability of the waterproof garment. Furthermore, trapped water in a washing43
machine filter may contribute to the growth of bacteria or mould, and should be avoided for44
hygiene reasons (Abney et al. 2021). A paradigm situation encompassing these processes is45
that of a porous material containing a mixture of a liquid, such as water, and an impurity46
or dirt that is suspended in the liquid. As the liquid evaporates, an evaporation front moves47
into the porous material from its surface. The dirt is left behind in the liquid as the liquid48
evaporates, and may deposit into a layer on the walls of the porespace.49

A related problem is the deposition of suspended particles when a droplet of liquid dries50
on an impermeable substrate. This is known to lead to a coffee-ring effect, in which the coffee51
particles are transported by evaporation-induced flow of liquid to the edge of the droplet. This52
coffee-ring effect is well studied, for instance by Deegan et al. (1997, 2000); Karapetsas et al.53
(2016); Kaplan & Mahadevan (2015); Moore et al. (2021); Murisic & Kondic (2011); Popov54
(2005), and recently reviewed by Wilson & D’Ambrosio (2023). The coffee-ring effect is of55
practical importance, for instance in the drying of ink droplets in ink-jet printing (Mampallil56
& Eral 2018; Soltman & Subramanian 2008) and in the manufacture of electronic devices57
(D’Ambrosio et al. 2021).58

In a drying porous material, such as a filter membrane or textile, there are several additional59
complications not present in the coffee-ring set-up. Firstly, the problem is multiscale in nature,60
in that the fluid flow, evaporation, and the transport and deposition of the dirt occur within the61
pore-space, while the depth of porous material to be dried is likely to be significantly larger62
than an individual pore, even for fairly thin filter membranes. It is not immediately clear how63
to formulate a model that captures the porescale behaviour and yet remains tractable over64
the scale of the entire drying material. Additionally, dirt deposition may occur throughout65
the porous domain, not only at the base of the evaporating droplet. This means that there66
is additional coupling between the drying and the deposition: like in evaporating droplets,67
the accumulation of suspended dirt at the evaporating interface can reduce the evaporation68
rate (Karapetsas et al. 2016), but additionally the build-up of deposited dirt in the porespace69
affects the porosity and reduces the rate of diffusive transport of (i) the suspended dirt70
through the liquid-saturated porespace, and (ii) vapour out through the dry porous material.71
In extreme cases, the deposited dirt might completely clog the pore-space at the evaporation72
front, terminating the drying before all liquid is evaporated. This phenomenon is not possible73
in coffee-ring problems. Like the surface-tension driven flows in coffee-rings, a capillary74
flow may draw fluid through the porous material, which then evaporates near the surface75
of the porous material (Lehmann et al. 2008). This is typically the case early in the drying76
process (“Stage I”), while later (“Stage II”) the evaporating interface moves into the porous77
material, and the transport of vapour out of the porous material limits the evaporation rate78
(Fei et al. 2022; Or et al. 2013).79

Drying porous media (without dirt) have been studied in a variety of settings and using80
various different modelling techniques. Depending on the porous material and fluids, various81
drying regimes are possible: liquid and gas may co-exist within the porespace throughout82
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the entire medium and for the majority of the drying time (so that the majority of the drying83
is in Stage I), or a region in which capillary effects dominate, often referred to as a“film84
region”, may separate a region of porous material saturated with liquid from a multi-phase85
region incorporating unconnected pockets of stationary liquid (Lehmann et al. 2008; Pel et al.86
2002). Multi-phase flow models for drying are derived by, for instance, Whitaker (1977) while87
lumped models, consisting of nonlinear diffusion equations for the “moisture” (combining88
liquid and vapour) are also often used (Pel et al. 2002; Vu & Tsotsas 2018). Evaporation89
within the pore-space may be simulated directly, although this is computationally expensive90
and limited to sufficiently small domain sizes (Fei et al. 2022). Pore-network models are91
a more computationally tractable approximation, although the details of the fluid flow are92
neglected (Nowicki et al. 1992; Tsimpanogiannis et al. 1999).93

The transport and trapping of particles in a liquid-saturated porous material when the94
liquid is flowing is known as deep-bed filtration (Zamani & Maini 2009). When there is no95
flow of the liquid, the particles may still be transported by Brownian diffusion (Epstein 1988).96
Particles may build up in a deposited layer on the pore walls due to several mechanisms,97
including electrostatic forces in the bulk (Zamani & Maini 2009). Particles are generally98
repelled from air–water interfaces unless they are hydrophobic; in the hydrophobic case99
they might be held at the interface and thus transported more effectively with it (Flury100
& Aramrak 2017). Particles may deposit or attach to the walls of the pore-space due to101
adsorption, electrostatic forces, or other chemical binding mechanisms (Dressaire & Sauret102
2017; Epstein 1988; Zamani & Maini 2009). Experimental work such as that of Gudipaty103
et al. (2011); Linkhorst et al. (2016); Stamm et al. (2011) seeks to visualise the deposits and104
quantify their growth rates in terms of the system parameters.105

For an evaporating droplet, an evaporative flux is generally prescribed at the droplet surface106
(Kaplan & Mahadevan 2015; Karapetsas et al. 2016; Murisic & Kondic 2011; Moore et al.107
2021; Popov 2005). This flux may be constant (Moore et al. 2021), but typically depends108
on the distance from the edge of the droplet, accounting for the quasi-steady transport of109
vapour away from the droplet (Karapetsas et al. 2016; Popov 2005). When drying from110
within porous media, a prescribed evaporation rate may be appropriate during Stage I (when111
the evaporation occurs near the surface of the material) but, since the Stage II drying of112
porous media is limited by the removal of vapour from the porespace (Lehmann et al. 2008),113
like the majority of evaporating drops (Wilson & D’Ambrosio 2023), we expect that the114
evaporation rate will depend on the position of the evaporating interface within the porous115
material during this stage.116

The deposition of dirt during the drying of a filter has recently been studied by Ji & Sanaei117
(2023). Here, the suspended dirt is assumed to diffuse through a liquid-saturated region of118
porous material ahead of an evaporating interface, and deposit at a rate directly proportional119
to its concentration, causing the local porosity to decrease. The evaporating interface is120
assumed to move through the porous material at a prescribed speed, dependent only on the121
local porosity and suspended dirt concentration, and not the location of the front within the122
filter. Simulations of this model show that the porosity of the filter decreases during the123
drying, and that the deposited dirt is non-uniformly distributed in the porespace once the124
drying is complete.125

In this paper, we will systematically derive a homogenised model for the coupled processes126
of evaporation, transport of liquid vapour, diffusion and deposition of dirt in a drying porous127
material, starting from a pore-scale model for these processes. This analysis is based on128
previous work (Luckins et al. 2023) for evaporation of a pure liquid in a porous material,129
extended to incorporate dirt transport and deposition. One benefit of the homogenisation130
approach is that the pore-scale behaviour is included in the homogenised model through131
averaged terms. This ensures that the model conserves mass of all species, and also results in132
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Figure 1: Schematic showing the evaporation front at 𝑦 = ℎ(𝑥, 𝑡) moving through the pore-
space (lengthscale 𝑑) of a porous material (of depth 𝑙 ≫ 𝑑), with dirt depositing in a layer
of thickness 𝑅(𝑥, 𝑦, 𝑡) on the circular solid inclusions with radius 𝑟0. The unit normal to
the solid or dirt boundary of the porespace is 𝒏𝑠 , while the evaporating interface has unit
normal 𝒎.

a different diffusive term in the homogenised equations compared with the model posed by Ji133
& Sanaei (2023). For simplicity, as in both Luckins et al. (2023) and Ji & Sanaei (2023), we134
will assume that capillary flows are negligible and a sharp evaporating interface moves into135
the porous material. In practice, such systems would be valid when viscous or gravitational136
forces dominate over surface tension, for instance if the solid is hydrophobic (Shokri et al.137
2008), or the pores are sufficiently large relative to the capillary lengthscale (Lehmann et al.138
2008). Our coupled model for the drying and dirt transport is a type of Stefan problem, with139
undercooling in certain parameter regimes. We derive our homogenised model in section 2.140
In section 3 we note that the vapour transport is quasi-steady for physically relevant parameter141
choices and reduce the vapour-transport problem to a single ordinary differential equation142
(ODE) for the position of the evaporation front, providing a comparison between this model143
and that of Ji & Sanaei (2023). In section 4 we study the early-time behaviour of our model144
and describe our numerical solution method. In sections 5–6 we study the asymptotic limits145
of slow and fast deposition rates, identifying a distinct mechanism in each case by which the146
system may clog before the drying is complete. We quantify the parameter regimes for which147
these clogging phenomena occur in section 7 before concluding in section 8.148

2. Model derivation149

We consider a porous material of finite thickness 𝑙, initially with uniform porosity and150
saturated with a uniform mixture of liquid and suspended dirt. We assume that the dirt151
particles are small relative to the pore-lengthscale, and neither interact with each other nor152
dissolve in the liquid. The dirt–liquid mixture is thus a suspension of these insoluble dirt153
particles. We suppose the porous material is bounded by an impermeable solid material on154
one side. The liquid begins to evaporate from the side open to the atmosphere, leaving the155
dirt behind, and an evaporation front moves into the porous material, with the suspended dirt156
and liquid ahead of the front, and a mixture of inert gas (drawn in from above the porous157
material) and liquid vapour behind it. We assume the system is isothermal, with no variation158
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in temperature. A schematic of the situation under consideration is shown in figure 1. We159
consider a two-dimensional porous material for simplicity, with spatial variables 𝑥 and 𝑦,160
and with 𝑦 pointing into the porous material and 𝑦 = 0 at the surface of the porous material.161
Although the structure of our model and the homogenisation analysis does not depend on the162
pore-scale geometry, it is helpful to specify this for simplicity. We choose a square lattice of163
circular solid inclusions, of radius 𝑟0. We account for deposition of the suspended dirt onto164
the solid structure by considering deposited dirt layers of thickness 𝑅(𝑥, 𝑦, 𝑡), on each solid165
inclusion, which have initial thickness zero. An important assumption is that the liquid–dirt166
mixture does not flow, and so our model excludes any capillary pressure or surface tension167
effects (since in order to attain a (quasi-)static meniscus shape, the liquid would need to168
flow). We first consider the drying behaviour on the microscale — within the pores of the169
material — before averaging to derive our effective model. We suppose that the evaporating170
front is located at 𝑦 = ℎ(𝑥, 𝑡), splitting the domain into a region of porespace containing171
vapour in 0 ⩽ 𝑦 ⩽ ℎ(𝑥, 𝑡), where the thickness of the layers of deposited dirt do not change172
with time, and a region of porespace in ℎ(𝑥, 𝑡) ⩽ 𝑦 ⩽ 𝑙 containing the liquid–dirt mixture,173
where the dirt layer thicknesses vary in time due to deposition or erosion.174

2.1. Porescale model175

In the porespace occupied by vapour–gas mixture (behind the evaporating front, ie: 𝑦 <176
ℎ(𝑥, 𝑡)), we expect the Reynolds number to be small (Luckins et al. 2023) and so we assume177
that the mixture satisfies the Stokes equations,178

∇ · 𝒖 = 0, −∇𝑝 + 𝜇∇2𝒖 = 0, (2.1)179

where 𝒖 is the mass averaged velocity of the mixture, 𝑝 is the pressure, and 𝜇 is the viscosity180
(assumed constant). The vapour contained within the mixture is advected with the flow, and181
also diffuses through the mixture with diffusivity 𝐷𝑣 , and thus the density of the vapour, 𝜌𝑣182
[kg m−3], satisfies183

(𝜌𝑣)𝑡 + 𝒖 · ∇𝜌𝑣 = 𝐷𝑣∇2𝜌𝑣 , (2.2)184

where the subscript 𝑡 denotes partial derivative. The overall density of the inert gas–vapour185
mixture, 𝜌𝐺 , is given by186

𝜌𝐺 = 𝜌𝑔 + 𝜌𝑣 . (2.3)187

Wherever the gas–vapour mixture meets the solid walls of the porespace we suppose there is188
no flux or slip of the gas–vapour mixture, and no flux vapour into the solid material, so that189
on the solid–liquid or dirt–liquid boundary, with normal 𝒏𝑠,190

𝒖 = 0, (𝜌𝑣𝒖 − 𝐷𝑣∇𝜌𝑣) · 𝒏𝑠 = 0. (2.4)191

In the liquid–dirt mixture in 𝑦 > ℎ(𝑥, 𝑡), we assume that there is no net flow of the192
mixture, and the suspended dirt and liquid diffuse against one another in an ideal mixture,193
due to Brownian motion. The suspended dirt volume fraction, 𝜃, therefore satisfies194

𝜃𝑡 = 𝐷𝑑∇2𝜃, (2.5)195

where 𝐷𝑑 is the diffusivity of suspended dirt in liquid. As discussed in Luckins et al. (2023),196
the assumption that the liquid does not flow means that capillary effects are neglected from197
the model.198

At the solid walls of the porespace, we suppose that the suspended dirt can deposit onto199
the solid microstructure, forming a layer which may also then be eroded away. We suppose200
that the deposited layer has a dirt volume fraction 𝜃∗ which is the packing volume fraction of201
the dirt particles. We expect this to be close to one, as only a small amount of liquid (volume202
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fraction 1 − 𝜃∗) is trapped within the deposited dirt layer. Conservation of dirt across the203
interface is given by204

𝜃𝑉𝑛 + 𝐷𝑑∇𝜃 · 𝒏𝑠 = 𝜃∗𝑉𝑛, (2.6)205

where 𝑉𝑛 is the normal velocity of the depositing/eroding interface. We note that, in order206
that there is no flow generated at the depositing interface, we assume that the dirt and liquid207
have the same mass density, so that the total mixture density is the same on either side of the208
depositing/eroding interface, while the dirt and liquid fractions can jump (see, for instance,209
Geng et al. (2023)).210

We suppose that the dirt is deposited at a rate dependent on the local suspended dirt volume211
fraction, while the erosion rate depends on the (constant) packing volume fraction 𝜃∗. (If212
there was a flow of the fluid, we might extend this model and allow the erosion rate to depend213
on the local shear stress.) Thus we prescribe214

𝑉𝑛 = 𝑘+𝜃 − 𝑘−𝜃∗, (2.7)215

where the constants 𝑘± have units m s−1. This type of law-of-mass-action deposition rate,216
in which the deposition rate is linear in the quantity of suspended dirt, is common in the217
phenomenological bed-filtration literature (Dressaire & Sauret 2017; Zamani & Maini 2009),218
and is also used by Ji & Sanaei (2023) as a model for adsorption of particles onto the deposit219
layer.220

At the evaporating interface 𝑦 = ℎ(𝑥, 𝑡), we suppose that the inert gas and the dirt do not221
pass through the interface, while liquid turns into vapour. We thus impose conservation of222
mass of each of the liquid/vapour, gas, and suspended dirt, namely223

−𝜌𝑙 (1 − 𝜃)𝑉𝑚 + 𝜌𝑑𝐷𝑑∇𝜃 · 𝒎 = 𝜌𝑣 (𝒖 · 𝒎 −𝑉𝑚) − 𝐷𝑣∇𝜌𝑣 · 𝒎, (2.8a)224

0 = 𝜌𝑔 (𝒖 · 𝒎 −𝑉𝑚) + 𝐷𝑣∇𝜌𝑣 · 𝒎, (2.8b)225

−𝜌𝑑𝜃𝑉𝑚 − 𝜌𝑑𝐷𝑑∇𝜃 · 𝒎 = 0, (2.8c)226

where 𝜌𝑙 and 𝜌𝑑 are the densities of pure liquid and dirt, respectively. Combining these, we227
derive the more helpful form228

−𝜌𝐿𝑉𝑚 = 𝜌𝐺 (𝒖 · 𝒎 −𝑉𝑚) , (2.9a)229

−𝜌𝐿𝑉𝑚 = 𝜌𝑣 (𝒖 · 𝒎 −𝑉𝑚) − 𝐷𝑣∇𝜌𝑣 · 𝒎, (2.9b)230

𝜃𝑉𝑚 + 𝐷𝑑∇𝜃 · 𝒎 = 0, (2.9c)231

interpretable as a condition on each of 𝒖·𝒎, 𝜌𝑣 , and 𝜃, respectively, where 𝜌𝐿 = 𝜌𝑙 (1−𝜃)+𝜌𝑑𝜃232
is the (assumed constant) liquid–dirt mixture density. The normal velocity of the interface233
and unit normal to the interface are given by234

𝑉𝑚 =
ℎ𝑡√︁

1 + ℎ2
𝑥

, 𝒎 =
(ℎ𝑥 ,−1)√︁

1 + ℎ2
𝑥

, (2.10)235

where subscripts 𝑡 and 𝑥 denote partial derivatives. In addition to (2.9), we also impose a236
no-slip condition for the gas-mixture velocity237

𝑢 + 𝑣ℎ𝑥 = 0 on 𝑦 = ℎ(𝑥, 𝑡). (2.11)238

Finally, we must also incorporate a condition that describes the chemistry governing239
the evaporation. In Luckins et al. (2023) the effect of different chemistry conditions were240
considered, and these were shown to affect the form of macroscale boundary conditions241
derived through a homogenisation analysis. For simplicity, we assume that the liquid and242
vapour are in chemical equilibrium at the evaporating interface. The chemical potential on243
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the liquid side of the interface is dependent on the amount of liquid (1 − 𝜃) at the interface,244
while the chemical potential on the gas mixture side depends on the density of vapour, 𝜌𝑣 ,245
at the interface. In general, we may express this chemical equilibrium as246

𝜌𝑣 = 𝜌∗ 𝑓 (𝜃) on 𝑦 = ℎ(𝑥, 𝑡) (2.12)247

where 𝜌∗ is the (constant) saturation vapour density when 𝜃 = 0 and there is no suspended248
dirt, and the function 𝑓 (𝜃) captures the dirt-dependence of the saturation vapour density.249
(We note that therefore 𝑓 (0) = 1.) The presence of particles at the interface are expected to250
hinder the vaporisation; in both Ji & Sanaei (2023); Karapetsas et al. (2016) the evaporative251
flux is modelled as decreasing with increased particles on the fluid surface. We keep 𝑓 (𝜃)252
general as far as possible, and in section 5 we will investigate the effect of different functional253
dependencies 𝑓 (𝜃) on the drying rate. However, in our numerical simulations we will use254
the simple linear form255

𝑓 (𝜃) = 1 − 𝜃, (2.13)256

to capture the effect of the dirt inhibiting vaporisation. We choose this form so that the257
saturation vapour density scales with the amount of liquid at the interface.258

At the surface of the porous material, we impose a constant atmospheric vapour density259
and atmospheric pressure260

𝜌𝑣 = 𝜌𝑎, 𝑝 = 𝑝𝑎, on 𝑦 = 0. (2.14)261

Dirt cannot diffuse through the impermeable boundary and thus so impose that262

𝜃𝑦 = 0, at 𝑦 = 𝑙. (2.15)263

This depth 𝑙 is assumed to be much greater than the typical pore-lengthscale, so that there is264
separation between the pore- and macro-lengthscales.265

2.2. Nondimensionalisation266

We nondimensionalise the vapour/gas problem in a similar way to Luckins et al. (2023),267
making the rescalings268

𝒙 = 𝑑�̂�, ℎ = 𝑑ℎ̂, 𝑡 =
𝑑2

𝜖𝛿𝐷𝑣

𝑡, 𝜌𝑣 = 𝜌∗ �̂�, 𝒖 =
𝐷𝑣𝜈𝜖

𝑑
�̂�, 𝑝 = 𝑝𝑎 +

𝜇𝐷𝑣𝜈

𝑑2 𝑝, (2.16)269

where270

𝛿 =
𝜌∗

𝜌𝐿
, 𝜖 =

𝑑

𝑙
, 𝜈 =

𝜌∗

𝜌𝐺
, (2.17)271

are dimensionless parameters representing the ratio of vapour density to liquid density, the272
ratio of pore- to macro-lengthscales, and the ratio of vapour to gas densities, respectively. In273
particular we note we have chosen the timescale associated with the speed of the motion of274
the evaporating interfaces on the microscale, ie: the timescale over which sufficient vapour is275
removed by diffusion to empty the microscale porespace of liquid. Making these rescalings276
and dropping the hat notation, the dimensionless microscale model is, in 𝑦 < ℎ(𝑥, 𝑡)277

𝜖∇ · 𝒖 = 0, 𝜖∇2𝒖 = ∇𝑝, 𝜖 (𝛿𝜌𝑡 + 𝜈𝒖 · ∇𝜌) = ∇2𝜌, (2.18a)278

while in 𝑦 > ℎ(𝑥, 𝑡),279

𝜖𝜎𝜃𝑡 = ∇2𝜃. (2.18b)280

At gas–solid interfaces in 𝑦 < ℎ(𝑥, 𝑡) (which are stationary),281

𝒖 = 0, ∇𝜌 · 𝒏𝑠 = 0, (2.18c)282
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and at liquid–solid interfaces in 𝑦 > ℎ(𝑥, 𝑡) (which move with velocity 𝑉𝑛),283

∇𝜃 · 𝒏𝑠 = 𝜖𝜎 (𝜃∗ − 𝜃)𝑉𝑛, 𝑉𝑛 = 𝜖𝜅 (𝜃 − 𝛽) , (2.18d)284

while at the evaporating interfaces 𝑦 = ℎ(𝑥, 𝑡),285

𝒖 · 𝒎 − 𝛿𝜈−1 ℎ𝑡√︁
1 + ℎ2

𝑥

= − ℎ𝑡√︁
1 + ℎ2

𝑥

, (2.18e)286

𝜖 𝜌

(
𝜈𝒖 · 𝒎 − 𝛿

ℎ𝑡√︁
1 + ℎ2

𝑥

)
− ∇𝜌 · 𝒎 = −𝜖 ℎ𝑡√︁

1 + ℎ2
𝑥

, (2.18f )287

𝑢 + 𝑣ℎ𝑥 = 0, (2.18g)288

𝜖𝜎𝜃𝑉𝑚 + ∇𝜃 · 𝒎 = 0, (2.18h)289

𝜌 = 𝑓 (𝜃). (2.18i)290

At the surface of the porous material,291

𝜌 = 𝛼 at 𝑦 = 0, (2.18j)292

while at the impermeable surface (or centre of a symmetric porous material),293

𝜃𝑦 = 0 at 𝑦 = 𝜖−1. (2.18k)294

Here we have introduced the additional dimensionless parameters295

𝜎 = 𝛿
𝐷𝑣

𝐷𝑑

, 𝜅 =
𝑘+𝑑

𝜖2𝛿𝐷𝑣

, 𝛽 =
𝑘−𝜃∗
𝑘+

, 𝛼 =
𝜌𝑎

𝜌∗
(2.19)296

which appear in the dirt problem, representing the ratio of the suspended-dirt diffusion297
timescale to the timescale of the evaporation-front motion, the ratio of the dirt deposition298
rate to the evaporation rate, the ratio of the dirt erosion rate to deposition rate, and the ratio299
of the atmospheric vapour density to the maximum saturation vapour density, respectively.300

The micro- to macro-lengthscale ratio 𝜖 (defined in (2.17)) is the small parameter we will301
take advantage of in order to homogenise (2.18). As in Luckins et al. (2023) we will take302
𝛿 < 1 and 𝜈 < 1 to be order one parameters relative to 𝜖 for the homogenisation analysis.303
We note that 𝛿 ≈ 10−3 for water, so will later consider the additional limit of 𝛿 → 0 (which304
is equivalent to taking this limit before performing the homogenisation analysis). We require305
𝛼 < 1 but expect 𝛼 ≪ 1 to be reasonable. Although the diffusion of vapour in air is generally306
much faster than the diffusion of any kind of molecule through a liquid, so that 𝐷𝑣 ≫ 𝐷𝑑 ,307
we note that since 𝛿 ≈ 10−3 − 10−4 is small, 𝜎 is likely to be order one. For instance if we308
take 𝐷𝑣 ≈ 2.5 × 10−5 m2 s−1 and 𝐷𝑑 ≈ 10−9 m2 s−1, (Cussler 2009) then with 𝛿 = 10−4309
we find 𝜎 ≈ 2.5. We will consider the distinguished limit of 𝜎 = 𝑂 (1) in this paper, but310
we note there is an alternative, slow-dirt-diffusion distinguished limit with 𝜎 = 𝑂 (𝜖−1). We311
discuss this alternative case further in the appendix A.2, and briefly in section 2.3 below.312
In summary, all of 𝜎, 𝜅, 𝛽, and 𝛼 are taken to be order one relative to 𝜖 to homogenise the313
model.314

2.3. Summary of the homogenised drying model315

The homogenisation analysis is described in appendix A. The result of this analysis is a316
macroscale model for the vapour density 𝜌, suspended dirt volume fraction 𝜃, deposited317
dirt-layer thickness, 𝑅, and position, 𝑌 = 𝐻 (𝑇) of the evaporation front, namely318

𝛿𝜙𝜌𝑇 − (𝜈 − 𝛿)𝜙|𝐻𝐻𝑇 𝜌𝑌 = (D𝜌𝑌 )𝑌 , (2.20a)319
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for 𝑌 < 𝐻 (𝑇), and320

𝜎𝜙𝜃𝑇 = (D𝜃𝑌 )𝑌 − 𝜎𝜅C(𝜃∗ − 𝜃) (𝜃 − 𝛽𝜒𝑅), (2.20b)321

𝑅𝑇 = 𝜅(𝜃 − 𝛽𝜒𝑅). (2.20c)322

for 𝑌 > 𝐻 (𝑇). At 𝑌 = 𝐻 (𝑇),323

D𝜌𝑌 = (1 − 𝜈𝜌)𝜙𝐻𝑇 , (2.20d)324

𝜌 = 𝑓 (𝜃), (2.20e)325

𝜎𝜙𝐻𝑇𝜃 + D𝜃𝑌 = 0, (2.20f )326

while327

𝜌 = 𝛼 on 𝑌 = 0, (2.20g)328

𝜃𝑌 = 0 on 𝑌 = 1. (2.20h)329

The porosity, 𝜙(𝑅) = 1−𝜋(𝑟0+𝑅)2, surface area, C(𝑅) = 2𝜋(𝑟0+𝑅), and effective diffusivity,330
D(𝑅) (given by (A 4)), all vary with the thickness of the deposited dirt layer.331

We assume that, initially, the porous material is entirely saturated with a uniform liquid–332
dirt mixture, none of which has yet deposited (ie: the timescale of deposition is assumed333
longer than the timescale over which the liquid–dirt mixture flooded the material). Thus at334
𝑇 = 0,335

𝑅 = 0, 𝐻 = 0, 𝜃 = 𝜃𝐼𝐶 . (2.21)336

Our homogenised model (2.20) is similar in structure to those proposed in Breward et al.337
(2020), Sanaei et al. (2022), and Ji & Sanaei (2023), with the suspended dirt satisfying338
a reaction–diffusion equation ahead of a moving evaporation front. However, through the339
systematic homogenisation analysis, we have found the correct form for the diffusion term in340
(2.20b), which was erroneously given as (𝐷 (𝜙𝜃)𝑌 )𝑌 (in our notation) by Ji & Sanaei (2023).341
Additionally, we have quantified the effective parameters D, C, and 𝜙, which all vary with342
the deposited dirt layer thickness 𝑅. We also impose different boundary conditions to Ji &343
Sanaei (2023), which will result in different drying behaviours, as discussed in section 3344
below.345

A key assumption of our homogenisation analysis was that 𝜎 = 𝑂 (1), which ensured that346
𝜃 (and therefore 𝑅) is uniform to leading order on the microscale. As discussed further in347
section A.2 of the appendix, the extremely slow suspended dirt diffusion limit of 𝜎 = 𝑂 (𝜖−1)348
is not captured by this model: in this case we would expect non-periodic behaviour on the349
microscale at the evaporating interface, and the homogenisation analysis would break down.350
We do not consider this situation here.351

3. An ODE for the motion of the evaporation front352

The parameter 𝛿 = 𝜌∗/𝜌𝐿 is generally small; indeed for water evaporating we expect 𝛿 ≈353
10−3. Before studying the full drying problem, we consider the limit of 𝛿 → 0 in the vapour-354
gas transport problem, which we will show results in a single ODE describing the motion of355
the evaporation front 𝐻 (𝑇). This gives insight into the drying dynamics and is interesting as a356
comparison with other models for the motion of evaporating interfaces in the literature, eg Ji357
& Sanaei (2023). Furthermore, the analysis in this section is helpful for all of the subsequent358
analysis of the model, including the early-time asymptotic analysis in the following section359
(section 4), which we will use to initialise numerical simulations of the model.360

For small 𝛿 we see from (2.20a) that the vapour density profile is quasi-steady, varying361
instantaneously with the motion of the evaporation front. Specifically, in the limit 𝛿 → 0, the362
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vapour transport equation (2.20a) becomes363

−𝜈𝜙 |𝐻𝐻𝑇 𝜌𝑌 = (D𝜌𝑌 )𝑌 . (3.1)364

Integrating twice with respect to𝑌 , and applying the boundary conditions (2.20d) and (2.20g)365
we obtain366

𝜌 =
1
𝜈

(
1 − (1 − 𝜈𝛼) exp

(
−𝜈𝜙 |𝐻𝐻𝑇

∫ 𝑌

0

1
D(𝑅(𝑌 ))

d𝑌
))

. (3.2)367

By additionally imposing the boundary condition (2.20e) we obtain an equation for the368
motion of the evaporation front, 𝐻, in terms of the suspended dirt volume fraction there,369
𝜃 |𝐻 , namely370

𝐻𝑇

∫ 𝐻

0

1
D(𝑅(𝑌 ))

d𝑌 =
1

𝜈𝜙 |𝐻
log

(
1 − 𝜈𝛼

1 − 𝜈 𝑓 (𝜃 |𝐻 )

)
. (3.3)371

One particular case of interest is if D is uniform (for instance if little dirt has been deposited,372
so 𝑅 ≈ 0 is constant). In this case (3.3) reduces to373

𝐻𝐻𝑇 =
D

𝜈𝜙 |𝐻
log

(
1 − 𝜈𝛼

1 − 𝜈 𝑓 (𝜃 |𝐻 )

)
. (3.4)374

If 𝜃 |𝐻 were constant, we would see a
√
𝑇 behaviour of the evaporation front, as expected375

for this type of Stefan problem. For D non-uniform in 𝑌 , the integral term in (3.3) behaves376
like an overall resistance to vapour transport. In particular, the integral is dominated by any377
localised regions of porespace in 𝑌 < 𝐻 for which D is very small.378

We see that the ODE (3.4) for 𝐻 (with D constant) takes the form379

𝐻𝐻𝑇 = 𝐸1(𝜙|𝐻 , 𝜃 |𝐻 ), (3.5)380

for an algebraic function 𝐸1, while the more general (3.3) takes the form381

𝐻𝑇 = 𝐸2(𝜙|𝐻 , 𝜃 |𝐻 , 𝐻, 𝑅 |𝑌<𝐻 ). (3.6)382

By comparison, Ji & Sanaei (2023) prescribe an evaporative flux that does not explicitly383
depend on 𝐻, of the form384

𝐻𝑇 = 𝐸3(𝜙|𝐻 , 𝜃 |𝐻 ), (3.7)385

in our notation. Unlike (3.5) and (3.6), the model (3.7) does not explicitly depend on386
the position 𝐻 of the evaporating interface. These different equations for 𝐻 result from387
different modelling assumptions: Ji & Sanaei (2023) assume that the vaporisation of the388
liquid molecules is the limiting process in the evaporation, whereas we have assumed that389
the vaporisation is instantaneous (the vapour is at its saturation point adjacent to 𝑌 = 𝐻)390
and that evaporation is instead limited by the transport of vapour out of the porous material.391
For sufficiently deep or hydrophobic porous media that there is a moving drying front, it is392
clear that the evaporation rate should depend on the location 𝐻 of the drying front (Lehmann393
et al. 2008; Shokri et al. 2008). Furthermore, we note that our drying model is given in terms394
of well-defined physical parameters such as the diffusivity and saturation vapour densities,395
and results in a reasonable drying timescale 𝑙2𝜌𝐿/𝜌∗𝐷𝑣 ≈ 102 seconds (using values for396
water: 𝜌𝐿 ≈ 103 kg m−3, 𝜌∗ ≈ 1 kg m−3, 𝐷𝑣 ≈ 10−5 m2 s−1, and 𝑙 ∼ 10−3 m), whereas the397
coefficients in a prescribed evaporation rate must be fitted in some way.398

We note from (3.3) that evaporation only occurs when 𝑓 (𝜃 |𝐻 ) > 𝛼, so that the vapour399
density at the liquid–gas interface is greater than the atmospheric vapour density; otherwise400
if 𝑓 (𝜃 |𝐻 ) = 𝛼 we see that 𝐻𝑇 = 0. We define 𝜃 such that 𝑓 (𝜃) = 𝛼, noting that since 𝑓 is401
monotonic in 𝜃, evaporation only occurs for 𝜃 < 𝜃.402

Our analysis above (and in the remainder of this paper) is for the case that the atmospheric403

Rapids articles must not exceed this page length
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vapour density 𝜌 = 𝛼 is prescribed at the surface𝑌 = 0. As an aside, we now briefly consider404
an alternative case, in which the flux, 𝐽, of vapour out of the material at𝑌 = 0 is prescribed by405
a Newton cooling law: 𝐽 = 𝑚(𝜌 |0 − 𝑎∞), for some constants 𝑎∞ (the far-field ambient vapour406
density) and 𝑚 (the mass-transfer coefficient). Since the vapour flux is spatially uniform407
throughout 𝑌 < 𝐻 in the limit 𝛿 ≪ 1, we find that 𝜙|𝐻𝐻𝑇 = 𝑚(𝜌 |0 − 𝑎∞). Eliminating 𝜌 |0,408
we find that 𝐻𝑇 is given by the implicit ODE409

𝐻𝑇

∫ 𝐻

𝑌=0

1
D d𝑌 =

1
𝜈𝜙 |𝐻

log
(

1 − 𝜈𝑎∞ − 𝜈𝜙 |𝐻𝐻𝑇/𝑚
1 − 𝜈 𝑓 (𝜃 |𝐻 )

)
. (3.8)410

(We may rearrange (3.8) to give 𝐻𝑇 explicitly in terms of a Lambert-W function, but we411
consider the form (3.8) more useful as we may compare directly with (3.3).) Clearly in412
the limit as 𝑚 → ∞ (for which vapour is easily removed from the surface of the porous413
material), and with 𝑎∞ = 𝛼 we regain (3.3). For bounded mass-transfer coefficient 𝑚, the414
non-instantaneous removal of vapour from the surface results in a slower evaporation rate415
𝐻𝑇 , compared with that given by (3.3).416

4. Early-time behaviour and numerical method417

In this section we first consider the early-time behaviour of our model (2.20) in section 4.1,418
in the limit of 𝛿 ≪ 1. This will be necessary in order to accurately initialise numerical419
simulations of the model, which is then discussed in section 4.2.420

4.1. Early-time analysis421

To study the early-time behaviour of the system (2.20), we suppose 𝑇 = 𝑏𝜏 where 𝑏 ≪ 1 is422
the smallest parameter in the system, and 𝜏 = 𝑂 (1). From (2.20c), on this timescale we see423
that 𝑅𝜏 = 𝑂 (𝑏𝜅) ≪ 1, and so 𝑅 is small, hence all of D, 𝜙, and C are constant to leading424
order in 𝑏.425

We first consider the vapour problem in 𝑌 < 𝐻. On the short timescale the interface only426
moves a short distance, and so we rescale427

𝐻 =

√︄
𝑏D
𝜙

�̄� 𝑌 =

√︄
𝑏D
𝜙

𝑌, (4.1)428

in order to balance the mass-flux boundary condition (2.20d). The vapour problem is therefore429
self-similar in that we regain the same system at early time with these rescalings as the full430
system (2.20a), (2.20d)-(2.20e) and (2.20g), namely431

𝛿𝜌𝜏 − (𝜈 − 𝛿)�̄�𝜏𝜌�̄� = 𝜌�̄��̄� , for 𝑌 ∈ (0, �̄� (𝜏)), (4.2a)432

𝜌 = 𝛼 on 𝑌 = 0, (4.2b)433

𝜌�̄� = (1 − 𝜈𝜌)�̄�𝜏 on 𝑌 = �̄� (𝜏), (4.2c)434

𝜌 = 𝑓 (𝜃) on 𝑌 = �̄� (𝜏). (4.2d)435

We have already noted that 𝛿 ≪ 1 in general, and we take this limit now to make analytical436
progress. As in section 3 we find437

𝜌 =
1
𝜈

(
1 − (1 − 𝜈𝛼) exp

(
−𝜈�̄�𝜏𝑌

) )
, (4.3)438

where �̄� (𝜏) is the solution of439

�̄��̄�𝜏 =
1
𝜈

log
(

1 − 𝜈𝛼

1 − 𝜈 𝑓 (𝜃 |�̄�=�̄� (𝜏 ) )

)
. (4.4)440
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The value of 𝜃 at 𝑌 = �̄� (𝜏) depends on the solution of the suspended dirt problem in441

the domain 𝑌 ∈ (𝐻, 1) = (
√︁
𝑏D/𝜙 �̄� (𝜏), 1). On this short timescale, the full dirt problem442

(2.20b), (2.20f) and (2.20h), with the initial condition (2.21), becomes443

𝜎𝜙𝜃𝜏 = 𝑏
(
D𝜃𝑌𝑌 − 𝜎𝜅C(𝜃∗ − 𝜃) (𝜃 − 𝛽𝜒𝑅)

)
for 𝑌 ∈ (

√︁
𝑏D/𝜙 �̄� (𝜏), 1), (4.5a)444

𝜎𝜙𝜃�̄�𝜏 +
√
𝑏D𝜃𝑌 = 0 on 𝑌 =

√︁
𝑏D/𝜙 �̄� (𝜏), (4.5b)445

𝜃𝑌 = 0 on 𝑌 = 1, (4.5c)446

𝜃 = 𝜃𝐼𝐶 at 𝜏 = 0. (4.5d)447

To leading order in 𝑏 we see that 𝜃𝜏 = 0, so that 𝜃 = 𝜃𝐼𝐶 is independent of time over the448

domain. However, in a boundary layer at 𝑌 =
√︁
𝑏D/𝜙�̄�, suspended dirt accumulates due to449

the motion of the evaporation front. To examine this region, we make the change of variables450

𝑌 =
√︁
𝑏D/𝜙(�̄� (𝜏) + 𝑧), so that, at leading order in 𝑏, the equations are451

𝜎
(
𝜃𝜏 − �̄�𝜏𝜃𝑧

)
= 𝜃𝑧𝑧 for 𝑧 > 0, (4.6a)452

𝜎𝜃�̄�𝜏 + 𝜃𝑧 = 0 on 𝑧 = 0, (4.6b)453

𝜃 → 𝜃𝐼𝐶 as 𝑧 → ∞, (4.6c)454

𝜃 = 𝜃𝐼𝐶 at 𝜏 = 0. (4.6d)455

This system (4.6) must be solved with (4.4) to determine 𝜃 and �̄�.456
We look for a similarity solution of the form457

�̄� =
2𝜆
√
𝜎

√
𝜏, 𝜃 = Θ

(√
𝜎𝑧
√
𝜏

)
, (4.7)458

for some constant 𝜆 to be determined. In particular, from (4.4) we see that the suspended dirt459
volume fraction at the evaporating interface, 𝜃 |�̄� = Θ(0), must be constant in time for such460
a similarity solution to exist. Substituting into (4.6), we find the solution461

Θ = 𝜃𝐼𝐶 + (Θ(0) − 𝜃𝐼𝐶)
erfc

(
𝜆 +

√
𝜎𝑧

2
√
𝜏

)
erfc(𝜆) , (4.8)462

where 𝜆 and the constant Θ(0) satisfy463

𝜆2 =
𝜎

2𝜈
log

(
1 − 𝜈𝛼

1 − 𝜈 𝑓 (Θ(0))

)
, (4.9)464

Θ(0) = 𝜃𝐼𝐶 +
√
𝜋𝜆Θ(0)𝑒𝜆2

erfc(𝜆). (4.10)465

Solutions of (4.9)–(4.10) may be computed numerically, and are shown for various 𝜎 and466
𝜃𝐼𝐶 in figure 2.467

To establish some intuitive understanding of this early-time behaviour, we now consider468
the sublimits 𝜎 ≪ 1, 𝜃𝐼𝐶 ≪ 1, and 𝜎 ≫ 1 in turn. We show our early-time analytic solutions469
for each case in figure 3 (alongside numerical solutions for comparison, computed using the470
method described in section 4.2 below), all with excellent agreement. In each, we see that471
the vapour density 𝜌 varies from 𝑓 (𝜃 |𝐻 ) = 1 − 𝜃 |𝐻 at 𝑌 = 𝐻 to 𝛼 = 0 at the surface of the472
material, according to (4.3). The evaporation front moves with the expected

√
𝑇 behaviour,473

faster if there is a steeper vapour-density gradient. Suspended dirt accumulates in the liquid474
ahead of the evaporation front, with a spatial maximum in 𝜃 at 𝑌 = 𝐻. The size of the475
boundary layer at 𝐻 over which 𝜃 varies is dependent on 𝜎, which quantifies suspended476
dirt diffusion. At early times, we expect little dirt deposition, so that the dirt-layer thickness477
𝑅 ≈ 0 throughout the porous material.478
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Figure 2: Early-time solution behaviour. Coloured lines show the variation of the solution
of (4.9) and (4.10) with the suspended dirt diffusion timescale 𝜎. Green dashed lines are the
small-𝜎 approximations (4.11), while black dashed lines are the large-𝜎 approximations
(4.13). Here we use the form 𝑓 (𝜃) = 1 − 𝜃 and set 𝛼 = 0, so that 𝜃 = 1. We additionally set
𝜈 = 0.5.

If 𝜎 ≪ 1 so that suspended dirt diffusion is fast relative to the motion of the evaporation479
front, then we see from (4.9) that 𝜆 = 𝑂 (

√
𝜎), and so from (4.10) that 𝜃 |ℎ ∼ 𝜃𝐼𝐶 . Specifically,480

we find that481

Θ(0) = 𝜃𝐼𝐶 +𝑂 (
√
𝜎),

𝜆 =
√
𝜎

©«
√︄

1
2𝜈

log
(

1 − 𝜈𝛼

1 − 𝜈 𝑓 (𝜃𝐼𝐶)

)
+𝑂 (

√
𝜎)ª®¬

 as 𝜎 → 0. (4.11)482

Thus, reverting to our original variables, the early-time evaporating interface is given by483

𝐻 =
√
𝑇

√︄
D

2𝜈𝜙
log

(
1 − 𝜈𝛼

1 − 𝜈 𝑓 (𝜃𝐼𝐶)

)
+𝑂 (

√
𝜎) as 𝜎 → 0. (4.12)484

We also note from the form (4.8) of the solution that the spatial region over which 𝜃 varies485
is wide, 𝑂 (1/

√
𝜎). In this small-𝜎 limit, the diffusion of dirt is fast relative to the motion of486

the evaporation front, and so the suspended dirt volume fraction 𝜃 remains close to its initial487
value 𝜃𝐼𝐶 , only deviating by a small, 𝑂 (

√
𝜎), amount. For conservation of overall dirt, the488

region over which the accumulating suspended dirt is spread is wide, of 𝑂 (1/
√
𝜎) relative to489

the early-time boundary layer. This may be seen in figure 3a–b: since 𝜎 ≪ 1 the 𝜃-profile is490
approximately uniform in 𝑌 , and so close to its initial value of 𝜃𝐼𝐶 = 0.1 at early times. The491
suspended dirt is accumulating due to the evaporation, but spread almost evenly through the492
domain.493

Next, we suppose that 𝜎 = 𝑂 (1) but the initial suspended dirt volume fraction 𝜃𝐼𝐶 ≪ 1494
is small. In this case, for a balance in both of (4.9) and (4.10) we must have Θ(0) = 𝑂 (𝜃𝐼𝐶),495
and 𝜆 = 𝑂 (1), as we might expect. The solution shown in figure 3c–d is for this case, with496
𝜃𝐼𝐶 = 0.1: we indeed observe that 𝜃 |𝐻 = 𝑂 (0.1) (and this effect becomes increasingly clear497
for smaller 𝜃𝐼𝐶).498

Finally, if 𝜎 ≫ 1, so that the diffusion of suspended dirt is slow relative to the motion499
of the evaporation front, then from (4.9) we see that we must have 𝑓 (Θ(0)) = 𝛼 to leading500
order in 𝜎−1 ≪ 1. At this value,501

Θ(0) = 𝜃, (4.13a)502

there is no evaporation at leading order, as the vapour density at the atmospheric value is503
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Figure 3: Early-time solutions (4.3),(4.7), and (4.8) (dotted lines) compared with numerical
solutions (solid lines) of the full model (2.20), for 𝜎 = 0.01 (top) 𝜎 = 1 (middle) and
𝜎 = 10 (bottom). The profiles of 𝜌, 𝜃 and 𝑅 in figures a, c, and e are at times for which
𝐻 = 0.3 (towards the end of what we would consider “early” time, especially in the small-𝜎
case). Throughout the figure we take 𝑓 (𝜃) = 1 − 𝜃, 𝜅 = 1, 𝜃𝐼𝐶 = 0.1, 𝜈 = 0.5, 𝛿 = 10−3,
𝑟0 = 0.2, 𝛼 = 0, and 𝛽 = 0.
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in equilibrium with the liquid–dirt interface, and there is no transport of vapour out of the504
porous material. Indeed, we see from (4.10) that when 𝜃 = 𝜃, 𝜆 is the solution of505

𝜆𝑒𝜆
2
erfc(𝜆) = 𝜃 − 𝜃𝐼𝐶

𝜃
√
𝜋

, (4.13b)506

which is independent of 𝜎 and of 𝑂 (1), so that the position of the evaporating interface,507
given by508

𝐻 =
2𝜆
√
𝜎

√︄
D
𝜙

√
𝑇, (4.14)509

is of order 𝜎−1/2 ≪ 1 away from its initial position. Thus when the suspended dirt diffusion510
is slow, the diffusion of dirt away from 𝐻 limits the speed of the evaporation front, so that511
there is a slower, 𝑂 (𝜎), drying timescale. We also note from (4.8) that the region over512
which 𝜃 varies is narrow, with width 𝑂 (1/

√
𝜎) relative to the early-time boundary layer. The513

boundary-layer is narrow for large 𝜎, so that the early-time solution actually remains valid514
for the majority of the drying process. Indeed, in figure 3e–f we see excellent agreement515
between the early-time analytic solution and the numerical solution for 𝜌, 𝜃 and 𝐻 up to the516
time when the evaporating front is halfway through the domain. This is because the boundary517
layer at 𝐻 over which 𝜃 varies is narrow, and so the effect of the boundary at 𝑌 = 1 is not518
felt until 𝐻 is close to 1. However, we notice in figure 3e that the early-time approximation519
𝑅 = 0 ceases to be accurate at these late times. The early-time solution would remain valid so520
long as 𝑅 remains relatively small (eg: if 𝜅 and 𝜃𝐼𝐶 are fairly small). We note that, since the521
boundary layer width scales with

√
𝑇 , it quickly becomes numerically impractical to resolve522

the solution at small times for large 𝜎. The early-time asymptotic solution is therefore very523
valuable in initialising the simulations accurately for large 𝜎.524

Finally, we note that our early-time analysis in this section is equivalent to studying the525
original problem on a semi-infinite domain 𝑌 ∈ (0,∞), in the combined limit 𝜅, 𝛿 → 0.526

4.2. Numerical method527

We solve the model (2.20) numerically using the method of lines. Specifically, we first528
transform the model onto two separate fixed domains, setting 𝜂 = 𝑌/𝐻 (𝑇) for the gas–529
vapour problem, which then holds in 𝜂 ∈ (0, 1), and setting 𝜉 = (𝑌 − 𝐻 (𝑇))/(1 − 𝐻 (𝑇))530
for the liquid–dirt problem, which then also holds in 𝜉 ∈ (0, 1). We discretise spatially531
on these transformed domains, with a uniform mesh, using central differences for diffusive532
terms and first-order upwinding for advective terms, so that the scheme is overall first order.533
(The advection for the vapour problem (2.20a), including the artificial advection terms534
due to the change of variables, is negative; the purely artificial advection in the liquid–535
dirt problem (2.20b)–(2.20c) is also negative. Upwinding these terms therefore requires536
forward differences in both cases.) We then use the inbuilt ODE solver ode15s in Matlab537
for the timestepping. We note that the model is stiff in certain parameter regimes of interest538
(𝛿 ≪ 1 and/or 𝜎 ≪ 1), and that ode15s is specifically designed for stiff-systems. Ode15s539
is a multistep solver, using numerical differentiation formulas of order 1–5 (Shampine &540
Reichelt 1997). We make use of our early-time asymptotic solution of section 4.1 to initialise541
our numerical simulations. In particular the spatial mesh must be sufficiently fine to resolve542
the boundary layer in the suspended dirt problem at 𝑌 = 𝐻 at early times. Our analysis in543
section 4.1 suggests we require the number of spatial meshpoints 𝑁 to scale like544

𝑁 = 𝑂

(√︄
D(0)𝜎
𝜙(0)𝑇

)
for 𝑇 ≪ 1. (4.15)545
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More efficient solvers might take further advantage of the asymptotic structure of the system546
and distribute meshpoints unevenly through the domain in order to ensure good resolution547
of the boundary layer while maintaining computational efficiency. However, by making use548
of our early-time asymptotic solution we do not require simulations at particularly small 𝑇 ,549
and our uniform-mesh formulation suffices.550

5. The slow-deposition limit 𝜅 ≪ 1 and dry-clogging551

Having stated the model and our numerical solution method, we are now in a position to552
explore solutions of the model. In this section, we focus on the limit 𝜅 ≪ 1, for which the553
dirt deposition timescale is much longer than the evaporation timescale. We expect that the554
accumulation of suspended dirt due to evaporation and the effects of suspended dirt diffusion555
to be dominant.556

We first consider the leading-order behaviour, taking 𝜅 = 0, and show that the evaporation557
becomes infinitely slow as suspended dirt accumulates. We then allow 𝜅 to be small but558
non-zero, and explore our first clogging scenario, which we term “dry-clogging”.559

5.1. Infinitely slow evaporation when 𝜅 = 0560

Taking 𝜅 = 0, we see from (2.20c) that we have 𝑅 = 0 everywhere, and thus D = D0,561
C = C0, and 𝜙 = 𝜙0 are all constant, equal to their values at 𝑅 = 0. Taking the 𝛿 ≪ 1 limit562
as in section 3, the motion of the evaporation front is therefore governed by (3.4), ie:563

𝐻𝐻𝑇 = − D0
𝜈𝜙0

log
(

1 − 𝜈 𝑓 (𝜃 |𝐻 )
1 − 𝜈𝛼

)
, (5.1)564

while 𝜃 satisfies565

𝜎𝜙0
D0

𝜃𝑇 = 𝜃𝑌𝑌 for 𝑌 ∈ (𝐻 (𝑇), 1), (5.2a)566

𝜎𝜙0
D0

𝜃𝐻𝑇 + 𝜃𝑌 = 0 on 𝑌 = 𝐻 (𝑇), (5.2b)567

𝜃𝑌 = 0 on 𝑌 = 1, (5.2c)568

𝜃 = 𝜃𝐼𝐶 at 𝑇 = 0. (5.2d)569

To investigate how the accumulation of suspended dirt affects the evaporation rate, we570
consider the additional limit of 𝜎 ≪ 1 so that the diffusion of suspended dirt is fast. In this571
case, we see from (5.2) that 𝜃 (𝑇) is uniform, and so, for overall conservation of dirt, we must572
have573

𝜃 (𝑇) = 𝜃𝐼𝐶

1 − 𝐻 (𝑇) . (5.3)574

Substituting (5.3) into (5.1) we obtain the single equation for 𝐻 (𝑇)575

𝐻𝐻𝑇 = − D0
𝜈𝜙0

[
log

(
1 − 𝜈 𝑓

(
𝜃𝐼𝐶

1 − 𝐻

))
− log(1 − 𝜈𝛼)

]
. (5.4)576

As discussed previously, the evaporation shuts down when 𝜃 = 𝜃 so that 𝑓 (𝜃) = 𝛼, since577
then 𝐻𝑇 = 0. At this point we see from (5.3) that 𝐻 = 1 − 𝜃𝐼𝐶/𝜃.578

Numerical solutions of the model (2.20) (with 𝜅 = 0, 𝛿 = 10−3) are shown in figures 4a579
and b, and compared with the solution of (5.4) for the limit of 𝜎 → 0, with good agreement580
for 𝜎 = 0.1 and smaller. We take the functional form 𝑓 (𝜃) = 1− 𝜃 for these simulations, and581
fix 𝛼 = 0 (so that 𝜃 = 1). In figure 4c, we show solutions of (5.4) for various 𝜃𝐼𝐶 . We see582
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that, for larger 𝜃𝐼𝐶 , the evaporation is slower, with the evaporating interface 𝐻 moving more583
slowly into the domain. In particular we note that when 𝜃𝐼𝐶 = 0 the evaporation is completed584
(with 𝐻 = 1) in finite time585

𝑇 = − 𝜈𝜙0
2D0 log(1 − 𝜈) ≈ 0.36, (5.5)586

(from (5.4) with 𝜃𝐼𝐶 = 0), whereas for 𝜃𝐼𝐶 > 0 we see that 𝐻 appears to take infinite time587
to reach 1 − 𝜃𝐼𝐶/𝜃.588

We investigate this late-time behaviour (within the 𝜎 ≪ 1 limit) by considering the589
expansion590

𝐻 = 1 − 𝜃𝐼𝐶

𝜃
(1 + 𝑐H) so that 𝜃 =

𝜃

1 + 𝑐H , (5.6)591

where 𝑐 ≪ 1 is small and H = 𝑂 (1) is positive. Assuming that 𝑓 is continuous at 𝜃 = 𝜃, on592
substitution of (5.6) into (5.4) we find (retaining only leading-order terms on either side)593

𝑐

(
1 − 𝜃𝐼𝐶

𝜃

)
𝜃𝐼𝐶

𝜃
H𝑇 = − D0

𝜙0(1 − 𝜈𝛼)

(
𝑓

(
𝜃

1 + 𝑐H

)
− 𝛼

)
594

= − D0
𝜙0(1 − 𝜈𝛼)

(
𝑓

(
𝜃 (1 − 𝑐H +𝑂 (𝑐2))

)
− 𝛼

)
. (5.7)595

So long as the gradient of the function 𝑓 is bounded at 𝜃, we may Taylor expand the right596
hand side of (5.7) and thus find that, to leading order in 𝑐,597

H𝑇 =
D0𝜃

3

𝜙0(1 − 𝜈𝛼)𝜃𝐼𝐶 (𝜃 − 𝜃𝐼𝐶)
𝑓 ′ (𝜃)H , (5.8)598

since 𝑓 (𝜃) = 𝛼 by definition. Thus H decays exponentially to zero as 𝑇 → ∞ (since599
𝑓 ′ (𝜃) < 0) and the evaporation takes infinite time. (Similarly if 𝑓 ′ (𝜃) = 0 but higher600
derivatives are non-zero then H has polynomial, and still infinite-time, decay.)601

We might ask if there are sensible choices for 𝑓 (𝜃) that result in finite-time completion602
of the evaporation. In order for the evaporation to complete in finite time, we see that the603
gradient of 𝑓 must be unbounded at 𝜃. For instance if 𝑓 (𝜃 (1 − 𝑐H)) = 𝛼 + 𝐴(𝑐H)1/𝑛,604
for 𝑛 > 1 and some constant 𝐴, then by substituting this expansion for 𝑓 into (5.7) and605
integrating the resulting ODE for H in time 𝑇 , we find that606

H ∼
(
constant − 𝐷0𝜃

2𝐴(𝑛 − 1)
𝜙0𝜃𝐼𝐶 (𝜃 − 𝜃𝐼𝐶) (1 − 𝜈𝛼)𝑛

𝑐−(𝑛−1)/𝑛𝑇

)𝑛/(𝑛−1)
, (5.9)607

and soH reaches zero in finite time. However, this finite-time drying requires that the gradient608
of 𝑓 is unbounded at 𝜃, which is physically unreasonable, not least because 𝜃 (defined as the609
value of 𝜃 for which 𝑓 = 𝛼) depends on the atmospheric vapour density 𝜌𝑎 via the value of 𝛼.610
For physically reasonable functional forms 𝑓 (𝜃), we therefore expect a bounded derivative611
at 𝜃, and thus that the evaporation becomes unboundedly slow as 𝜃 → 𝜃.612

This analysis is for the case 𝜎 ≪ 1. For larger 𝜎, we see from figure 4a that the evaporation613
rate is slower. As we see in figure 4b, this is because suspended dirt accumulates near the614
evaporating interface rather than quickly diffusing through the domain, and with higher615
values of 𝜃 |𝐻 , we see from (5.1) that the evaporation rate is reduced. Numerically, we see616
that, for non-negligible 𝜎, we still have 𝐻 → 1− 𝜃𝐼𝐶/𝜃 in infinite time. Indeed, although for617
larger 𝜎 the evaporation is additionally slowed by the diffusion of the suspended dirt away618
from the evaporating interface, at late times when the evaporation becomes infinitely slow,619
the diffusion of dirt does not limit the drying process.620
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(a) Motion of the evaporation front
𝐻 (𝑇) for various 𝜎, with 𝜃𝐼𝐶 = 0.3.
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(b) Vapour density and suspended
dirt volume fraction profiles at the
same time 𝑇 = 0.2 for various 𝜎,
with 𝜃𝐼𝐶 = 0.3.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Effect of 𝜃𝐼𝐶 on the evaporating
interface motion. Dashed lines are
1 − 𝜃𝐼𝐶 .

Figure 4: The effect of suspended dirt accumulation on the evaporation, for 𝜅 = 0 and
𝜎 ≪ 1. Numerical solutions of (2.20) shown with 𝜅 = 0 (no dirt deposition), alongside
the solution of (5.4) in the limit 𝜎 → 0, (taking 𝑓 (𝜃) = 1 − 𝜃 and 𝛼 = 0). Throughout the
figure we take 𝜈 = 0.5 and 𝑟0 = 0.2.

In summary, for 𝜅 = 0 the drying takes infinite time to complete and, as drying occurs,621
the suspended dirt concentrates in a layer at 𝑦 = 1. The drying never fully stops (although622
it becomes infinitely slow). By contrast we will see in section 5.2 that if 𝜅 ≪ 1 is non-zero623
then the dirt begins to deposit at late time, and this causes the drying to completely stop in624
finite time (which we refer to as clogging).625

5.2. Dry-clogging behaviour for small but non-zero 𝜅626

The analysis in section 5.1 assumed that 𝜅 = 0 so that there was no deposition of dirt at all,627
and we saw that, in this case, there is an infinitely long drying time as 𝜃 → 𝜃. However,628
in reality we might instead have 𝜅 ≪ 1 small but non-zero. In this case, we would expect629
the same behaviour as in section 5 initially (over an 𝑂 (1) time), but then during the slow630
evolution towards 𝜃 → 𝜃, the deposition will begin to become important. Dirt is slowly631
deposited, and the deposited dirt layer, thickness 𝑅, grows. From the microscale geometry,632
we see that, when 𝑅 = 𝑅clog := 0.5−𝑟0, the dirt layers on neighbouring solid circles meet, and633
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Figure 5: The two clogging behaviours: dry clogging (left) for which 𝜃 = 𝜃 for𝑌 > 𝐻 when
the system clogs, so that (almost) pure dirt remains with negligible liquid trapped; and wet
clogging (right) for which a mixture of liquid and dirt is trapped in 𝑌 > 𝐻 by the clogging.

the pore-scale liquid region ceases to be connected. This means that the effective diffusivity634
D(𝑅clog) = 0. In particular, if 𝑅 = 𝑅clog then vapour cannot be transported through the635
porous material, and thus evaporation ceases. We define “clogging” to be this situation when636
𝑅 = 𝑅clog at 𝑌 = 𝐻 (𝑇) at finite time 𝑇 , and thus the evaporation is stopped.637

To investigate this, we look at the behaviour of the system on the long time 𝑇 = 𝑇/𝜅 over638
which 𝑅 varies. With this change of variables in (5.1), we see that 𝐻 satisfies639

𝜅𝐻�̃�

∫ 𝐻

0

1
D d𝑌 = − 1

𝜈𝜙
log

(
1 − 𝜈 𝑓 (𝜃 |𝐻 )

1 − 𝜈𝛼

)
, (5.10)640

while for 𝑌 > 𝐻641

𝑅�̃� = 𝜃 − 𝛽𝜒𝑅, (5.11)642

𝜅𝜎𝜙𝜃�̃� = (D𝜃𝑌 )𝑌 − 𝜎𝜅C(𝜃∗ − 𝜃) (𝜃 − 𝛽𝜒𝑅), (5.12)643

along with the boundary conditions (2.20f) and (2.20h)644

𝜅𝜎𝜙𝐻�̃�𝜃 + D𝜃𝑌 = 0 on 𝑌 = 𝐻 (𝑇), (5.13)645

𝜃𝑌 = 0 on 𝑌 = 1. (5.14)646

At leading order in 𝜅, we see from (5.12)–(5.14) that 𝜃 = 𝜃 is uniform, and thus, in 𝑌 > 𝐻,647
from (5.11) we find that648

𝑅 = (𝜃 − 𝛽)𝑇, (5.15)649

is spatially uniform. Clearly 𝑅 = 𝑅clog after time 𝑇 = 𝑅clog/(𝜃 − 𝛽), or in the original time650
variable, at651

𝑇end =
𝑅clog

𝜅(𝜃 − 𝛽)
+𝑂 (1). (5.16)652

We note that, during this late, 𝑂 (1/𝜅) time, the position of the evaporating interface, 𝐻,653
and the 𝑂 (𝜅) deviation of 𝜃 from 𝜃 may be found by going to next order in 𝜅 in (5.10) and654
(5.12), and matching to the early-time behaviour in 𝑇 (or 𝑂 (1) time behaviour in 𝑇). Thus 𝑅655
reaches the clogging point 𝑅clog in finite time, and thus the system clogs. We term this type of656

clogging “dry”-clogging because, to leading order, 𝜃 = 𝜃 everywhere ahead of the clogging657
front. Since we expect 𝜃 ≈ 1 (indeed we take 𝜃 = 1 in our numerical simulations), there is658
therefore a negligible amount of liquid left trapped in the porous material by the clogging.659
This dry-clogging behaviour is illustrated in figure 5 (left).660

Results of a numerical simulation of (2.20) for 𝜅 = 0.04 are shown in figure 6. As expected,661
we see in figure 6b that 𝐻 varies from zero to around 1 − 𝜃𝐼𝐶/𝜃 over an 𝑂 (1) time, while 𝑅662
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Figure 6: Numerical solution of (2.20) for small 𝜅 showing dry-clogging behaviour, using
parameter values 𝜅 = 0.04, 𝜎 = 1, 𝜃𝐼𝐶 = 0.3. (a): Profiles of 𝜌, 𝜃, and 𝑅 very close to the
clogging time 𝑇end. (b): The motion 𝐻 (𝑇) of the evaporation front.

at the interface 𝑌 = 𝐻 (where 𝑅 is maximised in space at that time 𝑇) remains closer to zero663
during the time for which 𝐻 varies. Subsequently, there is a longer 𝑂 (1/𝜅) time over which664
𝐻 remains nearly stationary, since 𝜃 ≈ 𝜃 everywhere in 𝑌 > 𝐻, while 𝑅 (at 𝑌 = 𝐻) increases665
linearly to 𝑅clog = 0.3. The prediction (5.16) gives 𝑇end = 7.5 for the parameter values used666
in figure 6b, which is seen to be fairly accurate, although a slight underestimate, as this does667
not take into account the early time (in 𝑇 , or 𝑂 (1) in 𝑇) stage.668

The dry-clogging that we have described in this section always occurs for 𝜅 ≪ 1, but it669
may also occur for 𝜅 = 𝑂 (1), when the deposition rate is on the same order as the evaporation670
rate. Indeed, the model (2.20) must always dry-clog for 𝜅 > 0, even if 𝛽 = 0. This is because,671
if 𝛽 = 0, 𝜃 can never reach zero even for large 𝜅, and can only decay exponentially towards672
it. However, if 𝜅 ≫ 1 is sufficiently large that 𝜃 is very close to zero by the end stages of the673
drying, the dry-clogging occurs at a negligible distance from the end of the domain, 𝐻 = 1,674
and is not physically meaningful. We discuss this more in section 7 below. Furthermore, if675
𝛽 > 0 then we expect 𝜃 ⩾ 𝛽 for all time (so long as this is true initially). In this case we676
would certainly anticipate much more prominent dry-clogging behaviour, for a wider range677
of parameters, although to investigate this thoroughly is beyond the scope of the present678
study.679

6. The fast deposition limit (𝜅 ≫ 1) and wet-clogging680

We now consider the limit of 𝜅 ≫ 1, in which the deposition of dirt occurs much faster681
than the motion of the evaporation front. Since the deposited dirt layer grows quickly, it682
can become large enough to significantly affect the effective diffusivity D and porosity 𝜙, if683
𝜃𝐼𝐶 is sufficiently large, impacting on the drying dynamics. In particular, the deposited dirt684
layer thickness 𝑅 may reach the maximum radius 𝑅clog = 1/2 − 𝑟0, at which the diffusivity685

D = 0, and the system is clogged early in the domain, when 𝜃 is not 𝜃 in 𝑌 > 𝐻 (𝑇), so that a686
non-negligible quantity of liquid is trapped by the clogging. We refer to this type of clogging687
as “wet-clogging” as, compared with the dry-clogging behaviour discussed in section 5.2, a688
non-negligible amount of liquid is trapped by the clogging. This wet-clogging mechanism is689
illustrated in figure 5 (right).690
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6.1. Large 𝜅 behaviour691

To understand the deposition (and potential clogging) behaviour when 𝜅 ≫ 1, we change to692
the fast timescale over which 𝑅 varies, by setting693

𝑇 =
1
𝜅
𝑡, (6.1)694

where 𝑡 = 𝑂 (1). At such early times the evaporating interface is close to the surface of the695
porous material, and we rescale696

𝐻 =
1

√
𝜎𝜅

ℎ̄, 𝑌 =
1

√
𝜎𝜅

�̄�, (6.2)697

for 𝑌 < 𝐻 (𝑇), (assuming that 𝜎𝜅 ≫ 1) so that (3.3) becomes698

1
𝜎
ℎ̄𝑡

∫ ℎ̄

0

1
D(𝑅( �̄�)) d�̄� = − 1

𝜈𝜙 | ℎ̄
log

(
1 − 𝜈 𝑓 (𝜃 |ℎ)

1 − 𝜈𝛼

)
. (6.3)699

For 𝑌 > 𝐻 = (1/
√
𝜎𝜅) ℎ̄, we see that (2.20b)–(2.20c) become700

𝜙𝜃𝑡 =
1
𝜎𝜅

(D𝜃𝑌 )𝑌 − C(𝜃∗ − 𝜃) (𝜃 − 𝛽𝜒𝑅), (6.4)701

𝑅𝑡 = 𝜃 − 𝛽𝜒𝑅 . (6.5)702

To leading order in (𝜅𝜎)−1 ≪ 1, we have a plane-autonomous deposition system:703

𝜙(𝑅)𝜃𝑡 = −C(𝑅) (𝜃∗ − 𝜃) (𝜃 − 𝛽𝜒𝑅), (6.6a)704

𝑅𝑡 = 𝜃 − 𝛽𝜒𝑅 . (6.6b)705

We refer to the system (6.6) as the outer problem, which holds away from the evaporation706
front in the majority of the domain. (At the evaporation front there must be a boundary707
layer, which we will discuss later.) Specifically, the initial conditions 𝜃 = 𝜃𝐼𝐶 > 𝛽 and708
𝑅 = 0 at 𝑡 = 0, imply that both 𝜃 and 𝑅 are independent of 𝑌 for all 𝑡, and, recalling that709
𝜙(𝑅) = 1 − 𝜋(𝑟0 + 𝑅)2 and C(𝑅) = −𝜙′ (𝑅) = 2𝜋(𝑟0 + 𝑅), a first integral from (6.6) is710

𝜙(𝑅) (𝜃∗ − 𝜃) = 𝜙(0) (𝜃∗ − 𝜃𝐼𝐶), (6.7)711

which is independent of time 𝑡. This equation (6.7) may be interpreted as an expression of712
overall conservation of dirt: since there is no transport of dirt on this timescale, the total713
suspended dirt in the liquid and deposited dirt in the layer, must remain constant in time.714
We could use (6.7) in (6.6) to find implicit expressions for the spatially uniform 𝑅 and 𝜃,715
although this is not particularly illustrative. Instead, we use (6.7) to plot the phase plane in the716
outer region in figure 7. The system begins at 𝑅 = 0, 𝜃 = 𝜃𝐼𝐶 . If 𝜃𝐼𝐶 > 𝛽 we see from (6.6b)717
that 𝑅 increases in time and, from (6.7), that 𝜃 decreases towards 𝜃 = 𝛽. If instead 𝜃𝐼𝐶 ⩽ 𝛽,718
then 𝑅 remains zero and 𝜃 remains at its initial value (as any deposited dirt immediately719
re-suspends, from (6.6b)). We note that the system clogs if 𝑅 reaches 𝑅clog before 𝜃 reaches720
𝛽. We see that this occurs for sufficiently large initial suspended dirt concentrations, namely721
(from (6.7)) if722

𝜃𝐼𝐶 > 𝜃crit
𝐼𝐶 := 𝜃∗ − (𝜃∗ − 𝛽)

(
1 − 𝜋/4
1 − 𝜋𝑟2

0

)
. (6.8)723

Although this analysis shows that the system certainly clogs for 𝜃𝐼𝐶 > 𝜃crit
𝐼𝐶

(in this limit724
𝜅𝜎 ≫ 1), we expect that the system will in fact clog for lower values of 𝜃𝐼𝐶 too, since we725
expect there will be higher 𝜃 and therefore faster deposition near to the evaporation front at726
ℎ̄.727
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Figure 7: Phase plane dynamics in the outer region when 𝜅 ≫ 1. Black curves show
trajectories, with the system moving down these curves from (0, 𝜃𝐼𝐶 ) to the attractor at
𝜃 = 𝛽 (direction shown by arrows). For 𝜃𝐼𝐶 > 𝜃crit

𝐼𝐶
, the trajectory hits 𝑅 = 𝑅clog before

reaching 𝜃 = 𝛽. Here we take 𝜃∗ = 1, 𝛽 = 0.15, 𝑟0 = 0.2.

Indeed, in a boundary layer of width 𝑂 (1/
√
𝜎𝜅), dirt accumulates due to the motion of728

the evaporation front. By making the change of variables729

𝑌 =
1

√
𝜎𝜅

(
ℎ̄ + 𝑧

)
, (6.9)730

we find that, in the boundary layer 𝑧 ∈ (0,∞),731

𝜙
(
𝜃𝑡 − ℎ̄𝑡𝜃𝑧

)
= (D𝜃𝑧)𝑧 − C(𝜃∗ − 𝜃) (𝜃 − 𝛽𝜒𝑅), (6.10a)732

𝑅𝑡 − ℎ̄𝑡𝑅𝑧 = 𝜃 − 𝛽𝜒𝑅, (6.10b)733

while at the evaporation interface 𝑧 = 0,734

𝜙𝜃ℎ̄𝑡 + D𝜃𝑧 = 0, (6.10c)735

and, as 𝑧 → ∞,736

𝑅 → 𝑅out(𝑡), 𝜃 → 𝜃out(𝑡), (6.10d)737

where 𝑅out and 𝜃out are the values in the outer region, as described above. This boundary layer738
system (6.10), coupled with (6.3), describes the motion of the evaporation front, accumulation739
of suspended dirt ahead of it, and the deposition of dirt. We note that dirt accumulation,740
transport, and deposition all balance in the boundary layer.741

We show a solution with 𝜅 = 100 in figure 8. The subplots 8a–d show the spatial profiles742
for 𝜌, 𝜃 and 𝑅 at four successive times, while the motion of the evaporation front 𝐻 (𝑇) is743
shown in figure 8e, with the time-points of the plots a–d marked as red circles. At early times,744
in 8a and b, we clearly see the boundary layer structure in the 𝜃 and 𝑅 plots in 𝑌 > 𝐻, with745
both 𝑅 and 𝜃 uniform in the rest of the domain. As time progresses, we see that 𝑅 increases746
while 𝜃 decreases, as suspended dirt becomes deposited onto the solid structure. By the time747
shown in figure 8c, we see that 𝜃 is close to zero everywhere: the deposition has nearly748
finished. Since 𝜅 ≫ 1 this occurs when the evaporation front is still only a short 𝑂 (

√
𝜅)749

distance into the domain. After this time, 𝜃 (≈ 0) and 𝑅 are both constant in 𝑌 > 𝐻, and the750
evaporation front travels to the bottom of the domain, resulting in a fully dry porous material751
with non-uniformly deposited dirt. Indeed we note that the combination of dirt accumulation,752
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diffusion, and deposition in the boundary layer, results in an internal spatial peak in the final753
thickness, 𝑅, of the deposited dirt layer (for 𝑌 < 𝐻) near the top of the domain. Since 𝑅 is754
higher here, the effective diffusivity of the vapour is correspondingly reduced. This can be755
seen in the non-monotone gradient of 𝜌 in figure 8d, where the 𝜌-profile is steepest at the756
peak value of 𝑅. The reduced diffusivity here limits the drying rate for the remainder of the757
process.758

The fact that we obtain this internal peak in 𝑅 at early time due to the boundary layer759
accumulation, diffusion, and deposition of dirt, means that our estimate for the clogging760
criterion (6.8), which assumes that dirt deposits in a spatially uniform way, must be an upper761
bound on the true critical 𝜃𝐼𝐶 : we expect to have clogging at 𝜃𝐼𝐶 lower than the critical762
value given by (6.8). Indeed, in figure 9 we show a simulation for the same parameter values763
as in figure 8, except that we take a larger initial suspended dirt volume fraction 𝜃𝐼𝐶 = 0.6764
which is still lower than the estimate of 𝜃crit

𝐼𝐶
= 0.755 given by (6.8), for the chosen parameter765

values. Nevertheless, we see that the system indeed clogs early in the domain. Both liquid and766
suspended dirt are trapped ahead of the clogged point, since 𝜃 < 1 in 𝑌 > 𝐻. The clogging767
happens at an 𝑂 (1/

√
𝜅) distance into the domain, at 𝐻 ≈ 0.07, and after an 𝑂 (1/𝜅) time, as768

predicted by our analysis above.769
We notice that the motion of the evaporation front shown in figure 9b no longer follows770

a
√
𝑇 behaviour. Instead we see that the speed 𝐻𝑇 of the evaporation front is not smoothly771

decreasing. Evaporation is fast to start with as 𝑅 is small and the vapour has only a short772
way to travel to the surface of the porous material. Then the evaporation front begins to slow773
down, as both 𝜃 |𝐻 increases due to accumulation and the effective diffusivity D decreases,774
as 𝑅 begins to increase. As the clogging point is approached, 𝐻𝑇 increases again, because775
the porosity 𝜙 is decreasing, so that there is less liquid in the pore-space to be evaporated776
since so much of the pore-space is occupied by the deposited and suspended dirt. Similar777
time-varying behaviour of 𝐻𝑇 is visible at early times in the case shown in figure 8e (inset),778
when the system did not clog.779

Evidently, wet-clogging can occur at initial suspended dirt volume fractions 𝜃𝐼𝐶 signif-780
icantly below the estimate for the critical value given by (6.8). To better understand the781
clogging criterion we must better understand the behaviour in the boundary layer at 𝑌 = 𝐻.782
However, the non-linearity of the boundary layer equations (6.10) makes them intractable to783
further analytical progress. Instead, we study a paradigm problem in the next section, which784
is a simplified version of the large-𝜅 problem, but which still captures the essence of the785
wet-clogging behaviour.786

6.2. The clogging criterion for a paradigm problem787

In section 6.1 we saw numerically that, for large 𝜅, the deposited dirt layer thickness 𝑅 is788
non-uniform near 𝑌 = 0, increasing from zero to 𝑅max := max𝑇 (𝑅 |𝐻 ) that is larger than the789
final value of 𝑅 attained in the outer-region. This means that wet-clogging occurs for lower790
values of 𝜃𝐼𝐶 than predicted by the outer-region estimate (6.8). Since the spatially uniform791
deposition dynamics in the outer region do not capture this non-uniformity in 𝑅 near to792
𝑌 = 0, we would like to consider the behaviour in the boundary layer at 𝑌 = 0, where there793
is a balance between all of accumulation, diffusion, and deposition of dirt, in order to derive794
an improved criterion for wet-clogging.795

However, the boundary-layer equations (6.10) are intractable analytically, due to the796
coupling between variables and the nonlinear terms. In order to build intuition for what797
determines the size of the peak 𝑅max, in this section we investigate a paradigm problem,798
with a different functional form for 𝑓 (𝜃), and unphysical simplifications of D and the bulk799
deposition term. With these (non-systematic) simplifications, we solve the boundary-layer800
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Figure 8: Numerical solution of (2.20) for large deposition rate 𝜅 = 100. We also take
𝑓 (𝜃) = 1 − 𝜃, 𝛼 = 0, 𝛽 = 0, 𝜈 = 0.5, 𝜎 = 1, 𝜃𝐼𝐶 = 0.4, 𝛿 = 10−3 and 𝑟0 = 0.2. The
green-dashed line in figures a–d shows the clogging point, 𝑅clog = 0.5 − 𝑟0, which is not
attained in this simulation.

equations (6.10) explicitly, and hence determine 𝑅max analytically. In this way, we determine801
a criterion for wet clogging (given by 𝑅max ⩾ 𝑅clog), and build intuition for the more general802
case.803

We assume for simplicity that 𝛽 = 0 and 𝛼 = 0. Additionally, we suppose that 𝑟0 is close to804
1/2, so that 𝑅 ≪ 𝑟0 (since the circular inclusions are close together, and only thin deposited-805
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Figure 9: Wet-clogging: numerical solution of (2.20) for large deposition rate 𝜅 = 100 and
𝜃𝐼𝐶 = 0.6. We also take 𝑓 (𝜃) = 1− 𝜃, 𝛼 = 0, 𝛽 = 0, 𝜎 = 1, 𝜈 = 0.5, 𝛿 = 10−3 and 𝑟0 = 0.2.
The green-dashed line shows the clogging point, 𝑅clog = 0.5 − 𝑟0, which is attained at
𝑇 ≈ 5.1 × 10−3 in this simulation. The profiles in (a) are at the time when the system clogs
with 𝑅 = 𝑅clog at 𝑌 = 𝐻.

dirt layers are possible before clogging occurs). Then 𝜙 ≈ 𝜙0 and C ≈ C0 are approximately806
constant, even for 𝑅 approaching 𝑅clog. We make the additional approximations807

D =

{
D0 if 𝑅 < 𝑅clog,

0 if 𝑅 = 𝑅clog,
𝑓 (𝜃) =

{
1 if 𝜃 < 1,
0 if 𝜃 = 1.

(6.11)808

Finally, we alter the deposition term in (6.10) by replacing the factor 𝜃∗ − 𝜃 with the constant809
value 𝜃∗. With these choices of functional forms (which we emphasise are not a true limit of810
the full problem), the paradigm boundary layer problem is, while 𝜃 < 1,811

1
𝜎D0

ℎ̄ℎ̄𝑡 = − 1
𝜈𝜙0

log (1 − 𝜈) , (6.12a)812

along with, in 𝑧 ∈ (0,∞) and while 𝑅 < 𝑅clog,813

𝜙0
(
𝜃𝑡 − ℎ̄𝑡𝜃𝑧

)
= D0𝜃𝑧𝑧 − C0𝜃∗𝜃, (6.12b)814

𝑅𝑡 − ℎ̄𝑡𝑅𝑧 = 𝜃, (6.12c)815

while at the evaporation interface 𝑧 = 0,816

𝜙0𝜃ℎ̄𝑡 + D0𝜃𝑧 = 0, (6.12d)817

and, as 𝑧 → ∞,818

𝑅 → 𝑅out(𝑡), 𝜃 → 𝜃out(𝑡), (6.12e)819

where the outer solution 𝑅out, 𝜃out satisfy820

𝜙0𝜃
out
𝑡

= −C0𝜃∗𝜃
out, (6.12f )821

𝑅out
𝑡

= 𝜃out. (6.12g)822

Initially, at 𝑡 = 0,823

𝜃 = 𝜃𝐼𝐶 , 𝑅 = 0, ℎ̄ = 0. (6.12h)824
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Solving (6.12), we see from (6.12a) that the evaporation front is simply825

ℎ̄ = 𝐵
√
𝐷𝑡, (6.13)826

where, for simplicity of notation, we define827

𝐵 :=
√︂
−2𝜎

𝜈
log(1 − 𝜈), 𝐷 :=

D0
𝜙0

. (6.14)828

Furthermore, the outer region phase-plane equations (6.12f)–(6.12g) decouple, with explicit829
solution830

𝜃out = 𝜃𝐼𝐶 exp (−𝐶𝑡) , 𝑅out =
𝜃𝐼𝐶

𝐶
(1 − exp (−𝐶𝑡)) , (6.15)831

where, again for simplicity of notation, we define832

𝐶 :=
C0𝜃∗
𝜙0

. (6.16)833

The boundary layer equations (6.12b)–(6.12e) are therefore834

𝜃𝑡 −
𝐵
√
𝐷

√
𝑡

𝜃𝑧 = 𝐷𝜃𝑧𝑧 − 𝐶𝜃, 𝑅𝑡 −
𝐵
√
𝐷

√
𝑡

𝑅𝑧 = 𝜃, (6.17a)835

while, at the evaporation interface 𝑧 = 0,836

𝐵
√
𝐷

√
𝑡

𝜃 + 𝐷𝜃𝑧 = 0, (6.17b)837

and, as 𝑧 → ∞,838

𝜃 → 𝜃𝐼𝐶 exp (−𝐶𝑡) , 𝑅 → 𝜃𝐼𝐶

𝐶
(1 − exp (−𝐶𝑡)) . (6.17c)839

Thus, under all of our simplifying assumptions, the equations for 𝜃 and 𝑅 decouple: we may840
solve the linear system (6.17a) (left), (6.17b) and (6.17c) (left) for 𝜃, before then computing841
𝑅.842

Specifically, we look for a solution for 𝜃 of the form843

𝜃 = 𝜃𝐼𝐶𝑒
−𝐶𝑡𝐹 (𝜂), where 𝜂 =

𝑧
√
𝐷𝑡

(6.18)844

is a similarity variable. Thus in the boundary layer the far-field deposition solution845
𝜃out = 𝜃𝐼𝐶𝑒

−𝐶𝑡 is modified by an “accumulation factor” 𝐹, which describes how the846
evaporation causes suspended dirt to accumulate near the evaporating interface. Substituting847
this form of 𝜃 into (6.17a) (left), (6.17b) and (6.17c) (left), and solving the resulting ODE848
system for 𝐹 (𝜂), we find849

𝜃 = 𝜃𝐼𝐶𝑒
−𝐶𝑡

(
1 +

√
𝜋𝐵𝑒𝐵

2

1 −
√
𝜋𝐵𝑒𝐵

2erfc(𝐵)
erfc

(
𝐵 + 𝑧

2
√
𝐷𝑡

))
. (6.19)850

The factor 1 −
√
𝜋𝐵𝑒𝐵

2erfc(𝐵) is always positive (although it approaches zero as 𝐵, or851
equivalently 𝜎, approaches ∞), and so the accumulation factor 𝐹 > 1 (and 𝐹 → 1 as 𝜂 (or852
𝑧)→ ∞). Thus, as we would expect, the value of 𝜃 is higher in the boundary layer than in the853
far-field.854

The large 𝜃 in the boundary layer results in greater deposition occurring there, and so855
𝑅 increases compared with the solution as 𝑧 → ∞. The problem (6.17a) (right) for 𝑅 is856
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Figure 10: The black curves are the analytic solution (a) 𝜃 given by (6.19) and (b) 𝑅 for
𝑌 > 𝐻 given by (6.20), of the paradigm problem (6.17), at various times through the drying,
with arrows showing increasing time. The red curve in (b) shows the final deposited dirt
layer after the drying is completed. We have taken parameter values 𝜅 = 100, 𝜈 = 0.5,
𝜎 = 1, 𝜃𝐼𝐶 = 0.1, and 𝑟0 = 0.4.

first order hyberbolic, and — given the form (6.19) — may be solved using the method of857

characteristics. Specifically, we find the characteristic curves take the form 𝑧 = 𝑧0 − 2𝐵
√
𝐷𝑡,858

where 𝑧0 parameterises the initial data 𝑅 = 0 at 𝑡 = 0. (The shape of the characteristic curves859
mean we do not require data for 𝑅 at 𝑧 = 0.) The solution 𝑅, in terms of 𝑧 and 𝑡, is given by860

𝑅(𝑧, 𝑡) =𝜃𝐼𝐶
𝐶

(
1 − 𝑒−𝐶𝑡

)
861

+ 𝜃𝐼𝐶
√
𝜋𝐵𝑒𝐵

2

2𝐶 (1 −
√
𝜋𝐵𝑒𝐵

2erfc(𝐵))

[
𝑒−(

√
𝐶/𝐷𝑧+2𝐵

√
𝐶𝑡 )erfc

(
𝑧

2
√
𝐷𝑡

+ 𝐵 −
√
𝐶𝑡

)
862

+ 𝑒 (
√
𝐶/𝐷𝑧+2𝐵

√
𝐶𝑡 )erfc

(
𝑧

2
√
𝐷𝑡

+ 𝐵 +
√
𝐶𝑡

)
− 2𝑒−𝐶𝑡erfc

(
𝑧

2
√
𝐷𝑡

+ 𝐵

) ]
.

(6.20)

863

The solutions (6.19) and (6.20) of the paradigm model (6.17) are shown in figure 10. Clearly864
the system bears qualitative resemblance to the full model. The deposited dirt layer thickness865
is maximised (spatially in the liquid–dirt domain, at any given time) at the evaporation front.866
Evaluating (6.20) at 𝑧 = 0, we have867

𝑅 | ℎ̄ =
𝜃𝐼𝐶

𝐶

(
1 − 𝑒−𝐶𝑡

)
+ 𝜃𝐼𝐶

√
𝜋𝐵𝑒𝐵

2

2𝐶 (1 −
√
𝜋𝐵𝑒𝐵

2erfc(𝐵))
×868 [

𝑒−2𝐵
√
𝐶𝑡erfc

(
𝐵 −

√
𝐶𝑡

)
− 2𝑒−𝐶𝑡erfc (𝐵) + 𝑒2𝐵

√
𝐶𝑡erfc

(
𝐵 +

√
𝐶𝑡

) ]
(6.21)869

In order to find the maximum value 𝑅 attains, we simply maximise 𝑅 | ℎ̄ over 𝑡. We find that870
there is a single maximum for positive 𝑡, at the critical time 𝑡∗ = 𝜏2

∗ /𝐶, where 𝜏∗ = 𝜏∗(𝐵)871
satisfies872

2𝜏∗√
𝜋𝐵2 = 𝑒 (𝐵−𝜏∗ )

2
erfc(𝐵 − 𝜏∗) − 𝑒 (𝐵+𝜏∗ )

2
erfc(𝐵 + 𝜏∗). (6.22)873

The solution 𝜏∗ of (6.22) is shown as a function of 𝐵 in figure 11 (left). We see𝑂 (1) variation874

of 𝜏∗ when 𝐵 varies over 6 orders of magnitude. Indeed 𝜏∗ →
√︁

3/2 as 𝐵 → ∞ (or 𝜎 → ∞,875
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Figure 11: The maximum of 𝑅 for the paradigm problem. (a): the solution 𝜏∗ of (6.22) as a
function of 𝐵, with the large 𝐵 limit

√︁
3/2 (red dashed) and the small-𝐵 limit, namely the

(non-negligible) root of 𝜏∗𝑒−𝜏
2
∗ =

√
𝜋𝐵2 (green dashed). (b): The (scaled) maximum value

of 𝑅max, given by (6.25), against 𝐵. For small 𝐵 we have 𝐺 ∼ 1 while for large 𝐵 we have
𝐺 ∼ 𝑒−3/2 (

√
6 − 1)𝐵2 (red dashed).

say, the limit of slow dirt diffusion), whilst 𝜏∗ grows very slowly as 𝐵 → 0, behaving like the876

growing root of 𝜏∗𝑒−𝜏
2
∗ =

√
𝜋𝐵2 for 𝐵 ≪ 1, namely877

𝜏∗ ∼
√︂

−𝑊−1(−2𝜋𝐵4)
2

∼

√︄
log

(
1

√
𝜋𝐵2

)
+

log
(
log

(
1√
𝜋𝐵2

))
√︂

log
(

1√
𝜋𝐵2

) + . . . , (6.23)878

where 𝑊−1 is the lower branch of the real Lambert W function.879
From the critical time 𝑡∗, we can compute the value that 𝑅 attains at its maximum, namely880

𝑅max =
𝜃𝐼𝐶

𝐶
𝐺 (𝐵), (6.24)881

where882

𝐺 (𝐵) = 1 + 1
1 −

√
𝜋𝐵𝑒𝐵

2erfc(𝐵)

(
𝑒−𝜏

2
∗ (𝜏∗ − 1) +

√
𝜋𝐵𝑒𝐵

2

2
𝑒2𝐵𝜏∗erfc(𝐵 + 𝜏∗)

)
, (6.25)883

with 𝜏∗ the solution of (6.22). We show 𝐺 = 𝑅max𝐶/𝜃𝐼𝐶 as a function of 𝐵 in figure 11884
(right). For 𝐵 ≪ 1 we see from (6.25) that 𝐺 ≈ 1, while for 𝐵 ≫ 1 we find, using the885

large-𝐵 value 𝜏∗ ≈
√︁

3/2, along with the facts that 1 −
√
𝜋𝐵𝑒𝐵

2erfc(𝐵) ∼ 1/(2𝐵2) and886
√
𝜋𝐵𝑒𝐵

2
𝑒
√

6𝐵erfc(𝐵 +
√︁

3/2) → 𝑒−3/2 as 𝐵 → ∞, that887

𝐺 ∼ 𝑒−3/2
(√

6 − 1
)
𝐵2 as 𝐵 → ∞. (6.26)888

We note from (6.14) that 𝐵 = 𝑂 (
√
𝜎), and so 𝑅max and𝐺 increase linearly with 𝜎 as 𝜎 → ∞.889

Thus we see that, no matter how small the initial suspended dirt level 𝜃𝐼𝐶 , for sufficiently890
slow dirt diffusion (sufficiently large 𝜎) we will find that 𝑅max exceeds 𝑅clog and the system891
will clog.892

Indeed, this expression (6.24) for 𝑅max gives the clogging condition for this paradigm893
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Figure 12: The critical initial suspended dirt volume fraction (6.27) predicted in the
paradigm case, as a function of 𝜎. Dashed curves are the low and high 𝜎 limits (6.28). We
take parameter values 𝑟0 = 0.45, 𝜈 = 0.1, and 𝜃∗ = 1.

setting: the system clogs when 𝑅max ⩾ 𝑅clog. Using (6.16), this clogging criterion is894

𝜃𝐼𝐶 ⩾ 𝜃crit
𝐼𝐶 :=

C0𝜃∗𝑅clog

𝜙0𝐺 (𝐵(𝜎, 𝜈)) . (6.27)895

We show this critical initial suspended dirt volume fraction (6.27) as a function of the896
suspended dirt diffusion rate 𝜎 in figure 12, along with the small and large 𝜎 limits (which897
follow directly from the small and large 𝐵 behaviour of 𝐺 discussed above), namely898

𝜃crit
𝐼𝐶 →

C0𝜃∗𝑅clog

𝜙0
as 𝜎 → 0, (6.28a)899

𝜃crit
𝐼𝐶 →

𝑒3/2𝜈C0𝜃∗𝑅clog

2𝜙0(
√

6 − 1) log(1/(1 − 𝜈))
𝜎−1 as 𝜎 → ∞. (6.28b)900

We note that, since 𝐺 ⩾ 1 and 𝑅clog > 0 this 𝜃crit
𝐼𝐶

, given by (6.27), for the paradigm problem901
is strictly smaller than the upper bound (6.8) (that essentially assumes a uniform deposited902
dirt layer), since, in the case 𝛽 = 0 that we have assumed for the paradigm case, the upper903
bound (6.8) may be rearranged to be written in terms of 𝜙0 = 1 − 𝜋𝑟2

0 , C0 = 2𝜋𝑟0 and904
𝑅clog = 1/2 − 𝑟0, becoming905

𝜃crit
𝐼𝐶 =

𝜃∗(C0𝑅clog + 𝜋𝑅2
clog)

𝜙0
. (6.29)906

Thus, as expected, the non-uniformity of the dirt deposit in the boundary layer at the907
evaporation front results in clogging for lower initial suspended dirt volume fractions than if908
the dirt were to deposit uniformly.909

We note that our expression (6.27) for 𝜃crit
𝐼𝐶

in this paradigm case is independent of 𝜅,910
since we have taken the leading-order behaviour as 𝜅 → ∞. Since we require the boundary911
layer structure, our paradigm estimate for the clogging criterion is only valid when the width912
1/
√
𝜎𝜅 of the boundary layer is small, and so only for 𝜎 sufficiently large that 𝜎 ≫ 1/𝜅913

(although since we assume 𝜅 ≫ 1 this is not particularly restrictive).914
Additionally, we see that the expression (6.27) is independent of 𝐷, and hence of D0. From915

this, we learn that it is the relative diffusivity of the suspended dirt and the liquid vapour,916
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Figure 13: The numerically computed critical initial suspended dirt volume fraction 𝜃crit
𝐼𝐶

,
in the case of large 𝜅 = 100, and with (a) 𝑟0 = 0.45 and (b) 𝑟0 = 0.2. We also show the
upper bound, (6.8), and the prediction of the paradigm model, (6.27), for 𝜃crit

𝐼𝐶
. Throughout

the figure we take 𝑓 = 1− 𝜃, 𝛼 = 0, 𝛽 = 0, and 𝜈 = 0.5, and use 𝛿 = 10−3 for the numerical
simulation.

captured through 𝜎 that is important, and not how both are equally affected by the presence917
of the porous material (recall that D0 is the effective diffusivity). Of course, the depth 𝑦918
into the porous material at which the clogging occurs does depend on 𝐷. Specifically, the919
clogging depth when 𝜃𝐼𝐶 = 𝜃crit

𝐼𝐶
takes its critical value is920

𝐻crit
clog =

√︄
2D0 log(1/(1 − 𝜈))

𝜈C0𝜃∗

𝜏∗√
𝜅

(6.30)921

Curiously, although this position given by (6.30) depends on 𝜅 and D0, it is only weakly922
dependent on 𝜎, since 𝜏∗ (the solution of (6.22)) was seen to have very weak dependence on923
𝐵 ∝

√
𝜎.924

We have considered a simplified, paradigm version of the problem in this section, in order925
to make analytic progress. Although this analysis does not directly relate to the full drying926
model, we may extrapolate some general conclusions. Firstly, the qualitative wet-clogging927
behaviour seen in the full model, characterised by an internal peak in 𝑅, does not rely on928
the variation of D, 𝜙, and the evaporation front speed ℎ𝑇 with 𝑅 and 𝜃 (in the paradigm929
case we supposed all these were constant). Instead, the important mechanism, captured by930
the paradigm model, is the variation of the rate of dirt deposition with 𝜃, along the fact that931
𝜃 is spatially non-uniform in the boundary layer at the evaporation front, determined by a932
balance of all three mechanisms of diffusion, accumulation due to liquid evaporation, and933
the deposition.934

In the following section we generate bifurcation diagrams showing parameter regimes for935
which the system clogs. We will compare these numerical results with the predictions of the936
paradigm model as appropriate.937

7. Clogging parameter regimes938

Having built understanding of the two mechanisms by which the porous material may clog, in939
this section we compute bifurcation diagrams numerically in order to quantify the parameter940
regimes for which clogging occurs.941
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Figure 14: Clogging behaviour of (2.20) as 𝜅 is varied. (a): The end position 𝐻end when the
evaporation terminates, so 𝐻end = 1 if the drying is complete without clogging, 𝐻end < 1
indicates clogging. (b): the total volume of liquid remaining in the porespace when the
evaporation terminates. On both (a) and (b), the red dashed line indicates the upper estimate
(6.8) for the wet-clogging criterion. Throughout the figure we take 𝜎 = 0.1, 𝑓 = 1 − 𝜃,
𝛼 = 0, 𝛽 = 0, and 𝜈 = 0.5, 𝑟0 = 0.2 and 𝛿 = 10−3.

Firstly, we consider the case 𝜅 ≫ 1 for which the dirt deposition rate is high relative to942
the evaporation rate. As in section 6, we do not expect the system to dry-clog, but instead943
to exhibit wet-clogging for sufficiently large 𝜃𝐼𝐶 and 𝜎. In figure 13a and b we show the944
numerically computed regions of parameter space for which dry-clogging occurs, for two945
different values of the microscale-geometry parameter 𝑟0. For both, we observe that there is a946
well-defined critical suspended dirt volume fraction 𝜃crit

𝐼𝐶
above which the system clogs, and947

below which there is no clogging and the evaporation front reaches 𝐻 = 1. We see that 𝜃crit
𝐼𝐶

is948
a monotone decreasing function of 𝜎. The estimate (6.8) is indeed seen to be an upper bound949
for the numerically computed 𝜃crit

𝐼𝐶
, and is most accurate for small 𝜎, when the diffusion of950

dirt is fast and so dirt deposition is approximately uniform. For 𝑟0 = 0.45 (figure 13a), where951
𝑅clog = 0.05 is fairly small and 𝜙 and C do not vary much with 𝑅, we see that the prediction952
(6.27) of the paradigm model is, in fact, a reasonable approximation for the full system,953
despite the fact that the paradigm model is not a real limit of the full model. In particular, for954
large 𝜎 we observe wet-clogging for very small initial suspended dirt volume fractions. For955
𝑟0 = 0.2 (figure 13b), the paradigm model prediction of 𝜃crit

𝐼𝐶
is a poor approximation of the956

full system.957
In figure 14 we investigate the effect of the deposition rate 𝜅 and the initial condition 𝜃𝐼𝐶958

on the clogging behaviour. We simulate the model (2.20) for each set of parameter values959
(𝜃𝐼𝐶 , 𝜅), and in figure 14a the colour indicates the position 𝐻end of the evaporating interface960
at the time when the simulation terminated (so 𝐻end = 1 if there was no clogging and the961
evaporation completed, while 𝐻end < 1 if the system clogged). In figure 14b, for the same962
set of model simulations, the colour indicates the volume of liquid remaining when the963
simulation terminates, namely964

liquid volume remaining =

∫ 1

𝑌=𝐻end

𝜙(1 − 𝜃) d𝑌 . (7.1)965

We note that the 𝜅-axis is on a log-scale in figure 14. For large 𝜅 we see that there is966
a critical 𝜃𝐼𝐶 ≈ 0.65, which appears to be largely independent of 𝜅, above which we967
have wet-clogging and below which the system does not clog. A non-negligible amount of968
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liquid remains trapped in the porespace when the evaporation terminates. This wet-clogging969
behaviour is as discussed in section 6. The upper bound on the critical initial suspended970
dirt volume fraction 𝜃crit

𝐼𝐶
, given by (6.8) and shown by the red-dashed curve, is seen to be a971

significant overestimate, even for the relatively small value 𝜎 = 0.1 (as in figure 13 we expect972
(6.8) to be most accurate for small 𝜎). We see that, as 𝜅 increases, the wet-clogging occurs973
earlier (𝐻end is smaller) and correspondingly more liquid remains trapped in the porespace.974

For small 𝜅, we observe dry-clogging behaviour, as discussed in section 5, with 𝐻end < 1975
but with a negligible amount of liquid trapped in the porespace, since 𝜃 ≈ 1 for 𝑌 > 𝐻 in976
this case. For 𝜅 ≪ 1 we see that dry-clogging occurs for all 𝜃𝐼𝐶 > 0, to varying degrees,977
with 𝐻end close to one for small 𝜃𝐼𝐶 , but actually very small for larger values of 𝜃𝐼𝐶 . The978
transition from the no-clogging/wet-clogging regime for 𝜅 ≫ 1 to the dry-clogging for 𝜅 ≪ 1979
is gradual. Indeed, for 𝜅 = 𝑂 (1), for which we were unable to make analytic progress, it is980
not clear how to classify the system. For small 𝜃𝐼𝐶 there is some dry-clogging, with 𝐻end ≈ 1981
and the remaining liquid volume very small. Moreover, for larger 𝜃𝐼𝐶 the behaviour could be982
considered to be either dry- or wet-clogging, with 𝐻end around halfway through the domain,983
and a fairly small amount of liquid remaining trapped in the pore space.984

8. Discussion and Conclusions985

We have derived and analysed a model for the drying of liquid from within a porous material986
and the associated deposition of impurities within the pore structure. By beginning with a987
pore-scale model and systematically homogenising, we have incorporated delicate couplings988
between the dependent variables, including the effect of a growing layer of deposited dirt on989
the porosity, the diffusivity of both dirt and vapour, and on the deposition rate of the dirt. We990
explored the relevant limit where the vapour density is much smaller than the liquid density991
(𝛿 ≪ 1); in this case, the vapour-transport problem was reduced to a single equation for the992
motion of the evaporation front. Our resulting equation is valid in the physically-relevant993
limit where the vapour transport through the porous material limits the evaporation. This is994
different to prescribing an evaporation rate, which a common approach in the literature, and995
which is only valid when the vaporisation of the liquid molecules is the limiting mechanism.996

The accumulation of suspended dirt at the evaporating interface during drying was shown997
to reduce the evaporation rate, since we imposed a dirt-dependent saturation vapour density998
at the evaporating interface. We also saw that, in the limit of slow suspended dirt diffusion,999
the transport of the dirt away from the evaporating interface limits the evaporation rate.1000
The thickness, 𝑅 of the deposited dirt layer was seen to vary spatially within the porous1001
material. For slow deposition rates 𝜅, 𝑅 increased monotonically into the porous material,1002
with the majority of the dirt concentrated at the end of the porous material. Conversely,1003
for large 𝜅, we observed an internal peak in 𝑅 a short 𝑂 (1/

√
𝜅) distance from the external1004

surface of the material, and a uniform-thickness deposit through the majority of the remaining1005
material. These spatial non-uniformities in 𝑅 were shown to result in two distinct clogging1006
mechanisms, in distinct regions of parameter space. The first clogging mechanism was dry-1007
clogging, where deposition is slow, and suspended dirt is pushed further and further into the1008
material as the evaporation front passes through the domain, until there is insufficient space1009
for it all to deposit and the system clogs. A negligibly small amount of liquid is trapped in1010
the system during dry clogging. By contrast, we found that wet clogging, defined as clogging1011
when both liquid and suspended dirt are trapped in the porous material, occurs at sufficiently1012
high dirt deposition rates 𝜅 and sufficiently slow suspended dirt diffusion rates 𝜎−1, such1013
that the internal peak in 𝑅 is too high, and the deposited dirt layer clogs the pore-space. We1014
constructed a simplified paradigm model in the large 𝜅 situation, which captured the key1015
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mechanisms of coupled accumulation, diffusion and deposition of dirt in a boundary layer at1016
the evaporating interface, and derived a wet-clogging criterion.1017

For industrial drying scenarios, it may be important to control the dirt deposition profile.1018
In particular it may be important to obtain as uniform a deposited layer through the material1019
as possible, for instance if it is a dye or ink pigment that is being deposited. In the drying1020
of filters and textiles after cleaning, clogging of the system should be avoided as much as1021
possible, since a clogged filter can no longer perform its function. The drying rate might more1022
easily be controlled than the diffusivity or deposition rate of the dirt (perhaps by controlling1023
the ambient temperature or humidity) in order to avoid clogging-prone parameter regimes.1024
Specifically, so long as the total initial amount of dirt is sufficiently low that wet-clogging1025
will not occur, the drying rate should be kept slow (ie: 𝜅 should be made large), in order to1026
avoid dry clogging.1027

For our numerical simulations, we chose a simple linear dependence of the saturation1028
vapour density on the suspended dirt volume fraction 𝑓 (𝜃) = 1 − 𝜃, but this should be1029
investigated further, since it is a key mechanism by which the accumulation of suspended1030
dirt affects the evaporation rate. We have also focused the majority of our analysis in the1031
case of 𝛼 = 0 so that the ambient humidity is very low, and the case 𝛽 = 0, so that1032
the dirt cannot re-suspend into the liquid once deposited. The effect of non-zero 𝛼 and1033
𝛽 should be further investigated. In particular, we would expect dry-clogging to be more1034
prominent in the case 𝛽 > 0, even for high deposition rates 𝜅, since the suspended dirt1035
volume fraction would not decay to zero ahead of the evaporation front in this case. We also1036
used a two-dimensional microstructure, with circular solid inclusions. Three dimensional1037
microstructures should be investigated, such as an array of spheres, which would result in1038
different functional forms for C, 𝜙 and D. In particular, the liquid region would remain1039
connected when the dirt layers growing on neighbouring spheres met, although continuing1040
growth of the dirt would eventually result in clogging in a similar way to our two-dimensional1041
case. We expect qualitatively similar behaviour for alternative micro-geometries to our two-1042
dimensional circles, including the possibility of both dry- and wet-clogging in the appropriate1043
parameter regimes. The model and homogenisation analysis could be extended to other1044
geometries, such as hexagonally packed cylinders, or square solid inclusions, as well as1045
more general pore-scale geometries by using a level-set description of the microscale dirt–1046
liquid interface, as in, for instance, Richardson & Chapman (2011). We should additionally1047
investigate our model in higher macroscale dimensions, so that the evaporating interface is1048
at 𝑌 = 𝐻 (𝑋,𝑇). In particular, in the slow-dirt-diffusion case 𝜎 ≫ 1, which is analogous to a1049
Stefan problem with constitutional supercooling, it is possible that the evaporating interface1050
may become unstable.1051

A key assumption of our modelling was that the liquid remained stationary and did not1052
flow. This resulted in a sharp evaporating interface separating the liquid/dirt and gas/vapour1053
occupied regions of the porous material. In reality, a capillary-driven flow of liquid towards1054
the surface of the porous material could draw suspended dirt to the surface as well, and1055
we might anticipate even higher peaks in the deposited dirt layer thickness at or near the1056
surface, increasing the likelihood of wet-clogging. Incorporating such capillary flows will be1057
an important area for our future work.1058

The drying model derived in this paper captures many subtle couplings between the1059
evaporation, accumulation, transport and deposition of dirt, and the transport of vapour1060
out of the porous material during drying. The model itself and our subsequent analysis1061
constitutes an important step towards an accurate prediction of deposited-dirt profiles and1062
clogging behaviours, of particular relevance in the filtration and textile industry.1063
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Appendix A. Overview of homogenisation analysis1075

In this appendix we give an overview of the homogenisation analysis for the model (2.18),1076
which holds within the pore-space, by which we obtain the effective model (2.20), that1077
holds over the much simpler macroscale domain. We introduce macroscale space and time1078
variables1079

𝑇 = 𝜖𝑡, 𝑿 = 𝜖𝒙, (A 1)1080

and denote the average position of the evaporating interface to be at 𝑌 = 𝐻 (𝑇), which1081
we assume is independent of 𝑋 , so that the evaporating interface is flat and parallel to the1082
surface of the porous material. Homogenisation of the partial differential equations (PDEs)1083
describing Stokes flow of the gas mixture and advection–diffusion of both the vapour and1084
the suspended dirt is fairly standard, and will follow, for instance Dalwadi et al. (2015). In1085
order to derive effective boundary conditions for the motion of the evaporating interface on1086
the macroscale, we follow the framework of Luckins et al. (2023), who study the motion of1087
an evaporation front in porous media without dirt in the liquid. In terms of the macroscale1088
spatial variables, we therefore consider a pore-scale (𝑂 (𝜖)) boundary layer on either side of1089
the evaporating interface 𝑌 = 𝐻 (𝑇) in which the evaporating interface 𝑦 = ℎ(𝑥, 𝑡) moves on1090
the microscale, as illustrated in the schematic in figure 15 and denoted as “inner” regions.1091
The approach involves a coupled boundary layer analysis and homogenisation, alongside a1092
more standard homogenisation to derive the effective PDEs in the “outer” regions (far from1093
the evaporating interface) and careful matching between the inner and outer regions in order1094
to derive the effective boundary conditions.1095

Since the analysis closely follows that of Luckins et al. (2023), we do not give all the1096
details here. Instead we give an overview, indicating where the analysis deviates from that1097
in our previous work. We begin in section A.1 with the analysis of the gas and vapour in1098
𝑌 < 𝐻 (𝑇), before considering the liquid and dirt problem in 𝑌 > 𝐻 (𝑇) in section A.2, and1099
state the resulting effective model on the macroscale in section 2.3.1100

A.1. Homogenisation of the gas–vapour problem in 𝑌 < 𝐻 (𝑇)1101

The microscale problem for the flow of the gas–vapour mixture and advective–diffusive1102
transport of vapour in 𝑦 < ℎ(𝑥, 𝑡), namely (2.18a) with (2.18c), (2.18e)–(2.18g), (2.18i), and1103
(2.18j), is almost identical to that considered by Luckins et al. (2023) in the case 𝛼 ≪ 1 (in1104
their notation) for the chemistry boundary condition (2.18i). The differences are as follows:1105

(i) The chemistry interface condition (2.18i) is a Dirichlet condition for 𝜌 that now1106
depends on 𝜃, and may vary in time and along the interface.1107

(ii) The microstructure of the porous material is no longer periodic: there may be spatial1108
variation in the microstructure due to the dirt that has been deposited on the pore walls at1109
earlier times. This will affect the flow and transport of vapour.1110

http://dx.doi.org/10.5281/zenodo.10932659
http://dx.doi.org/10.5281/zenodo.10932659
http://dx.doi.org/10.5281/zenodo.10932659
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Figure 15: Schematic illustrating the homogenisation and boundary layer analysis. The
solid microstructure of the porous material is shown by the grey circles in the insets, the
gas–vapour mixture is shown in yellow and the dirt–liquid mixture in blue. The brown
regions denote the layer of deposited dirt that is built up on the solid microstructure.

As discussed in section A.2 below, taking 𝜎 = 𝑂 (1) relative to 𝜖 means that 𝜃 is1111
independent of the microscale space and time variables. This is important to our resolution1112
of both points (i) and (ii) above. Specifically, since 𝜃 is independent of the microscale, the1113
Dirichlet condition (2.18i) for 𝜌 at the evaporating interface is independent of the microscale,1114
and so our analysis in Luckins et al. (2023) follows as before. Furthermore, since 𝜃 only varies1115
over the macroscale, we will see below that the thickness, 𝑅, of the deposited dirt layer on1116
the pore microstructure only varies on the macroscale, and thus the porosity 𝜙 and effective1117
diffusivity D in the region 𝑦 < ℎ(𝑥, 𝑡), occupied by the gas mixture, may only vary over1118
a macro-lengthscale. The effect of a spatially varying porosity on the flow and advection1119
of a fluid through porous media has been studied in, for instance, Dalwadi et al. (2015).1120
Following Dalwadi et al. (2015), we may incorporate a spatially varying microstructure1121
into the governing macroscale PDE for 𝜌. We also note that the derivation of the effective1122
boundary conditions for the gas–vapour problem are unchanged from that of Luckins et al.1123
(2023) by the spatially varying microstructure. This is because the variation of 𝑅 on the1124
macroscale only enters the equations at 𝑂 (𝜖2), whereas we only need to consider terms up1125
to 𝑂 (𝜖) in the inner region for the derivation of the interface conditions.1126

Adapting the analysis of Luckins et al. (2023) to include the spatial variation in 𝑅, we1127
obtain at leading order the effective model, for 𝑌 < 𝐻 (𝑇),1128

𝑞𝑌 = 0, 𝑞 = −𝑘𝑃𝑌 , 𝛿𝜙𝜌𝑇 + 𝜈𝑞𝜌𝑌 = (D𝜌𝑌 )𝑌 , (A 2)1129

with the (microscale-)time-averaged Darcy velocity, 𝑞, and pressure 𝑃 given, respectively,1130
by1131

𝑞 = 𝐻𝑇

∫ 1/𝐻𝑇

𝑡=0

∬
𝜔 𝑓 (𝑅)

𝒖 (0) d𝑥d𝑦 d𝑡, 𝑃 = 𝐻𝑇

∫ 1/𝐻𝑇

𝑡=0
𝑝 (0) d𝑡, (A 3)1132

where 𝜔 𝑓 (𝑅) is the pore-space domain (occupied by either the gas–vapour or liquid–dirt1133
mixture). The micro-time averages are needed here since there may be fast oscillations in1134
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the pressure and flow as the evaporating interface moves through the micro-scale cell. The1135
effective diffusivity is defined to be1136

D = D(𝑅) =
∬

𝜔 𝑓 (𝑅)
1 +𝑊𝑦 d𝑥d𝑦 (A 4)1137

where 𝑊 is the solution of the cell problem given in Appendix B (which depends on the1138
microscale geometry). We note that the permeability 𝑘 , defined in Luckins et al. (2023), is1139
also now a function of 𝑅 (although we will not need this: in our macroscale geometry which1140
we assume to be one-dimensional — with no variation in 𝑋 — we will not need to solve for1141
the average pressure 𝑃).1142

The interface conditions for 𝑞 and 𝜌 at 𝑌 = 𝐻 (𝑇) are1143

𝑞 = −(1 − 𝛿𝜈−1)F𝐻𝑇 , D𝜌𝑌 = (1 − 𝜈𝜌)F𝐻𝑇 , 𝜌 = 𝑓 (𝜃), (A 5)1144

where F , arising because of the averaging, is the total flux of liquid/vapour through the1145
microscale evaporating interface in one micro-time-period. We will specify the value of F1146
in (A 17) later. Finally, at the surface of the porous material, we have1147

𝜌 = 𝛼, 𝑃 = 0, at 𝑌 = 0. (A 6)1148

We note that (A 2), (A 5) and (A 6) may be combined, reducing the effective gas–vapour1149
problem simply to a problem for 𝜌.1150

A.2. Homogenisation of the liquid–dirt problem in 𝑌 > 𝐻 (𝑇)1151

While the gas and vapour problem in section A.1 did not rely on any particular microscale1152
geometry, for simplicity it is helpful to specify the porescale geometry when considering the1153
dirt–liquid problem. As illustrated in figure 15, we assume that the porous structure is made1154
from circular solid inclusions of dimensionless radius 𝑟0, with a layer of dirt outside this,1155
of dimensionless thickness 𝑅 ⩾ 0. Thus the deposited-dirt–liquid interface, 𝜕𝜔𝑠 (𝑅), is at1156
|𝒙 | = 𝑟0 + 𝑅, and the normal velocity of the interface is1157

𝑉𝑛 = 𝑅𝑡 . (A 7)1158

The microscale problem for 𝜃, namely (2.18b), (2.18d), and (2.18h) is1159

𝜖𝜎𝜃𝑡 = ∇2𝜃 for 𝑦 < ℎ(𝑥, 𝑡), (A 8)1160

𝜖𝜎𝜃
ℎ𝑡√︁

1 + ℎ2
𝑥

+ ∇𝜃 · 𝒎 = 0 on 𝑦 = ℎ(𝑥, 𝑡), (A 9)1161

∇𝜃 · 𝒏𝑠 = 𝜖𝜎(𝜃∗ − 𝜃)𝑅𝑡 on 𝜕𝜔𝑠, (A 10)1162

𝑅𝑡 = 𝜖𝜅(𝜃 − 𝛽𝜒𝑅) on 𝜕𝜔𝑠, (A 11)1163

where 𝜒𝑅 is an indicator function, with 𝜒𝑅 = 1 if 𝑅 > 0 and 𝜒𝑅 = 0 if 𝑅 = 0.1164
We homogenise these equations in the outer region (away from 𝑌 = 𝐻 (𝑇) in a similar1165

way to the filtration model of Dalwadi et al. (2015), or the reactive decontamination model1166
of Luckins et al. (2020). The one difference is handling the multiple timescales, 𝑡 and 𝑇 ,1167
but this is dealt with straightforwardly as in Luckins et al. (2023). In particular, to leading1168
order, we find that the suspended dirt volume fraction is independent of the microscale, so1169
that diffusion is quasi-steady on the microscale, which is a direct result of our assumption1170
that 𝜎 = 𝑂 (1). If, instead, 𝜎 = 𝑂 (𝜖−1), then further analysis would be needed, since the1171
suspended dirt would accumulate in a spatially non-uniform manner within the periodic cell.1172

The resulting effective equations for the suspended dirt volume fraction, 𝜃, and the1173
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deposited dirt layer thickness, 𝑅, in 𝐻 (𝑇) < 𝑌 < 1 are1174

𝜎𝜙𝜃𝑇 = (D𝜃𝑌 )𝑌 − 𝜎𝜅C(𝜃∗ − 𝜃) (𝜃 − 𝛽𝜒𝑅), (A 12)1175

𝑅𝑇 = 𝜅(𝜃 − 𝛽𝜒𝑅), (A 13)1176

where 𝜙(𝑅) = 1 − 𝜋(𝑟0 + 𝑅)2 is the local porosity, D(𝑅) is the local effective diffusivity1177
(defined in (A 4)), and C(𝑅) = 2𝜋(𝑟0 + 𝑅) is the circumference (or surface area) of the1178
deposited dirt layer. Although (A 13) is an ODE for 𝑅 in time 𝑇 , 𝑅 may vary spatially, since1179
the dirt-deposition rate depends on the local suspended dirt volume fraction 𝜃.1180

At the edge of the macroscale domain, 𝑌 = 1, the macroscale version of (2.18k) holds and1181
so we have1182

𝜃𝑌 = 0 on 𝑌 = 1. (A 14)1183

Following the same boundary layer analysis for the inner region as in the gas–vapour1184
problem in Luckins et al. (2023), we obtain a macroscale boundary condition for 𝜃 at1185
𝑌 = 𝐻 (𝑇), namely1186

𝜎F𝐻𝑇𝜃 + D𝜃𝑌 = 0 on 𝑌 = 𝐻 (𝑇). (A 15)1187

By considering the overall conservation of dirt, we now show that F (the total flux of liquid1188
through the microscale evaporating interface in one micro-time-period) must be exactly the1189
porosity, 𝜙, at 𝑌 = 𝐻 (𝑇). Integrating the suspended dirt conservation equation (A 12) over1190
the macroscale domain𝑌 ∈ [𝐻, 1], and using Leibniz’ rule, the boundary conditions (A 14)–1191
(A 15), the equation (A 13) for 𝑅𝑇 , and using the fact that 𝜙𝑇 = −C𝑅𝑇 by definition, we1192
obtain1193

d
d𝑇

(∫ 1

𝐻 (𝑇 )
𝜙𝜃 d𝑌

)
= 𝐻𝑇𝜃 |𝑌=𝐻 (F − 𝜙|𝑌=𝐻 ) −

∫ 1

𝐻 (𝑇 )
𝑅𝑇C𝜃∗ d𝑌 . (A 16)1194

We can interpret this as the overall conservation of suspended dirt: on the left is the rate of1195
change of total amount of dirt suspended in the liquid, and the final term on the right is the1196
rate at which suspended dirt is “lost” to the deposited layer on the solid. There is no other1197
way that dirt should be lost or gained, and so the additional term (the first term on the left)1198
must equal zero. Thus we require1199

F = 𝜙|𝑌=𝐻 . (A 17)1200

In Luckins et al. (2023), for a pure evaporation problem with no dirt in the evaporating1201
liquid, it was argued that F = 𝜙|𝑌=𝐻 by consideration of the microscale conservation of1202
mass of liquid: all the liquid occupying the unit cell (𝜙) had to pass through the evaporating1203
interface as vapour (F ) in order for the interface to move down through the cell. It may1204
therefore seem counter-intuitive that F = 𝜙 |𝑌=𝐻 when there is suspended dirt in the liquid1205
also. However, since we assume 𝜎 = 𝑂 (1) and so dirt diffusion is quasi-steady on the1206
microscale, all the suspended dirt contained within the unit cell is forced out by diffusion1207
in order that the evaporating interface can pass through the cell. Thus the full volume 𝜙 of1208
liquid passes through the interface in one time-period, in keeping with F = 𝜙|𝑌=𝐻 .1209

Appendix B. The cell problem for the effective diffusivity D1210

As shown by Luckins et al. (2023), the effective diffusivity D(𝑅) given by (A 4) may be1211
found by solving a cell problem for 𝑊 , namely1212

∇2𝑊 = 0 for 𝑥, 𝑦 ∈ 𝜔 𝑓 (𝑅), (B 1)1213

(∇𝑊 + 𝒆1) · 𝒏 = 0 on |𝒙 | = 𝑟0 + 𝑅, (B 2)1214

𝑊 periodic in both 𝑥 and 𝑦 over 𝜔(𝑅), (B 3)1215
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where 𝒏 is the unit normal to the solid-liquid interface at |𝒙 | = 𝑟0 + 𝑅. The definition of1216
the effective diffusivity D presented in (A 4) is common to many diffusion problems in1217
multi-scale geometries. The solution D has been computed for our circular geometry by,1218
for instance Bruna & Chapman (2015) and Dalwadi et al. (2015). We use the numerically1219
computed solution of Dalwadi et al. (2015) in the numerical simulations in this paper.1220
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